首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 266 毫秒
1.
Mustra DJ  Warren AJ  Hamilton JW 《Biochemistry》2001,40(24):7158-7164
Nucleotide excision repair (NER) is an important cellular mechanism that removes radiation-induced and chemically induced damage from DNA. The XPA protein is involved in the damage recognition step of NER and appears to function by binding damaged DNA and recruiting other proteins to the site. It may also play a role in subsequent steps of NER through interaction with other repair proteins. Interstrand cross-links are of particular interest, since these lesions involve both strands of duplex DNA and present special challenges to the repair machinery. Using 14 and 25 bp duplex oligonucleotides containing a defined, well-characterized single mitomycin C (MMC)-DNA interstrand cross-link, we have shown through gel shift analysis that both XPA and a minimal DNA binding domain of XPA (XPA-MF122) preferentially bind to MMC-cross-linked DNA with a greater specificity and a higher affinity (>2-fold) than to the same undamaged DNA sequence. This preferential binding to MMC-cross-linked DNA occurs in the absence of other proteins from the NER complex. Differences in binding affinity and specificity were observed among the different protein-DNA combinations that were both protein and DNA specific. Defining XPA-MMC-DNA interactions may aid in elucidating the mechanism by which DNA cross-links and other forms of DNA damage are recognized and repaired by the NER machinery in eukaryotic cells.  相似文献   

2.
Recent studies have shown that many proteins are involved in the early steps of nucleotide excision repair and that there are some interactions between nucleotide excision repair proteins, suggesting that these interactions are important in the reaction mechanism. The xeroderma pigmentosum group A protein (XPA) was shown to bind to the replication protein A (RPA) or the excision repair cross complementing rodent repair deficiency group 1 protein (ERCC1), and these interactions might be involved in the damage-recognition and/or incision steps, of nucleotide excision repair. Here we show that the XPA regions required for the binding to the 70 and 34 kDa subunits of RPA are located in the middle and on N-terminal regions of XPA, respectively. These regions do not overlap with the ERCC1-binding region of XPA, and a ternary protein complex of RPA, XPA and ERCC1 was detected in vitro. In addition, using the surface plasmon resonance biosensor, the binding of RPA and ERCC1 to XPA was investigated. The dissociation constants (KD) of RPA and ERCC1 with XPA were 1.9 x 10(-8 )and 2.5 x 10(-7) M, respectively. Moreover, our results suggest the sequential binding of RPA and ERCC1 to XPA.  相似文献   

3.
Macro domain is a highly conserved protein domain found in both eukaryotes and prokaryotes. Macro domains are also encoded by a set of positive-strand RNA viruses that replicate in the cytoplasm of animal cells, including coronaviruses and alphaviruses. The functions of the macro domain are poorly understood, but it has been suggested to be an ADP-ribose-binding module. We have here characterized three novel human macro domain proteins that were found to reside either in the cytoplasm and nucleus [macro domain protein 2 (MDO2) and ganglioside-induced differentiation-associated protein 2] or in mitochondria [macro domain protein 1 (MDO1)], and compared them with viral macro domains from Semliki Forest virus, hepatitis E virus, and severe acute respiratory syndrome coronavirus, and with a yeast macro protein, Poa1p. MDO2 specifically bound monomeric ADP-ribose with a high affinity (Kd = 0.15 μM), but did not bind poly(ADP-ribose) efficiently. MDO2 also hydrolyzed ADP-ribose-1″ phosphate, resembling Poa1p in all these properties. Ganglioside-induced differentiation-associated protein 2 did not show affinity for ADP-ribose or its derivatives, but instead bound poly(A). MDO1 was generally active in these reactions, including poly(A) binding. Individual point mutations in MDO1 abolished monomeric ADP-ribose binding, but not poly(ADP-ribose) binding; in poly(ADP-ribose) binding assays, the monomer did not compete against polymer binding. The viral macro proteins bound poly(ADP-ribose) and poly(A), but had a low affinity for monomeric ADP-ribose. Thus, the viral proteins do not closely resemble any of the human proteins in their biochemical functions. The differential activity profiles of the human proteins implicate them in different cellular pathways, some of which may involve RNA rather than ADP-ribose derivatives.  相似文献   

