首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
植物抗旱性中的补偿效应及其在农业节水中的应用   总被引:26,自引:3,他引:23  
胡田田  康绍忠 《生态学报》2005,25(4):885-891
在论述植物补偿效应存在类型和研究范畴的基础上,详细评述了植物抗旱性中根系形态结构功能及地上部干物质积累、产量和水分利用效率方面的补偿效应及其影响因素,并对植物抗旱作用中补偿生长的可能生理学机制作了探讨。同时,对补偿效应在提高农业水分利用效率中的应用进行了讨论  相似文献   

2.
干湿交替或多变低水的田间环境下 ,作物在延伸生长上大都表现出一定的补偿效应 ,这一现象对旱地农业和节水农业都有重要的理论指导意义。文章从植物感受土壤缺水的原初反应、膨压、根源逆境信号ABA、根系水力学导度、细胞壁的伸展性以及渗透调节能力等方面探讨了补偿效应的可能生理学机制  相似文献   

3.
小麦雄性不育研究进展   总被引:1,自引:0,他引:1  
雄性不育是植物中的一种普遍现象,而雄性不育是利用杂种优势提高作物产量和品质的基础,因此小麦雄性不育的理论机制研究对农业生产具有重要的指导意义.对小麦雄性不育类型及遗传、生理生化不育机制、定位及分子生物学研究进行了综述,并探讨了今后该领域的研究前景.  相似文献   

4.
非充分灌溉及其生理基础   总被引:28,自引:1,他引:27  
介绍了非充分灌溉的概念及内涵,主要阐述了在非充分灌溉条件下,作物体内产生的适应性生理反应,经非充分灌溉及轻度干旱处理,作物气孔阻力增加,蒸腾失水减少,作物水分散失对气孔开度的依赖性大于光合对其的依赖性。可通过气孔调节作物光合与水分的关系,最终提高作物的水分利用效率;有限度的水分亏缺,有利于同化物向籽粒调运,利用^14CO2标记研究表明,生长后期水分亏缺下,小麦体内存在对花前营养器官“临时库”同化物的再动员和对产量的补偿机制;适度水分亏缺促进了小麦等作物初生根的生长发育,增加深层土壤中的根系与根系活性,防止后期根系早衰。总之,在非充分灌溉条件下,作物能够在营养生长,物质运输和产量形成等方面产生有效的补偿机制,可作为非充分灌溉的重要理论基础。  相似文献   

5.
马铃薯块茎膨大期不同程度干旱后复水的源库补偿效应   总被引:1,自引:0,他引:1  
旱后复水的补偿效应在多种作物的不同生育时期都存在,是植物抵抗逆境胁迫和伤害的重要自我调节机制,也是对有限水分高效利用的体现.本研究在马铃薯块茎膨大期进行两轮干旱后复水处理,明确马铃薯补偿效应产生的干旱胁迫阈值,并从源-库角度探索马铃薯旱后复水补偿效应产生的缘由.试验选取‘大西洋’马铃薯脱毒组培苗为材料,设置充分供水(W)、轻度干旱后复水(D1-W)、中度干旱后复水(D2-W)和重度干旱后复水(D3-W)4个水分处理并经过两个循环.结果表明:在经过两轮轻度干旱复水后,马铃薯产量表现出超补偿效应,水分利用效率和产量比充分供水分别提高了17.5%和6.3%;中度水分胁迫表现出近等量补偿效应,产量与充分供水差异不大,而水分利用效率提高了8.4%;而重度水分胁迫没有表现出产量补偿效应.不同程度的干旱胁迫均降低马铃薯叶片叶绿素含量、净光合速率、叶面积等源的大小和活性,而在复水后,轻度和中度胁迫出现了超补偿和补偿效应,增强了源的供应能力.同时,适度干旱后复水显著增强了块茎(库)中蔗糖-淀粉代谢途径关键酶的活性,提高了库活性,进而表现为块茎平均重量的增加.综上,马铃薯块茎膨大期适度的水分亏缺在复水后源-库均存在补偿和超补偿效应,以此来弥补干旱带来的损失,最终在产量上表现为补偿或者超补偿效应,并显著提高了水分利用效率.  相似文献   

