首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Efficient clearance of apoptotic cells (AC) by professional phagocytes is crucial for tissue homeostasis and resolution of inflammation. Macrophages respond to AC with an increase in antiinflammatory cytokine production but a diminished release of proinflammatory mediators. Mechanisms to explain attenuated proinflammatory cytokine formation remain elusive. We provide evidence that peroxisome proliferator-activated receptor gamma (PPARgamma) coordinates antiinflammatory responses following its activation by AC. Exposing murine RAW264.7 macrophages to AC before LPS stimulation reduced NF-kappaB transactivation and lowered target gene expression of, that is, TNF-alpha and IL-6 compared with controls. In macrophages overexpressing a dominant negative mutant of PPARgamma, NF-kappaB transactivation in response to LPS was restored, while macrophages from myeloid lineage-specific conditional PPARgamma knockout mice proved that PPARgamma transmitted an antiinflammatory response, which was delivered by AC. Expressing a PPARgamma-Delta aa32-250 deletion mutant, we observed no inhibition of NF-kappaB. Analyzing the PPARgamma domain structures within aa 32-250, we anticipated PPARgamma sumoylation in mediating the antiinflammatory effect in response to AC. Interfering with sumoylation of PPARgamma by mutating the predicted sumoylation site (K77R), or knockdown of the small ubiquitin-like modifier (SUMO) E3 ligase PIAS1 (protein inhibitor of activated STAT1), eliminated the ability of AC to suppress NF-kappaB. Chromatin immunoprecipitation analysis demonstrated that AC prevented the LPS-induced removal of nuclear receptor corepressor (NCoR) from the kappaB site within the TNF-alpha promoter. We conclude that AC induce PPARgamma sumoylation to attenuate the removal of NCoR, thereby blocking transactivation of NF-kappaB. This contributes to an antiinflammatory phenotype shift in macrophages responding to AC by lowering proinflammatory cytokine production.  相似文献   

2.
Serine protease inhibitors are widely distributed in the plant kingdom. Many of them have been purified and characterized from different species. While the physicochemical properties of these protease inhibitors have been extensively investigated, their biological effects, e.g. immunomodulatory effect, remain relatively unexplored. Recently, we isolated a chymotrypsin-specific inhibitor (MCoCI) from the seeds of Momordica cochinchinensis (Lour) Spreng (Family Cucurbitaceae), the traditional Chinese medicine known as Mubiezhi, which has been used as an antiinflammatory agent. In the present study, the effects of MCoCI on different types of cells of the immune system, including splenocytes, splenic lymphocytes, neutrophils, bone marrow cells and macrophages, were investigated. MCoCI was shown to possess immuno-enhancing and antiinflammatory effects. MCoCI could stimulate the proliferation of different cells of the immune system, e.g. splenocytes, splenic lymphocytes and bone marrow cells, in a manner comparable to that of Concanavalin A. Moreover, MCoCI could also suppress the formation of hydrogen peroxide in neutrophils and macrophages. These immunomodulatory effects may explain some of the therapeutic actions of Mubiezhi.  相似文献   

3.
Niacin is a broad-spectrum lipid-regulating drug used for clinical therapy of chronic high-grade inflammatory diseases. However, the mechanisms by which either niacin or the byproducts of its catabolism ameliorate these inflammatory diseases are not clear yet. Human circulating monocytes and mature macrophages were used to analyze the effects of niacin and its metabolites (NAM, NUA and 2-Pyr) on oxidative stress, plasticity and inflammatory response by using biochemical, flow cytometry, quantitative real-time PCR and Western blot technologies. Niacin, NAM and 2-Pyr significantly decreased ROS, NO and NOS2 expression in LPS-treated human mature macrophages. Niacin and NAM skewed macrophage polarization toward antiinflammatory M2 macrophage whereas a trend toward proinflammatory M1 macrophage was noted following treatment with NUA. Niacin and NAM also reduced the inflammatory competence of LPS-treated human mature macrophages and promoted bias toward antiinflammatory CD14+CD16++ nonclassical human primary monocytes. This study reveals for the first time that niacin and its metabolites possess antioxidant, reprogramming and antiinflammatory properties on human primary monocytes and monocyte-derived macrophages. Our findings imply a new understanding of the mechanisms by which niacin and its metabolites favor a continuous and gradual plasticity process in the human monocyte/macrophage system.  相似文献   

