首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Most cells produce ATP in the mitochondria by oxidative phosphorylation. However, macrophages, which are major players in the innate immune system, use aerobic glycolysis to produce ATP. HIF-1 (hypoxia-inducible factor-1) regulates expression of glycolysis-related genes and maintains macrophage glycolytic activity. However, it is unclear how HIF-1 activity is maintained in macrophages during normoxia. In this study, we found that macrophages lacking membrane type 1 matrix metalloproteinase (MT1-MMP/MMP-14), a potent invasion-promoting protease, exhibited considerably lower ATP levels than wild-type cells. HIF-1 was activated by an unanticipated function of MT1-MMP, which led to the stimulation of ATP production via glycolysis. The cytoplasmic tail of MT1-MMP bound to FIH-1 (factor inhibiting HIF-1), which led to the inhibition of the latter by its recently identified inhibitor, Mint3/APBA3. We have thus identified a new function of MT1-MMP to mediate production of ATP so as to support energy-dependent macrophage functions by a previously unknown non-proteolytic mechanism.  相似文献   

2.
3.
4.
5.
6.
7.
8.
The hypoxia-inducible factor-1alpha (HIF-1alpha) subunit is activated in response to lack of oxygen. HIF-1alpha-specific prolyl hydroxylase and factor inhibiting HIF-1alpha (FIH-1) catalyze hydroxylation of the proline and asparagine residues of HIF-1alpha, respectively. The hydroxyproline then interacts with ubiquitin E3 ligase, the von Hippel-Lindau protein, leading to degradation of HIF-1alpha by ubiquitin-dependent proteasomes, while the hydroxylation of the asparagine residue prevents recruitment of the coactivator, cAMP-response element-binding protein (CBP), thereby decreasing the transactivation ability of HIF-1alpha. We found that the Zn-specific chelator, N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN), enhances the activity of HIF-1alpha-proline hydroxylase 2 but the level of HIF-1alpha protein does not fall because TPEN also inhibits ubiquitination. Since the Zn chelator does not prevent FIH-1 from hydroxylating the asparagine residue of HIF-1alpha, its presence leads to the accumulation of HIF-1alpha that is both prolyl and asparaginyl hydroxylated and is therefore nonfunctional. In hypoxic cells, TPEN also prevents HIF-1alpha from interacting with CBP, so reducing expression of HIF-1alpha target genes. As a result, Zn chelation causes the accumulation of nonfunctional HIF-1alpha protein in both normoxia and hypoxia.  相似文献   

9.
10.
11.
Accumulation of HIF-1alpha during normoxic conditions at high cell density has previously been shown to occur and can be used to stabilize HIF-1alpha protein in the absence of a specific anaerobic chamber. However, the impact and origin of this pool of HIF-1alpha, obtained under normoxia, has been underestimated. In this study, we have systematically compared the related pools of HIF-1alpha stabilized in normoxia by high cell density to those obtained at low density in hypoxia. At first glance, these two stimuli appear to have similar outcomes: HIF-1alpha stabilization and induction of HIF-1-dependent genes. However, upon careful analysis, we observed that molecular mechanisms involved are different. We clearly demonstrate that density-dependant HIF-1alpha accumulation during normoxia is due to the cells high consumption of oxygen, as demonstrated by using a respiration inhibitor (oligomycin) and respiratory-defective mutant cells (GSK3). Finally and most importantly, our data indicate that a decrease in AKT activity followed by a total decrease in p70(S6K) phosphorylation reflecting a decrease in mTOR activity occurs during high oxygen consumption, resulting from high cell density. In contrast, hypoxia, even at severe low O(2) levels, only slightly impacts upon the mTOR pathway under low cell density conditions. Thus, activation of HIF-1alpha in exponentially growing cells via hypoxic stimulation is independent of the Akt/mTOR pathway whereas HIF-1alpha activation obtained in high confluency is totally dependent on mTOR pathway as rapamycin totally impaired (i) HIF-1alpha stabilization and (ii) mRNA levels of CA9 and BNIP3, two HIF-target genes.  相似文献   

12.
MT1-MMP/MMP-14 is a major invasion-promoting membrane protease expressed in macrophages. In addition to its proteolytic activity that degrades the extracellular matrix, MT1-MMP also boosts ATP production in cells in a manner independent of its proteolytic activity. It remains unclear to what extent the proteolytic and energy-boosting activities of MT1-MMP contribute to macrophage invasion. Recently, we demonstrated that the cytoplasmic tail of MT1-MMP makes use of APBA3/Mint3 to activate HIF-1 and thereby boosts glycolysis for ATP production. Here, we used Apba3−/− macrophages to dissect the contribution of the proteolytic and the energy-boosting activities of MT1-MMP. The proteolytic activity of MT1-MMP was not affected by the lack of APBA3 in macrophages. Apba3−/− and Mmp14−/− macrophages exhibited a 55% reduction of ATP levels compared to wild-type (WT) cells and the rate of motility of the mutant cells was accordingly reduced. In contrast, matrigel invasion by Mmp14−/− and Apba3−/− macrophages was reduced to 24% and 55.4%, respectively, of the level observed in WT cells. These results represent the first attempt to dissect the contribution of the two invasion-promoting activities of MT1-MMP to macrophage invasion.  相似文献   