6.
有毒污染物对生物体的毒性效应与自由基反应   总被引:1,自引:0,他引:1  
概括介绍了有毒污染物对生物体毒性效应的基本类型、毒性效应研究的热点问题、毒物诱导自由基产生的机制和自由基对机体的损害机制等,最后指出今后应进一步认识和加强研究的几个方面的问题,如新型有毒污染物对生物体的毒性效应及其毒性效应产生的机制、慢性毒性效应有毒污染物的毒性效应、生态毒理学方法诊断和评价复合污染物对生物的遗传毒性效应、生物标记物研究和合理清除自由基等。  相似文献   

7.
作物对虫害补偿作用本质的探讨   总被引:24,自引:0,他引:24  
盛承发 《生态学报》1989,9(3):207-212
本文探讨了作物的补偿作用的本质、证据、产生层次和所需条件及其在农业害虫控制中的意义。生物在适应环境的长期过程中,积累了适应性的历史经验或环境信息,概括为遗传信息,构成了该物种的特征特性及其需要的理想生态位。由于环境条件的不断波动,现实生态位总是不断偏离理想生态位。环境中物质、能量和信息共同作用影响生物体内的物理及化学反应,改变生物的生理、行为、形态以至遗传信息。遗传再现了生物物种过去适应环境的成功经验,变异则可视为生物个体本身的环境对策。其中成功的对策即补偿作用减小了理想生态位与现实生态位之差,或曰减少了环境波动的不利影响。生命系统由此方式积累信息量,增加有序性,降低熵值。在农作物与害虫中,己经查明补偿反应产生于繁殖器官、营养器官和生理生化水平。在害虫控制中,确定作物对虫害的补偿反应类型、补偿力的大小及其变幅,并利用和加强补偿作用,将使害虫控制工作提高到一个新的水平。  相似文献   

8.
水产动物继饥饿或营养不足后的补偿生长研究进展   总被引:46,自引:3,他引:43  
综述了水产动物继饥饿或营养不足后的补偿生长研究进展,其中包括补偿生长的程度、影响因素、生理学机制、补偿生长研究的实验设计、补偿生长过程中生长率和生化组成的变化及存在的问题和应用前景。  相似文献   

9.
基于光谱信息的作物氮素营养无损监测技术   总被引:9,自引:0,他引:9  
氮素是作物生长发育和产量品质形成所必需的营养元素。快速、无损、准确地监测作物氮素状况,对于诊断作物生长特征、提高氮肥运筹水平和利用效率、降低过量施氮带来的农田环境污染,深入开展精确农业和数字农业的研究与应用具有重要意义。本文围绕作物氮素特征光谱产生的机制、反射光谱对氮素营养的响应及光谱指数的生理意义等解析了作物氮素营养光谱无损监测的技术机理,阐明了作物氮素监测的光谱学和生理生态学基础,进而概述了国内外有关作物反射光谱获取及叶片、冠层和空间水平上氮素营养光谱监测的研究进展。针对作物氮素营养监测亟待解决的问题和作物生产需求,提出今后进一步研究的领域应重点围绕氮素生化组分的监测方法、氮素监测模型的普适性、氮素监测仪的开发、地空遥感信息的融合、遥感与其他技术的集成等方面。  相似文献   

10.
根分泌物对根际矿物营养及根际微生物的效应   总被引:34,自引:2,他引:32  
综述了根系分泌物对植物生长的生理生态学效应,并就根系分泌物的定义、产生机制、组成成分和影响因素等方面进行了讨论。指出根系分泌物在缓解低矿物营养胁迫对植株造成的伤害及决定根际微生物的种群密度和数量方面起着重要的作用;根系分泌物的产生机制多样,组成成分复杂,影响因素繁多。对根分泌物的深入研究有助于进一步了解植物体与土壤间进行的生理生化过程及其调控机制。  相似文献   

11.
Water deficit is one of the main factors that reduce grain yield. A better understanding of the mechanisms related to this abiotic stress is a key aspect to design and act upon drought tolerance improvement in crop plants. Therefore, the major objective of this study was to investigate four common bean genotypes for drought tolerance and to establish their tolerance mechanisms. The experiment was carried out in a greenhouse, using the completely randomized design in a factorial arrangement (2?×?4), composed by 2 water conditions (well-watered and water deficit) and 4 cultivars, with six replicates per treatment. The four cultivars, two drought-sensitive (IAC Tybatã and BRS Pontal) and two drought-tolerant (IAPAR 81 and BAT 477), were evaluated for some physiological, biochemical and morphoagronomic traits. Drought promoted physiological and metabolic changes in the plants, reflecting on the morphoagronomic traits. Under water deficit, the genotype IAPAR 81 stood out from the others in terms of physiological characters, however, it presented a low efficiency concerning biochemical activities and a significant reduction in the morphoagronomic characters. The cultivar BAT 477 demonstrated to be drought-adapted presenting more efficient biochemical and morphoagronomic adaptions and the genotype BRS Pontal obtained morphoagronomic values similar to BAT 477, thus it may be classified as moderately tolerant to drought.  相似文献   