4.
Macrophages play a crucial role in homeostasis, regeneration, and innate and adaptive immune responses. Functionally different macrophages have different shapes and molecular phenotypes that depend on the actin cytoskeleton, which is regulated by the small GTPase RhoA. The naive M0 macrophages are slightly elongated, proinflammatory M1 are round, and M2 antiinflammatory macrophages are elongated. We have recently shown in the rodent model system that genetic or pharmacologic interference with the RhoA pathway deregulates the macrophage actin cytoskeleton, causes extreme macrophage elongation, and prevents macrophage migration. Here, we report that an exposure of macrophages to a nonuniform magnetic field causes extreme elongation of macrophages and has a profound effect on their molecular components and organelles. Using immunostaining and Western blotting, we observed that magnetic force rearranges the macrophage actin cytoskeleton, the Golgi complex, and the cation channel receptor TRPM2, and modifies the expression of macrophage molecular markers. We have found that the magnetic-field-induced alterations are very similar to changes caused by RhoA interference. We also analyzed magnetic-field-induced forces acting on macrophages and found that the location and alignment of magnetic-field-elongated macrophages correlate very well with the simulated distribution and orientation of such magnetic force lines.  相似文献   

5.
To determine the role of IL-10 in cutaneous leishmaniasis, we examined lesion development following Leishmania major infection of genetically susceptible BALB/c mice lacking IL-10. Whereas normal BALB/c mice developed progressive nonhealing lesions with numerous parasites within them, IL-10(-/-) BALB/c mice controlled disease progression, and had relatively small lesions with 1000-fold fewer parasites within them by the fifth week of infection. We also examined a mechanism whereby Leishmania induced the production of IL-10 from macrophages. We show that surface IgG on Leishmania amastigotes allows them to ligate Fc gamma receptors on inflammatory macrophages to preferentially induce the production of high amounts of IL-10. The IL-10 produced by infected macrophages prevented macrophage activation and diminished their production of IL-12 and TNF-alpha. In vitro survival assays confirmed the importance of IL-10 in preventing parasite killing by activated macrophages. Pretreatment of monolayers with either rIL-10 or supernatants from amastigote-infected macrophages resulted in a dramatic enhancement in parasite intracellular survival. These studies indicate that amastigotes of Leishmania use an unusual and unexpected virulence factor, host IgG. This IgG allows amastigotes to exploit the antiinflammatory effects of Fc gamma R ligation to induce the production of IL-10, which renders macrophages refractory to the activating effects of IFN-gamma.  相似文献   

6.
In this article, a series of 22 triarylpyrazole derivatives were evaluated for in vitro antiinflammatory activity as inhibitors of nitric oxide (NO) and prostaglandin E2 (PGE2) release induced by lipopolysaccharide (LPS) in murine RAW 264.7 macrophages. The synthesized compounds 1a-h, 2a-f and 3a-h were first examined for their cytotoxicity for determination of the non-toxic concentration for antiinflammatory screening, so that the inhibitory effects against NO and PGE2 production were not caused by non-specific cytotoxicity. Compounds 1h and 2f were the most active PGE2 inhibitors with IC50 values of 2.94 μM and 4.21 μM, respectively. Western blotting and cell-free COX-2 screening revealed that their effects were due to inhibition of COX-2 protein expression. Moreover, compound 1h exerted strong inhibitory effect on the expression of COX-2 mRNA in LPS-induced murine RAW 264.7 macrophages.  相似文献   

7.
Mesenchymal stromal cells(MSCs) are multipotent and self-renewing stem cells that have great potential as cell therapy for autoimmune and inflammatory disorders, as well as for other clinical conditions, due to their immunoregulatory and regenerative properties. MSCs modulate the inflammatory milieu by releasing soluble factors and acting through cell-to-cell mechanisms. MSCs switch the classical inflammatory status of monocytes and macrophages towards a nonclassical and anti-inflammatory phenotype. This is characterized by an increased secretion of anti-inflammatory cytokines, a decreased release of pro-inflammatory cytokines, and changes in the expression of cell membrane molecules and in metabolic pathways. The MSC modulation of monocyte and macrophage phenotypes seems to be critical for therapy effectiveness in several disease models, since when these cells are depleted, no immunoregulatory effects are observed. Here, we review the effects of living MSCs(metabolically active cells) and metabolically inactive MSCs(dead cells that lost metabolic activity by induced inactivation) and their derivatives(extracellular vesicles, soluble factors, extracts, and microparticles) on the profile of macrophages and monocytes and the implications for immunoregulatory and reparative processes. This review includes mechanisms of action exhibited in these different therapeutic appro-aches, which induce the antiinflammatory properties of monocytes and macrophages. Finally, we overview several possibilities of therapeutic applications of these cells and their derivatives, with results regarding monocytes and macrophages in animal model studies and some clinical trials.  相似文献   