4.
Replication protein A (RPA) participates in many cellular functions including DNA replication and nucleotide excision repair. A direct interaction between RPA and the xeroderma pigmentosum group A protein (XPA) facilitates the assembly of a preincision complex during the processing of DNA damage by the nucleotide excision repair pathway. We demonstrate here the formation of a ternary RPA, XPA, and duplex cisplatin-damaged DNA complex as is evident by electrophoretic supershift analysis. The RPA-XPA complex displays modest specificity for damaged versus undamaged duplex DNA, and the RPA-XPA complex displays a greater affinity for binding duplex cisplatin-damaged DNA when compared with the RPA or XPA proteins alone, consistent with previous results. Using DNA denaturation assays, we demonstrate that the role of XPA is in the stabilization of the duplex DNA structure via inhibition of the strand separation activity of RPA. Rapid kinetic analysis indicates that the bimolecular k(on) of the RPA-XPA complex is 2.5-fold faster than RPA alone for binding a duplex cisplatin-damaged DNA. The dissociation rate, k(off), of the RPA-XPA complex is slower than that of the RPA protein alone, suggesting that the XPA protein stabilizes the initial binding of RPA to duplex DNA as well as maintaining the integrity of the duplex DNA. Interestingly, XPA has no effect on the k(on) of RPA for a single-stranded 40-mer DNA.  相似文献   

5.
The p53 protein family is involved in the control of an intricate network of genes implicated in cell cycle, through to germ line integrity and development. Although the role of p53 is well-established, the intrinsic nature of its homologue p73 has yet to be fully elucidated. Here, the biochemical characterization and homology-based modeling of the p73 protein is presented and the implications for its function(s) examined. The DNA binding domains (DBDs) of p53, p63, and p73 bind to the specific target site of a 30-mer gadd45 dsDNA, as tested by EMSA. The monomeric DBDs bind cooperatively forming tetrameric complexes. However, a larger construct consisting of p73 DBD plus TET domain (p73 CT) and the corresponding p53 DBD plus TET domain (p53 CT) bind gadd45 differently than the respective DBDs. Significantly, p73 DBD exhibited enhanced thermodynamic stability relative to the p53 DBD but not compared to p63 DBD as shown by DSC, CD, and equilibrium unfolding. The p73 CT is less stable than p73 DBD. The modeling data show distinct electrostatic surfaces of p73 and p53 dimers when bound to DNA. Specifically, the p73 surface is less complementary for DNA binding, which may account for the differences in affinity and specificity for p53 REs. These stability and DNA binding data for p73 in vitro enhance and complement our understanding of the role of the p73 protein in vivo and could be exploited in designing strategies for cancer therapy in places where p53 is mutated.  相似文献   

6.
Nucleotide excision repair (NER) is the process responsible for eliminating most ultraviolet (UV) radiation damage from DNA, as well as base alterations caused by a variety of mutagens. The xeroderma pigmentosum group A complementing protein (XPA) is believed to be involved in the early step of NER by recognizing and binding damaged DNA. Recent work has suggested that electrospray ionization-mass spectrometry (ESI-MS) can be an effective tool for the study of protein-DNA complexes. We have used ESI-Fourier transform ion cyclotron resonance (FTICR) mass spectrometry to examine the cisplatin-adducted oligonucleotide and its interaction with the human XPA minimal binding domain (XPA-MBD). High-resolution FTICR experiments of the binding products showed that both double-stranded damaged 20-mer and double-stranded undamaged 20-mer formed 1:1 noncovalent complexes with XPA-MBD. A 2:1 binding stoichiometry complex was also observed between XPA-MBD and double-stranded damaged 20-mer. Competitive binding experiments indicated only slightly preferential binding of XPA-MBD with the double-stranded damaged 20-mer compared to the undamaged 20-mer. The results demonstrate that ESI-FTICR mass spectrometry provides a fast and efficient approach for characterizing weak protein-DNA interactions such as the binding between XPA-MBD and a 20-mer oligonucleotide system.  相似文献   

7.
The Xeroderma Pigmentosum A (XPA) protein is involved in the DNA damage recognition and repair complex formation steps of nucleotide excision repair (NER), and has been shown to preferentially bind to various forms of DNA damage including bulky lesions. DNA interstrand crosslinks are of particular interest as a form of DNA damage, since these lesions involve both strands of duplex DNA and present special challenges to the repair machinery, and mitomycin C (MMC) is one of several useful cancer chemotherapy drugs that induce these lesions. Purified XPA and the minimal DNA-binding domain of XPA are both fully capable of preferentially binding to MMC-DNA interstrand crosslinks in the absence of other proteins from the NER complex. Circular dichroism (CD) and gel shift assays were used to investigate XPA-DNA binding and to assess changes in secondary structure induced as a consequence of the interaction of XPA with model MMC-crosslinked and unmodified DNAs. These studies revealed that while XPA demonstrates only a modest increase in affinity for adducted DNA, it adopts a different conformation when bound to MMC-damaged DNA than when bound to undamaged DNA. This change in conformation may be more important in recruiting other proteins into a competent NER complex at damaged sites than preferential binding per se. Arsenic had little effect on XPA binding even at toxic concentrations, whereas cadmium reduced XPA binding to DNA to 10-15% that of Zn-XPA, and zinc addition could only partially restore activity. In addition, there was little or no change in conformation when Cd-XPA bound MMC-crosslinked DNA even though it demonstrated preferential binding, which may contribute to the mechanism by which cadmium can act as a co-mutagen and co-carcinogen.  相似文献   