12.
谷子旱后的补偿效应研究   总被引:28,自引:3,他引:25  
通过对谷子旱后的生理表现、干物质积累速率、水分利用效率、经济系数的研究,认为谷子存在旱后补偿效应这一适应性生理生态现象。实验结果表明,前期曾受旱的处理表现出超速生长的趋势,相对日均干物质增长速率显着高于一直处于同一供水水平的处理,经过加速生长能部分甚至全部补偿前期干旱所造成的干物质上的损失。前期干旱对谷子的生理影响具有延续性,后期增加供水水平后,同等供水水平的处理中曾经历干旱的表现出较高光合速率和叶绿素含量。谷子的旱后补偿效应还表现在能高效地利用有限的水和干物质以形成种子。在我国西部半干旱区,相对夏季作物而言,秋季作物谷子的旱后加速生长这一生长特性更适应半干旱区自然降雨特征.  相似文献   

13.
Sorghum is one of the most drought tolerant crops but surprisingly, little is known about the mechanisms achieving this. We have compared physiological and biochemical responses to drought in two sorghum cultivars with contrasting drought tolerance. These closely related cultivars have starkly contrasting responses to water deficit. In the less tolerant Samsorg 40, drought induced progressive loss of photosynthesis. The more drought tolerant Samsorg 17 maintained photosynthesis, transpiration and chlorophyll content until the most extreme conditions. In Samsorg 40, there was a highly specific down‐regulation of selected proteins, with loss of PSII and Rubisco but maintenance of PSI and cytochrome b6f, allowing plants to maintain ATP synthesis. The nitrogen released allows for accumulation of glycine betaine and proline. To the best of our knowledge, this is the first example of specific reengineering of the photosynthetic apparatus in response to drought. In contrast, in Samsorg 17 we detected no substantial change in the photosynthetic apparatus. Rather, plants showed constitutively high soluble sugar concentration, enabling them to maintain transpiration and photosynthesis, even in extremely dry conditions. The implications for these strikingly contrasted strategies are discussed in relation to agricultural and natural systems.  相似文献   

14.
15.
Water is vital for plant growth, development and productivity. Permanent or temporary water deficit stress limits the growth and distribution of natural and artificial vegetation and the performance of cultivated plants (crops) more than any other environmental factor. Productive and sustainable agriculture necessitates growing plants (crops) in arid and semiarid regions with less input of precious resources such as fresh water. For a better understanding and rapid improvement of soil–water stress tolerance in these regions, especially in the water-wind eroded crossing region, it is very important to link physiological and biochemical studies to molecular work in genetically tractable model plants and important native plants, and further extending them to practical ecological restoration and efficient crop production. Although basic studies and practices aimed at improving soil water stress resistance and plant water use efficiency have been carried out for many years, the mechanisms involved at different scales are still not clear. Further understanding and manipulating soil–plant water relationships and soil–water stress tolerance at the scales of ecology, physiology and molecular biology can significantly improve plant productivity and environmental quality. Currently, post-genomics and metabolomics are very important in exploring anti-drought gene resources in various life forms, but modern agriculturally sustainable development must be combined with plant physiological measures in the field, on the basis of which post-genomics and metabolomics have further practical prospects. In this review, we discuss physiological and molecular insights and effects in basic plant metabolism, drought tolerance strategies under drought conditions in higher plants for sustainable agriculture and ecoenvironments in arid and semiarid areas of the world. We conclude that biological measures are the bases for the solutions to the issues relating to the different types of sustainable development.  相似文献   