13.
Emerging evidence has implicated the role of tumor initiating cells (TICs) in the process of cancer metastasis. The mechanism underlying the conversion of TICs from stationary to invasive remains to be characterized. In this report, we employed less invasive breast cancer TICs, SK-3rd, that displays CD44(high)/CD24(low) with high mammosphere-forming and tumorigenic capacities, to investigate the mechanism by which stationary TICs are converted to invasive TICs. Invasive ability of SK-3rd TICs was markedly enhanced when the cells were cultured under hypoxic conditions. Given the role of membrane type 1-matrix metalloproteinase (MT1-MMP) in cancer invasion/metastasis, we explored a possible involvement of MT1-MMP in hypoxia-induced TIC invasion. Silencing of MT1-MMP by a shRNA approach resulted in diminution of hypoxia-induced cell invasion in vitro and metastasis in vivo. Under hypoxic conditions, MT1-MMP redistributed from cytoplasmic storage pools to the cell surface of TICs, which coincides with the increased cell invasion. In addition, CD44, a cancer stem-like cell marker, inversely correlated with increased cell surface MT1-MMP. Interestingly, cell surface MT1-MMP gradually disappeared when the hypoxia-treated cells were switched to normoxia, suggesting the plasticity of TICs in response to oxygen content. Furthermore, we dissected the pathways leading to upregulated MT1-MMP in cytoplasmic storage pools under normoxic conditions, by demonstrating a cascade involving Twist1-miR10b-HoxD10 leading to enhanced MT1-MMP expression in SK-3rd TICs. These observations suggest that MT1-MMP is a key molecule capable of executing conversion of stationary TICs to invasive TICs under hypoxic conditions and thereby controlling metastasis.  相似文献   

14.
Mint3 is known to enhance aerobic ATP production, known as the Warburg effect, by binding to FIH-1. Since this effect is considered to be beneficial for cancer cells, the interaction is a promising target for cancer therapy. However, previous research has suggested that the interacting region of Mint3 with FIH-1 is intrinsically disordered, which makes investigation of this interaction challenging. Therefore, we adopted thermodynamic and structural studies in solution to clarify the structural and thermodynamical changes of Mint3 binding to FIH-1. First, using a combination of circular dichroism, nuclear magnetic resonance, and hydrogen/deuterium exchange–mass spectrometry (HDX-MS), we confirmed that the N-terminal half, which is the interacting part of Mint3, is mostly disordered. Next, we revealed a large enthalpy and entropy change in the interaction of Mint3 using isothermal titration calorimetry (ITC). The profile is consistent with the model that the flexibility of disordered Mint3 is drastically reduced upon binding to FIH-1. Moreover, we performed a series of ITC experiments with several types of truncated Mint3s, an effective approach since the interacting part of Mint3 is disordered, and identified amino acids 78 to 88 as a novel core site for binding to FIH-1. The truncation study of Mint3 also revealed the thermodynamic contribution of each part of Mint3 to the interaction with FIH-1, where the core sites contribute to the affinity (ΔG), while other sites only affect enthalpy (ΔH), by forming noncovalent bonds. This insight can serve as a foothold for further investigation of intrinsically disordered regions (IDRs) and drug development for cancer therapy.  相似文献   

15.
Proteolysis of extracellular matrix proteins by membrane-type 1 matrix metalloproteinase (MT1-MMP) plays a pivotal role in tumor and endothelial cell migration. In addition to its proteolytic activity, several studies indicate that the proinvasive properties of MT1-MMP also involve its short cytoplasmic domain, but the specific mechanisms mediating this function have yet to be fully elucidated. Having previously shown that the serum factor sphingosine 1-phosphate stimulates MT1-MMP promigratory function through a process that involves its cytoplasmic domain, we now extend these findings to show that this cooperative interaction is permissive to cellular migration through MT1-MMP-dependent transactivation of the epidermal growth factor receptor (EGFR). In the presence of sphingosine 1-phosphate, MT1-MMP stimulates EGFR transactivation through a process that is dependent upon the cytoplasmic domain of the enzyme but not its catalytic activity. The MT1-MMP-induced EGFR transactivation also involves G(i) protein signaling and Src activities and leads to enhanced cellular migration through downstream extracellular signal-regulated kinase activation. The present study, thus, elucidates a novel role of MT1-MMP in signaling events mediating EGFR transactivation and provides the first evidence of a crucial role of this receptor activity in MT1-MMP promigratory function. Taken together, our results suggest that the inhibition of EGFR may represent a novel target to inhibit MT1-MMP-dependent processes associated with tumor cell invasion and angiogenesis.  相似文献   