8.
Despite the potent antiinflammatory effects of pharmacologically induced adenosine 5'-monophosphate kinase (AMPK) activation on Toll-like receptor 4 (TLR4)-induced cellular activation, there is little evidence that AMPK is activated during inflammatory conditions. In the present studies, we examined mechanisms by which TLR4 engagement may affect the ability of AMPK to become activated in neutrophils and macrophages under in vitro conditions and in the lungs during lipopolysaccharide (LPS)-induced acute lung injury. We found that incubation of neutrophils or macrophages with LPS diminished the ability of 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) or hydrogen peroxide (H(2)O(2)) to activate AMPK. Although ratios of AMP to adenosine 5'-triphosphate (ATP) were increased in LPS-treated neutrophils and in the lungs of LPS exposed mice, a condition that should result in AMPK activation, no activation of AMPK was found. Immunocytochemistry and Western blot analysis revealed that nuclear to cytosolic translocation of the proinflammatory mediator high mobility group box 1 protein (HMGB1) correlated with inhibition of AMPK activation in LPS-stimulated macrophages. Moreover, while induced overexpression of HMGB1 resulted in inhibition of AMPK activation, Small interfering RNA (siRNA)-induced knockdown of HMGB1 was associated with enhanced activation of AMPK in macrophages incubated with AICAR. Increased interaction between liver kinase B1 (LKB1), an upstream activator of AMPK, and HMGB1 was found in LPS-stimulated macrophages and in the lungs of mice exposed to LPS. These results suggest that nuclear to cytoplasmic translocation of HMGB1 in TLR4-activated cells potentiates inflammatory responses by binding to LKB1, thereby inhibiting the antiinflammatory effects of AMPK activation.  相似文献   

9.
10.
Esculentoside A (EsA) is a saponin isolated from the roots of Phytolacca esculenta. Previous experiments have shown that it has strong antiinflammatory effects. To investigate the mechanism of anti-inflammatory effects of esculentoside A (EsA),[(3)H] arachidonic acid (AA) prelabelled murine macrophage and radioimmunoassay were used to test the effect of EsA on the total release of AA and prostaglandin E(2) in culture supernatants. The results showed that EsA had no significant effect on the total release of AA from murine macrophages. EsA (2.5-10 mumol/l), from unstimulated murine peritoneal macrophages and rabbit synovial cells, could decrease the production of prostaglandin E(2). In A(23187) and LPS-treated macrophages and synovial cells, EsA (10 mumol/l) could significantly decrease the prostaglandin E(2) production. These results confirmed that EsA exerted an inhibitory effect on prostaglandin E(2) production from murine macrophages and rabbit synovial cells.  相似文献   

11.
Although there are many data concerning the cytotoxic and immunosuppressive effects of antimetabolites such as azathioprine and 6-mercaptopurine, the mechanism of their antiinflammatory action has not been extensively investigated. In the present work, it is shown that azathioprine and 6-mercaptopurine (10-500 micrograms/ml) inhibit in a dose-dependent manner the production of PGE2, PGF2 alpha, 6-keto-PGF1 alpha and TXB2 by unseparated spleen cells as well as that of 6-keto-PGF1 alpha by adherent peritoneal macrophages. This inhibitory effect appears rapidly in vitro (within 15 min of incubation) and is observed in the presence of exogenous arachidonic acid (5 x 10(-6) M). The persistence of this effect in the presence of arachidonic acid, together with the fact that the production of four cyclooxygenase derivatives of acid arachidonic metabolism are inhibited, suggests that these drugs are acting at the cyclooxygenase level. The finding that cytotoxic and immunosuppressive agents, which act mainly by inhibiting RNA and DNA synthesis, can block prostaglandin production, may explain part of their antiinflammatory effects.  相似文献   