16.
Phoebe bournei commonly called nanmu is an important and endemic wood species in China, and its planting, nursing, and preserving are often affected by drought stress. Two-year-old P. bournei seedlings were subjected to water stress and recovery treatment to study their physiological and biochemical responses. Physiological and biochemical indices did not change when seedlings were subjected to mild water stress (<15 days of water withholding). As drought stress intensified (>20 days of water withholding), malondialdehyde and electrolyte leakage increased, and chlorophyll and soluble protein decreased, indicating an increased oxidative stress induced by water deficit. Enhanced activities of superoxide dismutase (SOD) and peroxidase (POX), accumulation of free proline and total soluble sugar contribute to plant protection against the oxidative stress. However, SOD and POX decreased when seedlings were subjected to an extended drought. After 5 days of recovery, physiological and biochemical indices were not restored to the control level values except for leaf relative water content when the seedlings were subjected to more than 20 days water stress. These results demonstrate that P. bournei could enhance their ability to mitigate water stress effects by up-regulating antioxidant system and osmotic adjustment, but these two protective mechanisms were limited when seedlings were subjected to moderate and severe water stress. The threshold of water deficit to P. bournei seedlings is 15–20 days, and permanent damage will be induced if water status is not improved before this threshold. The results will provide some theoretical and practical guidance for nanmu afforestation and production.  相似文献   

17.
In Medicago truncatula Gaertn. cv. Jemalong plants some mechanisms involved in drought resistance were analysed in response to a progressive water deficit imposed by suppression of soil irrigation. Withholding water supply until the soil had reached one-half of its maximum water content had no significant effect on leaf RWC, gas exchanges or chlorophyll fluorescence parameters. Under severe drought conditions, the plants resistance to water shortage involved mainly drought avoidance mechanisms through a decrease in stomatal conductance. The consequent decrease in the internal CO2 concentration (Ci) should have limited the net CO2 fixation (A). Since A decreased slightly more than Ci under severe water deficit, non-stomatal limitations of photosynthesis may have also occurred. Analysis of A/Ci curves showed reduced carboxylation efficiency due to limitations in RuBP regeneration and Rubisco activity, confirming the presence of non-stomatal limitations of photosynthesis. Drought tolerance mechanisms involving osmotic adjustment and an increase in cell membrane integrity were also present. Altogether, these mechanisms allowed M. truncatula cv. Jemalong plants to still maintain a quite elevated level of net CO2 fixation rate under severe water deficit conditions. These results may contribute to identify useful physiological traits for breeding programs concerning drought adaptation in legumes.  相似文献   

18.
Drought is one of the main factors affecting the productivity of agricultural crops, and plants respond to such stress by activating various physiological and biochemical mechanisms against dehydration. The present study investigated two varieties of sugarcane (Saccharum spp.) with contrasting responses to drought (RB867515, more tolerant; and RB855536, less tolerant) and subjected them to progressive drought conditions (2, 4, 6 and 8 days) followed by rehydration. Drought caused a decrease in water potential (ψw) and osmotic potential (ψos) in the leaves, which recovered to normal levels after rehydration only up to the fourth day of drought. Water stress changed the carbon metabolism of leaves by reducing starch and sucrose contents and increasing glucose and fructose contents in both varieties. Water deficit caused a significant reduction in the maximum quantum efficiency of photosystem II (Fv/Fm) and effective quantum yield (ΦPSII) in both varieties; however, RB867515 recovered faster after rehydration. Under water stress, the more tolerant variety RB867515 exhibited increased activity of the antioxidant enzymes catalase, ascorbate peroxidase and superoxide dismutase compared with the RB855536 variety. The results suggest that RB867515 is more tolerant to drought conditions because of a more efficient antioxidant system, which results in reduced photosynthesis photoinhibition during water stress, thus revealing itself as a potential physiological marker for drought tolerance studies.  相似文献   

19.
Plant Responses to Drought,Acclimation, and Stress Tolerance   总被引:19,自引:0,他引:19  
Yordanov  I.  Velikova  V.  Tsonev  T. 《Photosynthetica》2000,38(2):171-186
At the whole plant level, the effect of stress is usually perceived as a decrease in photosynthesis and growth. That is why this review is focused mainly on the effect of drought on photosynthesis, its injury, and mechanisms of adaptation. The analysed literature shows that plants have evolved a number of adaptive mechanisms that allow the photochemical and biochemical systems to cope with negative changes in environment, including increased water deficit. In addition, the acquisition of tolerance to drought includes both phenotypic and genotypic changes. The approaches were made to identify those metabolic steps that are most sensitive to drought. Some studies also examined the mechanisms controlling gene expression and putative regulatory pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号