首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 312 毫秒
1.
转基因植物疫苗的研究进展   总被引:8,自引:0,他引:8  
韩梅  苏涛  祖元刚  安志刚 《遗传学报》2006,33(4):285-293
近些年,随着遗传技术和植物基因工程的发展进步,疫苗(亚单位疫苗、活载体疫苗和核酸疫苗等)的研究迅速发展起来。尤其是利用转基因植物技术生产植物疫苗的研究受到了广泛的关注,在转基因植物(蔬菜、水果、农作物)的可食用部位表达抗原生产人或动物治疗用重组蛋白和疫苗的技术为可食性疫苗的研制开辟了新途径,展现了诱人的开发前景。植物来源的疫苗具有很多优势,如生产成本低、易于保存、免疫接种方便、甚至不需提取纯化等处理而直接食用。目前已有很多转基因植物疫苗产品投入开发和生产。文章综述了近几年转基因植物疫苗在表达系统、生产、生物安全/管理、公众健康等方面的研究进展,对转基因植物疫苗存在的问题进行了分析,并对其研究前景提出了展望。  相似文献   

2.
转基因植物作为生物反应器在疫苗生产中的应用   总被引:8,自引:0,他引:8  
对转基因植物生产口服疫苗的发展、优点与作用机理、方法原理进行介绍,概述当前各种转基因植物疫苗的研究现状,指出了转基因植物疫苗研究面临的问题与前景 。  相似文献   

3.
本文概述了利用转基因植物生产口服疫苗的研究现状。分别对转基因植物生产口服疫苗的优点、作用原理、研究方法、已研究的口服疫苗及问题和前景进行了介绍。  相似文献   

4.
利用转基因植物生产口服疫苗的研究现状   总被引:15,自引:0,他引:15  
本文概述了利用转基因植物生产口服疫苗的研究现状,分别对转基因植物生产口服疫苗的优点、作用原理,研究方法,已研究的口服疫苗及问题和前景进行了介绍。  相似文献   

5.
转基因植物基因工程疫苗   总被引:13,自引:0,他引:13  
对转基因植物生产疫苗的方法进行了介绍,概括了转基因植物疫 的主要优点和存在的问题,总结了10年来转基因植物疫苗的研究进展,并对未来的发展方向进行了讨论。  相似文献   

6.
用转基因植物生产病原微生物亚单位疫苗的研究现状   总被引:1,自引:0,他引:1  
严华  潘学彪 《微生物与感染》2005,28(2):18-21,28
利用转基因植物生产病原微生物亚单位疫苗是一个新兴的领域,本文就生产流程、在转基因植物中表达成功的病原微生物亚单位疫苗和转基因植物疫苗的优缺点,提高亚单位疫苗抗原在转基因植物中的表达量,以及加强机体黏膜免疫反应的措施等方面作一综述.  相似文献   

7.
近年来植物正在逐渐成为疫苗生产的反应器。转基因植物疫苗是将植物攻城技术与机体免疫机理结合,把外源基因导入植物体内,从而使人体获得特异免疫能力的新型疫苗。在这篇综述中,根据最新转基因植物疫苗的研究进展,比较了转基因植物疫苗产生与其他方法相比的优点,此外也就其原理方法、进展和安全性进行了综述。  相似文献   

8.
应用植物表达系统生产疫苗的研究概况   总被引:3,自引:0,他引:3  
随着重组DNA技术、植物转基因技术和分子植物病毒学的迅猛发展,使得应用植物作为疫苗抗原的表达载体成为可能。本对应用转基因植物和基于植物的病毒载体两种植物表达系统生产疫苗抗原的研究概况进行了评述。  相似文献   

9.
近年来 ,随着基因工程、蛋白质工程以及免疫学理论与技术的迅速发展 ,以开发新型高效疫苗为目标的新的研究领域异常活跃 ,基因工程亚单位疫苗、基因缺失疫苗、重组病毒活载体疫苗、核酸疫苗各展风姿 ,但这些系统存在设备复杂 ,成本高 ,免疫原性较差和外源微生物污染的缺陷 .为克服上述缺陷 ,进入 2 0世纪 90年代 ,以植物为生物反应器的疫苗研究策略迅速发展 ,短短几年以植物为生物反应器的可食性疫苗取得了可喜的进展 ,这些进展也开辟了植物生物技术革命的新天地 .1 转基因植物基因疫苗研究原理和策略利用转基因植物生产疫苗 ,是将抗原基因…  相似文献   

10.
转基因植物疫苗的研究进展   总被引:4,自引:0,他引:4  
利用转基因植物作为生物反应器生产疫苗是一个新兴的技术领域,它具有生产简便、成本低廉,不需要冷藏和低温运输,安全性好,无外源性病原污染等优点。概述当前转基因植物疫苗的研究进展,并就转基因植物疫苗的作用机理及原理方法进行了介绍。  相似文献   