12.
Structural and functional properties of high-density lipoprotein (HDL) after short-term freezing in the presence or absence of 10% sucrose were compared with HDL stored at 4 °C. Freezing did not affect the size of HDL particles or their antiinflammatory and antioxidant properties. Freezing slightly impaired the ability of HDL to support cholesterol efflux from human macrophages, but this property was preserved when HDL was frozen in the presence of sucrose. Freezing also resulted in approximately 10% loss of HDL in the samples. We conclude that freezing HDL in the presence of 10% sucrose preserves its structural and functional properties.  相似文献   

13.
14.
Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP), two structurally related neuropeptides produced and/or released within the lymphoid microenvironment, modulate numerous immune functions. Although primarily antiinflammatory in nature, VIP and PACAP also affect resting macrophages. In this study, we report on in vitro and in vivo dual effects of VIP/PACAP on the expression of B7.1 and B7.2 and on the costimulatory activity for T cells in unstimulated and LPS/IFN-gamma-activated macrophages. VIP and PACAP up-regulate B7.2, but not B7.1, expression and induce the capacity to stimulate the proliferation of naive T cells in response to soluble anti-CD3 or allogeneic stimulation. In contrast, both neuropeptides down-regulate B7.1/B7.2 expression on LPS/IFN-gamma-activated macrophages and inhibit the endotoxin-induced costimulatory activity for T cells. Interestingly, both the stimulatory and the inhibitory effects of VIP/PACAP are mediated through the specific receptor VPAC1 and involve the cAMP/protein kinase A transduction pathway. The dual effect on B7.1 and B7.2 expression occurs at both mRNA and protein level and correlates with the VIP/PACAP regulation of the macrophage costimulatory activity. Through their regulatory role for resting and activated macrophages, VIP and PACAP act as endogenous participants in the control of immune homeostasis. Their effects depend not only on the timing of their release, but also on the activation and differentiation state of the neighboring immune cells.  相似文献   

15.
It has been demonstrated in rat experiments that the beta-adrenoblockers propranolol and pindolol differ in the influence on the therapeutic and toxic effects of voltaren and acetylsalicylic acid. Propranolol has an analgetic action of its own, reducing the analgetic and antiinflammatory effects of voltaren and acetylsalicylic acid. It potentiates the antipyretic effect of voltaren and ulcerogenic action of both nonsteroidal antiinflammatory drugs. Pindolol exerts both analgetic and antiinflammatory action and does not affect the antipyretic effect of voltaren and ulcerogenic action of nonsteroidal antiinflammatory drugs. The difference in the action of the beta-adrenoblockers under study is likely to be linked with the characteristics of their pharmacological action spectrum.  相似文献   

16.
The main function of CD163 (hemoglobin scavenger receptor) is to bind the hemoglobin-haptoglobin complex, thereby mediating extravasal hemolysis. However, CD163 also has an antiinflammatory function. After CD163-mediated endocytosis, hemoglobin is catabolized further by hemeoxygenase 1 (HO-1). Previously, we found expression of HO-1 to be restricted to microglia/macrophages at sites of hemorrhages in human traumatic and ischemic brain lesions. We now investigated if CD163 expression is also correlated with hemorrhages in brain lesions. Methods. Autopsy brain tissue from 44 cases with hemorrhagic brain lesions (32 traumatic brain injuries/TBI, 12 intracerebral bleedings/ICB), 56 non-hemorrhagic brain lesions (30 ischemias, 26 hypoxias) and 6 control brains were investigated. The post injury survival times ranged from a few minutes to 60 months. Results. In controls, single perivascular monocytes expressed CD163, but only single CD163+ microglia were found in 3/6 cases. CD163+ cells in the parenchyma (activated microglia/macrophages) increased significantly within 24 hours after trauma and ischemia and within 1-7 days following ICB or hypoxia. Overall, significantly lower and higher levels of parenchymal CD163+ cells occurred in hypoxia and ischemia, respectively. Perivascular CD163+ cells also increased significantly in all pathological conditions. In areas remote from circumscribed brain lesions (TBI, ICB, ischemia), significant changes were only found in ICB and ischemia. Conclusions. De novo expression of CD163 by activated microglia/macrophages and CD163+ infiltrating monocytes are neither restricted to nor predominant in hemorrhagic brain lesions. Thus, the antiinflammatory function of CD163 probably predominates, both in hemorrhagic and non-hemorrhagic brain lesions and points to possible immunomodulatory treatment strategies targeting CD163.  相似文献   