8.
ADP-ribosyltransferase diphtheria toxin-like 1 (ARTD1, formerly PARP1) is localized in the nucleus, where it ADP-ribosylates specific target proteins. The post-translational modification (PTM) with a single ADP-ribose unit or with polymeric ADP-ribose (PAR) chains regulates protein function as well as protein–protein interactions and is implicated in many biological processes and diseases. SET7/9 (Setd7, KMT7) is a protein methyltransferase that catalyses lysine monomethylation of histones, but also methylates many non-histone target proteins such as p53 or DNMT1. Here, we identify ARTD1 as a new SET7/9 target protein that is methylated at K508 in vitro and in vivo. ARTD1 auto-modification inhibits its methylation by SET7/9, while auto-poly-ADP-ribosylation is not impaired by prior methylation of ARTD1. Moreover, ARTD1 methylation by SET7/9 enhances the synthesis of PAR upon oxidative stress in vivo. Furthermore, laser irradiation-induced PAR formation and ARTD1 recruitment to sites of DNA damage in a SET7/9-dependent manner. Together, these results reveal a novel mechanism for the regulation of cellular ARTD1 activity by SET7/9 to assure efficient PAR formation upon cellular stress.  相似文献   

9.
Hey T  Lipps G  Krauss G 《Biochemistry》2001,40(9):2901-2910
The proteins XPA and RPA are assumed to be involved in primary damage recognition of global genome nucleotide excision repair. XPA as well as RPA have been each reported to specifically bind DNA lesions, and ternary complex formation with damaged DNA has also been shown. We employed fluorescence anisotropy measurements to study the DNA-binding properties of XPA and RPA under true equilibrium conditions using damaged DNA probes carrying a terminal fluorescein modification as a reporter. XPA binds with low affinity and in a strongly salt-dependent manner to DNA containing a 1,3-d(GTG) intrastrand adduct of the anticancer drug cisplatin or a 6-nt mismatch (K(D) = 400 nM) with 3-fold preference for damaged vs undamaged DNA. At near physiological salt conditions binding is very weak (K(D) > 2 microM). RPA binds to damaged DNA probes with dissociation constants in the range of 20 nM and a nearly 15-fold preference over undamaged DNA. The presence of a cisplatin modification weakens the affinity of RPA for single-stranded DNA by more than 1 order of magnitude indicating that binding to the lesion itself is not a driving force in damage recognition. Our fluorescence anisotropy assays also show that the presence of XPA does not enhance the affinity of RPA for damaged DNA although both proteins interact. In contrast, cooperative binding of XPA and RPA is observed in EMSA. Our results point to a damage-sensing function of the XPA-RPA complex with RPA mediating the important DNA contacts.  相似文献   

10.
The 32 kDa subunit of replication protein A (RPA32) is involved in various DNA repair systems such as nucleotide excision repair, base excision repair, and homologous recombination. In these processes, RPA32 interacts with different binding partners via its C-terminal domain (RPA32C; residues 172–270). It has been reported recently that RPA32C also interacts with TIPIN during the intra-S checkpoint. To determine the significance of the interaction of RPA32C with TIPIN, we have examined the interaction mode using NMR spectroscopy and an in silico modeling approach. Here, we show that TIPIN(185–218), which shares high sequence similarity with XPA(10–43) and UNG2(56–89), is less ordered in the free state and then forms a longer α-helix upon binding to RPA32C. The binding interface between TIPIN(185–218) and RPA32C is similar to those of XPA and UNG2, but its mode of interaction is different. The results suggest that RPA32 is an exchange point for multiple proteins involved in DNA repair, homologous recombination, and checkpoint processes and that it binds to different partners with comparable binding affinity using a single site.  相似文献   