16.
Matrix metalloproteinase (MMP)-2 and MMP-9, also known as gelatinases or type IV collagenases, are recognized as major contributors to the proteolytic degradation of extracellular matrix during tumor invasion. Latent MMP-2 (proMMP-2) is activated by membrane type 1 MMP (MT1-MMP) on the cell surface of tumor cells. We previously reported that cell-bound proMMP-9 is activated by the MT1-MMP/MMP-2 axis in HT1080 cells treated with concanavalin A in the presence of exogenous proMMP-2. However, the regulatory mechanism of proMMP-9 activation remains largely unknown. Transforming growth factor (TGF)-β1 is frequently overexpressed in tumor tissues and is associated with tumor aggressiveness and poor prognosis. In this study, we examined the role of TGF-β1 on MT1-MMP-mediated proMMP-9 activation using human oral squamous cell carcinoma cells. TGF-β1 significantly increased the expression of MMP-9. By adding exogenous proMMP-2, TGF-β1-induced proMMP-9 was activated during collagen gel culture, which was suppressed by the inhibition of TGF-β1 signaling or MT1-MMP activity. This MT1-MMP-mediated proMMP-9 activation was needed to facilitate TGF-β1-induced cell invasion into collagen gel. Thus, TGF-β1 may facilitate MT1-MMP-mediated MMP-9 activation and thereby stimulate invasion of tumor cells in collaboration with MT1-MMP and MMP-2.  相似文献   

17.
The phosphoinositide 3-kinase (PI3K)/Akt pathway is commonly activated in cancer; therefore, we investigated its role in hypoxia-inducible factor-1alpha (HIF-1alpha) regulation. Inhibition of PI3K in U87MG glioblastoma cells, which have activated PI3K/Akt activity secondary to phosphatase and tensin homologue deleted on chromosome 10 (PTEN) mutation, with LY294002 blunted the induction of HIF-1alpha protein and its targets vascular endothelial growth factor and glut1 mRNA in response to hypoxia. Introduction of wild-type PTEN into these cells also blunted HIF-1alpha induction in response to hypoxia and decreased HIF-1alpha accumulation in the presence of the proteasomal inhibitor MG132. Akt small interfering RNA (siRNA) also decreased HIF-1alpha induction under hypoxia and its accumulation in normoxia in the presence of dimethyloxallyl glycine, a prolyl hydroxylase inhibitor that prevents HIF-1alpha degradation. Metabolic labeling studies showed that Akt siRNA decreased HIF-1alpha translation in normoxia in the presence of dimethyloxallyl glycine and in hypoxia. Inhibition of mammalian target of rapamycin (mTOR) with rapamycin (10-100 nmol/L) had no significant effect on HIF-1alpha induction in a variety of cell lines, a finding that was confirmed using mTOR siRNA. Furthermore, neither mTOR siRNA nor rapamycin decreased HIF-1alpha translation as determined by metabolic labeling studies. Therefore, our results indicate that Akt can augment HIF-1alpha expression by increasing its translation under both normoxic and hypoxic conditions; however, the pathway we are investigating seems to be rapamycin insensitive and mTOR independent. These observations, which were made on cells grown in standard tissue culture medium (10% serum), were confirmed in PC3 prostate carcinoma cells. We did find that rapamycin could decrease HIF-1alpha expression when cells were cultured in low serum, but this seems to represent a different pathway.  相似文献   

18.
19.
20.
《Cellular signalling》2014,26(5):917-924
Plant lectins have been considered as possible anti-tumor drugs because of their property to induce autophagic cell death. Given that expression of membrane type-1 matrix metalloproteinase (MT1-MMP) has been found to regulate expression of the autophagy biomarker Bcl-2/adenovirus E1B 19 kDa interacting protein 3 (BNIP3), we sought to investigate possible signaling interplay mechanisms between MT1-MMP and BNIP3 in Concanavalin-A (ConA) lectin-activated U87 glioblastoma cells. ConA induced acidic vacuole organelle formation as well as BNIP3 and MT1-MMP gene and protein expressions, whereas only BNIP3 expression was dose-dependently inhibited by the JAK2 tyrosine kinase inhibitor AG490 suggesting a requirement for some STAT-mediated signaling. Gene silencing of MT1-MMP and of STAT3 abrogated ConA-induced STAT3 phosphorylation and BNIP3 expression. Correlative analysis shows that STAT3 signaling events occur downstream from MT1-MMP induction. Overexpression of a full length MT1-MMP recombinant protein led to increased BNIP3 gene and protein expressions. The cytoplasmic domain of MT1-MMP was also found necessary for transducing STAT3 phosphorylation. Among JAK1, JAK2, JAK3, and TYK2, only JAK2 gene silencing abrogated ConA's effects on MT1-MMP and BNIP3 gene and protein expressions. Our study elucidates how MT1-MMP signals autophagy, a process which could contribute to the chemoresistance phenotype in brain cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号