11.
Research Advances on Transgenic Plant Vaccines   总被引:1,自引:0,他引:1  
In recent years, with the development of genetics molecular biology and plant biotechnology, the vaccination (e.g. genetic engineering subunit vaccine, living vector vaccine, nucleic acid vaccine) programs are taking on a prosperous evolvement. In particular, the technology of the use of transgenic plants to produce human or animal therapeutic vaccines receives increasing attention. Expressing vaccine candidates in vegetables and fruits open up a new avenue for producing oral/edible vaccines. Transgenic plant vaccine disquisitions exhibit a tempting latent exploiting foreground. There are a lot of advantages for transgenic plant vaccines, such as low cost, easiness of storage, and convenient immune-inoculation. Some productions converged in edible tissues, so they can be consumed directly without isolation and purification. Up to now, many transgenic plant vaccine productions have been investigated and developed. In this review, recent advances on plant-derived recombinant protein expression systems, infectious targets, and delivery systems are presented. Some issues of high concern such as biosafety and public health are also discussed. Special attention is given to the prospects and limitations on transgenic plant vaccines.  相似文献   

12.
Plants have been identified as promising expression systems for commercial production of vaccine antigens. In phase I clinical trials several plant-derived vaccine antigens have been found to be safe and induce sufficiently high immune response. Thus, transgenic plants, including edible plant parts are suggested as excellent alternatives for the production of vaccines and economic scale-up through cultivation. Improved understanding of plant molecular biology and consequent refinement in the genetic engineering techniques have led to designing approaches for high level expression of vaccine antigens in plants. During the last decade, several efficient plant-based expression systems have been examined and more than 100 recombinant proteins including plant-derived vaccine antigens have been expressed in different plant tissues. Estimates suggest that it may become possible to obtain antigen sufficient for vaccinating millions of individuals from one acre crop by expressing the antigen in seeds of an edible legume, like peanut or soybean. In the near future, a plethora of protein products, developed through ‘naturalized bioreactors’ may reach market. Efforts for further improvements in these technologies need to be directed mainly towards validation and applicability of plant-based standardized mucosal and edible vaccines, regulatory pharmacology, formulations and the development of commercially viable GLP protocols. This article reviews the current status of developments in the area of use of plants for the development of vaccine antigens.  相似文献   

13.
The small size of plant viral genomes, the ease with which they can be manipulated, and the simplicity of the infection process is making the viral vectors an attractive alternative to the transgenic systems for the expression of foreign proteins in plants. One use of these virus expression systems is for vaccine production. There are two basic types of viral system that have been developed for the production of immunogenic peptides and proteins in plants: epitope presentation and polypeptide expression systems. In this review, we discuss advances made in this field.  相似文献   

14.
Plant molecular farming offers a cost‐effective and scalable approach to the expression of recombinant proteins which has been proposed as an alternative to conventional production platforms for developing countries. In recent years, numerous proofs of concept have established that plants can produce biologically active recombinant proteins and immunologically relevant vaccine antigens that are comparable to those made in conventional expression systems. Driving many of these advances is the remarkable plasticity of the plant proteome which enables extensive engineering of the host cell, as well as the development of improved expression vectors facilitating higher levels of protein production. To date, the only plant‐derived viral glycoprotein to be tested in humans is the influenza haemagglutinin which expresses at ~50 mg/kg. However, many other viral glycoproteins that have potential as vaccine immunogens only accumulate at low levels in planta. A critical consideration for the production of many of these proteins in heterologous expression systems is the complexity of post‐translational modifications, such as control of folding, glycosylation and disulphide bridging, which is required to reproduce the native glycoprotein structure. In this review, we will address potential shortcomings of plant expression systems and discuss strategies to optimally exploit the technology for the production of immunologically relevant and structurally authentic glycoproteins for use as vaccine immunogens.  相似文献   

15.
转基因植物表达HIV疫苗的研究进展   总被引:1,自引:1,他引:0  
转基因植物成本低廉,表达的外源蛋白安全性高,易于大规模生产。建立HIV疫苗的植物表达系统,开辟了HIV疫苗研制的新领域。本综述了转基因植物表达HIV疫苗过程中目的基因的选择与修饰、载体的构建、受体植物的选定、目的基因的表达、优势与安全性等研究进展。  相似文献   

16.
The use of edible plants for the production and delivery of vaccine proteins could provide an economical alternative to fermentation systems. Genes encoding bacterial and viral antigens are faithfully expressed in edible tissues to form immunogenic proteins. Studies in animals and humans have shown that ingestion of transgenic plants containing vaccine proteins causes production of antigen-specific antibodies in serum and mucosal secretions. In general, the technology is limited by low expression levels for nuclear-integrated transgenes, but recent progress in plant organelle transformation shows promise for enhanced expression. The stability and immunogenicity of orally delivered antigens vary greatly, which necessitates further study on protein engineering to enhance mucosal delivery. These issues are discussed with regard to the further development of plant-based vaccine technology.  相似文献   

17.
为防治一些重要农业害虫 ,转基因Bt作物已在许多国家商业化种植。在发展Bt作物的初期 ,未经改造的Bt基因被直接用来转化作物。但由于BtmRNA的不稳定 ,不适当的剪切以及译后变异 ,Bt在作物上的表达水平往往很低且不稳定。后来 ,科学工作者对Bt基因进行了一系列针对性的改造或人工合成 ,从而使其在植物细胞中得到高效表达。本文着重总结了这一转基因技术的发展过程。其内容包括未经改造的Bt基因在植物中表达低的原因以及改善Bt毒蛋白表达的有关技术。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号