11.
Exposure to ultraviolet radiation (UVR) promotes the formation of UVR-induced, DNA helix distorting photolesions such as (6-4) pyrimidine-pyrimidone photoproducts and cyclobutane pyrimidine dimers. Effective repair of such lesions by the nucleotide excision repair (NER) pathway is required to prevent DNA mutations and chromosome aberrations. Poly(ADP-ribose) polymerase-1 (PARP-1) is a zinc finger protein with well documented involvement in base excision repair. PARP-1 is activated in response to DNA damage and catalyzes the formation of poly(ADP-ribose) subunits that assist in the assembly of DNA repair proteins at sites of damage. In this study, we present evidence for PARP-1 contributions to NER, extending the knowledge of PARP-1 function in DNA repair beyond the established role in base excision repair. Silencing the PARP-1 protein or inhibiting PARP activity leads to retention of UVR-induced photolesions. PARP activation following UVR exposure promotes association between PARP-1 and XPA, a central protein in NER. Administration of PARP inhibitors confirms that poly(ADP-ribose) facilitates PARP-1 association with XPA in whole cell extracts, in isolated chromatin complexes, and in vitro. Furthermore, inhibition of PARP activity decreases UVR-stimulated XPA chromatin association, illustrating that these relationships occur in a meaningful context for NER. These results provide a mechanistic link for PARP activity in the repair of UVR-induced photoproducts.  相似文献   

12.
《Journal of molecular biology》2019,431(15):2655-2673
Nuclear poly(ADP-ribose) polymerases 1 and 2 (PARP1 and PARP2) catalyze the synthesis of poly(ADP-ribose) (PAR) and use NAD+ as a substrate for the polymer synthesis. Both PARP1 and PARP2 are involved in DNA damage response pathways and function as sensors of DNA breaks, including temporary single-strand breaks formed during DNA repair. Consistently, with a role in DNA repair, PARP activation requires its binding to a damaged DNA site, which initiates PAR synthesis. Here we use atomic force microscopy to characterize at the single-molecule level the interaction of PARP1 and PARP2 with long DNA substrates containing a single damage site and representing intermediates of the short-patch base excision repair (BER) pathway. We demonstrated that PARP1 has higher affinity for early intermediates of BER than PARP2, whereas both PARPs efficiently interact with the nick and may contribute to regulation of the final ligation step. The binding of a DNA repair intermediate by PARPs involved a PARP monomer or dimer depending on the type of DNA damage. PARP dimerization influences the affinity of these proteins to DNA and affects their enzymatic activity: the dimeric form is more effective in PAR synthesis in the case of PARP2 but is less effective in the case of PARP1. PARP2 suppresses PAR synthesis catalyzed by PARP1 after single-strand breaks formation. Our study suggests that the functions of PARP1 and PARP2 overlap in BER after a site cleavage and provides evidence for a role of PARP2 in the regulation of PARP1 activity.  相似文献   

13.
14.
Liu Y  Liu Y  Yang Z  Utzat C  Wang G  Basu AK  Zou Y 《Biochemistry》2005,44(19):7361-7368
Human xeroderma pigmentosum group A (XPA) is an essential protein for nucleotide excision repair (NER). We have previously reported that XPA forms a homodimer in the absence of DNA. However, what oligomeric forms of XPA are involved in DNA damage recognition and how the interaction occurs in terms of biochemical understanding remain unclear. Using the homogeneous XPA protein purified from baculovirus-infected Sf21 insect cells and the methods of gel mobility shift assays, gel filtration chromatography, and UV-cross-linking, we demonstrated that both monomeric and dimeric XPA bound to the DNA adduct of N-acetyl-2-aminofluorene (AAF), while showing little affinity for nondamaged DNA. The binding occurred in a sequential and protein concentration-dependent manner. At relatively low-protein concentrations, XPA formed a complex with DNA adduct as a monomer, while at the higher concentrations, an XPA dimer was involved in the specific binding. Results from fluorescence spectroscopic and competitive binding analyses indicated that the specific binding of XPA to the adduct was significantly facilitated and stabilized by the presence of the second XPA in a positive cooperative manner. This cooperative binding exhibited a Hill coefficient of 1.9 and the step binding constants of K(1) = 1.4 x 10(6) M(-)(1) and K(2) = 1.8 x 10(7) M(-)(1). When interaction of XPA and RPA with DNA was studied, even though binding of RPA-XPA complex to adducted DNA was observed, the presence of RPA had little effect on the overall binding efficiency. Our results suggest that the dominant form for XPA to efficiently bind to DNA damage is the XPA dimer. We hypothesized that the concentration-dependent formation of different types of XPA-damaged DNA complex may play a role in cellular regulation of XPA activity.  相似文献   