17.
TGFβ-activated kinase 1 (TAK1), a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family, is considered a key intermediate in a multitude of innate immune signaling pathways. Yet, the specific role of TAK1 in the myeloid compartment during inflammatory challenges has not been revealed. To address this question, we generated myeloid-specific kinase-dead TAK1 mutant mice. TAK1 deficiency in macrophages results in impaired NF-κB and JNK activation upon stimulation with lipopolysaccharide (LPS). Moreover, TAK1-deficient macrophages and neutrophils show an enhanced inflammatory cytokine profile in response to LPS stimulation. Myeloid-specific TAK1 deficiency in mice leads to increased levels of circulating IL-1β, TNF and reduced IL-10 after LPS challenge and sensitizes them to LPS-induced endotoxemia. These results highlight an antiinflammatory role for myeloid TAK1, which is essential for balanced innate immune responses and host survival during endotoxemia.  相似文献   

18.
Repair of damaged tissue requires the coordinated action of inflammatory and tissue-specific cells to restore homeostasis, but the underlying regulatory mechanisms are poorly understood. In this paper, we report new roles for MKP-1 (mitogen-activated protein kinase [MAPK] phosphatase-1) in controlling macrophage phenotypic transitions necessary for appropriate muscle stem cell-dependent tissue repair. By restricting p38 MAPK activation, MKP-1 allows the early pro- to antiinflammatory macrophage transition and the later progression into a macrophage exhaustion-like state characterized by cytokine silencing, thereby permitting resolution of inflammation as tissue fully recovers. p38 hyperactivation in macrophages lacking MKP-1 induced the expression of microRNA-21 (miR-21), which in turn reduced PTEN (phosphatase and tensin homologue) levels, thereby extending AKT activation. In the absence of MKP-1, p38-induced AKT activity anticipated the acquisition of the antiinflammatory gene program and final cytokine silencing in macrophages, resulting in impaired tissue healing. Such defects were reversed by temporally controlled p38 inhibition. Conversely, miR-21-AKT interference altered homeostasis during tissue repair. This novel regulatory mechanism involving the appropriate balance of p38, MKP-1, miR-21, and AKT activities may have implications in chronic inflammatory degenerative diseases.  相似文献   

19.
TGFβ-activated kinase 1 (TAK1), a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family, is considered a key intermediate in a multitude of innate immune signaling pathways. Yet, the specific role of TAK1 in the myeloid compartment during inflammatory challenges has not been revealed. To address this question, we generated myeloid-specific kinase-dead TAK1 mutant mice. TAK1 deficiency in macrophages results in impaired NF-κB and JNK activation upon stimulation with lipopolysaccharide (LPS). Moreover, TAK1-deficient macrophages and neutrophils show an enhanced inflammatory cytokine profile in response to LPS stimulation. Myeloid-specific TAK1 deficiency in mice leads to increased levels of circulating IL-1β, TNF and reduced IL-10 after LPS challenge and sensitizes them to LPS-induced endotoxemia. These results highlight an antiinflammatory role for myeloid TAK1, which is essential for balanced innate immune responses and host survival during endotoxemia.  相似文献   

20.
Eleven strains of lactobacilli were tested for their ability to induce the murine macrophage-like cell line J774.1 to secrete cytokines. Some of the bacteria tested induce the production of interleukin(IL) 6, IL-12, and tumor necrosis factor a (TNF-alpha) by J774.1 cells. Seven strains also induced the production of IL-10. However, no IL-1beta was produced. Lactobacillus acidophilus TMC 0356 significantly induced the production of more IL-6, IL-10, IL-12, and TNF-alpha than the other bacteria tested (p < 0.0001; ANOVA). These results suggest that lactobacilli can activate macrophages to secrete both inflammatory and anti-inflammatory cytokines. Selected strains might be used to bring about pro or antiinflammatory immune reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号