15.
Poly(ADP-ribosyl)ation is a reversible post-translational modification that plays an essential role in many cellular processes, including regulation of DNA repair. Cellular DNA damage response by the synthesis of poly(ADP-ribose) (PAR) is mediated mainly by poly(ADP-ribose) polymerase 1 (PARP1). The XPC-RAD23B complex is one of the key factors of nucleotide excision repair participating in the primary DNA damage recognition. By using several biochemical approaches, we have analyzed the influence of PARP1 and PAR synthesis on the interaction of XPC-RAD23B with damaged DNA. Free PAR binds to XPC-RAD23B with an affinity that depends on the length of the poly(ADP-ribose) strand and competes with DNA for protein binding. Using 32P-labeled NAD+ and immunoblotting, we also demonstrate that both subunits of the XPC-RAD23B are poly(ADP-ribosyl)ated by PARP1. The efficiency of XPC-RAD23B PARylation depends on DNA structure and increases after UV irradiation of DNA. Therefore, our study clearly shows that XPC-RAD23B is a target of poly(ADP-ribosyl)ation catalyzed by PARP1, which can be regarded as a universal regulator of DNA repair processes.  相似文献   

16.
17.
The cell cycle inhibitor p21CDKN1A was previously found to interact directly with DNA nick-sensor poly(ADP-ribose) polymerase-1 (PARP-1) and to promote base excision repair (BER). However, the molecular mechanism responsible for this BER-related association of p21 with PARP-1 remains to be clarified. In this study we investigate the capability of p21 to influence PARP-1 binding to DNA repair intermediates in a reconstituted BER system in vitro. Using model photoreactive BER substrates containing single-strand breaks, we found that full-length recombinant GST-tagged p21 but not a C-terminal domain truncated form of p21 was able to stimulate the PARP-1 binding to BER intermediates with no significant influence on the catalytic activity of PARP-1. In addition, we investigate whether the activation of PARP-1 through poly(ADP-ribose) (PAR) synthesis, is required for its interaction with p21. We have found that in human fibroblasts and in HeLa cells treated with the DNA alkylating agent N-methyl-N''-nitro-N-nitrosoguanidine (MNNG), the interaction of p21 with PARP-1 was greatly dependent on PAR synthesis. In fact, an anti-PAR antibody was able to co-immunoprecipitate p21 and PARP-1 from extracts of MNNG-treated cells, while blocking PAR synthesis with the PARP-1 inhibitor Olaparib, drastically reduced the amount of p21 co-immunoprecipitated by a PARP-1 antibody. Our results provide the first evidence that p21 can stimulate the binding of PARP-1 to DNA repair intermediates, and that this cooperation requires PAR synthesis.  相似文献   

18.
19.
After the generation of DNA double-strand breaks (DSBs), poly(ADP-ribose) polymerase-1 (PARP-1) is one of the first proteins to be recruited and activated through its binding to the free DNA ends. Upon activation, PARP-1 uses NAD+ to generate large amounts of poly(ADP-ribose) (PAR), which facilitates the recruitment of DNA repair factors. Here, we identify the RNA-binding protein NONO, a partner protein of SFPQ, as a novel PAR-binding protein. The protein motif being primarily responsible for PAR-binding is the RNA recognition motif 1 (RRM1), which is also crucial for RNA-binding, highlighting a competition between RNA and PAR as they share the same binding site. Strikingly, the in vivo recruitment of NONO to DNA damage sites completely depends on PAR, generated by activated PARP-1. Furthermore, we show that upon PAR-dependent recruitment, NONO stimulates nonhomologous end joining (NHEJ) and represses homologous recombination (HR) in vivo. Our results therefore place NONO after PARP activation in the context of DNA DSB repair pathway decision. Understanding the mechanism of action of proteins that act in the same pathway as PARP-1 is crucial to shed more light onto the effect of interference on PAR-mediated pathways with PARP inhibitors, which have already reached phase III clinical trials but are until date poorly understood.  相似文献   

20.
Strand-specific binding of RPA and XPA to damaged duplex DNA   总被引:7,自引:0,他引:7  
The nucleotide excision repair (NER) pathway is a major pathway used to repair bulky adduct DNA damage. Two proteins, xeroderma pigmentosum group A protein (XPA) and replication protein A (RPA), have been implicated in the role of DNA damage recognition in the NER pathway. The particular manner in which these two damage recognition proteins align themselves with respect to a damaged DNA site was assessed using photoreactive base analogues within specific DNA substrates to allow site-specific cross-linking of the damage recognition proteins. Results of these studies demonstrate that both RPA and XPA are in close proximity to the adduct as measured by cross-linking of each protein directly to the platinum moiety. Additional studies demonstrate that XPA contacts both the damaged and undamaged strands of the duplex DNA. Direct evidence is presented demonstrating preferential binding of RPA to the undamaged strand of a duplex damaged DNA molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号