首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 173 毫秒
1.
采用13C-CO2进行连续标记,研究水稻分蘖期和孕穗期光合碳在植株-土壤系统中的分配及其对大气CO2浓度升高(800 μL·L-1)和施氮(100 mg·kg-1)的响应.结果表明: CO2浓度升高显著提高分蘖期根系生物量和孕穗期地上部生物量,并使生物量根冠比在分蘖期增加,而在孕穗期减小.CO2浓度升高条件下,施氮使水稻地上部分生物量增加,却显著降低了孕穗期水稻根系生物量.CO2浓度升高使光合13C在孕穗期向土壤的输入显著增加,然而施肥并没有促进由CO2浓度升高驱动的光合13C在土壤中的积累,而且还降低了土壤中的光合13C的分配比例.综上,CO2浓度升高显著提高了稻田土壤光合碳输入,促进稻田有机碳周转;施氮促进了水稻地上部的生长,却降低了光合碳向地下的分配比例.  相似文献   

2.
大气CO2浓度升高对土壤氮素转化过程产生重要影响,研究其变化有助于更好地预测陆地生态系统的固碳潜力.氮同位素自然丰度作为生态系统氮素循环过程的综合指标能够有效地指示CO2浓度升高对土壤氮素转化过程的影响.本研究采用开顶箱CO2 熏蒸法研究连续10年的大气CO2 浓度升高对我国东北地区蒙古栎及其土壤和微生物生物量碳、氮同位素自然丰度的影响.结果表明: 大气CO2浓度升高改变了土壤氮循环过程,增加了土壤微生物和植物叶片δ15N;促进了富13C土壤有机碳分解,中和了贫13C植物光合碳输入的效果,导致土壤可溶性有机碳和微生物碳δ13C在CO2升高条件下没有发生显著变化.这些结果表明,CO2浓度升高很可能促进了土壤有机质矿化过程,并加剧了系统氮限制的状态.  相似文献   

3.
大气CO2浓度升高对土壤氮素转化过程产生重要影响,研究其变化有助于更好地预测陆地生态系统的固碳潜力.氮同位素自然丰度作为生态系统氮素循环过程的综合指标能够有效地指示CO2浓度升高对土壤氮素转化过程的影响.本研究采用开顶箱CO2 熏蒸法研究连续10年的大气CO2 浓度升高对我国东北地区蒙古栎及其土壤和微生物生物量碳、氮同位素自然丰度的影响.结果表明: 大气CO2浓度升高改变了土壤氮循环过程,增加了土壤微生物和植物叶片δ15N;促进了富13C土壤有机碳分解,中和了贫13C植物光合碳输入的效果,导致土壤可溶性有机碳和微生物碳δ13C在CO2升高条件下没有发生显著变化.这些结果表明,CO2浓度升高很可能促进了土壤有机质矿化过程,并加剧了系统氮限制的状态.  相似文献   

4.
张蕊  赵钰  何红波  张旭东 《生态学杂志》2017,28(7):2379-2388
大气CO2浓度升高影响植物光合作用过程和生物量积累,改变植物地上和地下生物量的动态分配.土壤有机质的形成和周转依赖于植物组分的输入,因此,CO2浓度升高所造成的植物生理和代谢的变化对土壤碳库收支平衡具有重要影响.采用稳定碳同位素(13C)技术研究土壤-植物系统的碳循环可阐明大气CO2浓度升高条件下光合碳在植物各器官的分配特征和时间动态,明确光合碳在土壤中的积累、分解与迁移转化过程以及对土壤有机碳库周转的影响.本文综述了基于13C自然丰度法或13C示踪技术研究大气CO2浓度升高对土壤-植物系统碳循环的影响,主要包括:1)对植物光合作用的同位素分馏的影响;2)对植物光合碳(新碳)分配动态的影响;3)对土壤有机碳新老碳库动态以及微生物转化过程的影响.明确上述过程及其调控机制可为预测CO2浓度升高对陆地生态系统碳循环及源汇效应的长期影响奠定基础.  相似文献   

5.
依托FACE技术平台, 采用稳定13C同位素技术, 通过将小麦(C3作物)种植于长期单作玉米(C4作物)的土壤上, 研究了大气CO2浓度升高和不同氮肥水平对土壤排放CO2的δ13C值及根际呼吸的影响. 结果表明: 种植小麦后土壤排放CO2的δ13C值随作物生长逐渐降低, CO2浓度升高200 μmol·mol-1显著降低了孕穗、抽穗期(施氮量为250 kg·hm-2, HN)与拔节、孕穗期(施氮量为150 kg·hm-2, LN)土壤排放CO2的δ13C值, 显著提高了孕穗、抽穗期的根际呼吸比例. 拔节至成熟期, 根际呼吸占土壤呼吸的比例在高CO2浓度下为24%~48%(HN)和21%~48%(LN), 在正常CO2浓度下为20%~36% (HN)和19%~32%(LN). 不同CO2浓度下土壤排放CO2的δ13C值和根际呼吸对氮肥增加的响应不同, CO2浓度与氮肥用量在拔节期对根际呼吸的交互效应显著.  相似文献   

6.
大气CO2浓度升高影响植物光合作用过程和生物量积累,改变植物地上和地下生物量的动态分配.土壤有机质的形成和周转依赖于植物组分的输入,因此,CO2浓度升高所造成的植物生理和代谢的变化对土壤碳库收支平衡具有重要影响.采用稳定碳同位素(13C)技术研究土壤-植物系统的碳循环可阐明大气CO2浓度升高条件下光合碳在植物各器官的分配特征和时间动态,明确光合碳在土壤中的积累、分解与迁移转化过程以及对土壤有机碳库周转的影响.本文综述了基于13C自然丰度法或13C示踪技术研究大气CO2浓度升高对土壤-植物系统碳循环的影响,主要包括:1)对植物光合作用的同位素分馏的影响;2)对植物光合碳(新碳)分配动态的影响;3)对土壤有机碳新老碳库动态以及微生物转化过程的影响.明确上述过程及其调控机制可为预测CO2浓度升高对陆地生态系统碳循环及源汇效应的长期影响奠定基础.  相似文献   

7.
以6年生库尔勒香梨为材料,用13C脉冲标记技术研究了150、300、450 kg N·hm-2(分别用N1、N2、N3表示)3个施氮水平下树体各器官生物量、碳积累量以及13C同化物的吸收分配特性。结果表明: 库尔勒香梨树体整株的生物量、碳积累量、13C固定量以及叶片的同化能力均随着施氮水平的提高而增加;根冠比则随施氮水平的提高而降低。生殖器官果实的生物量、碳积累量在N2处理下最高。树体各器官13C含量和分配率随施氮量的增加发生动态变化。新梢旺长期,叶片和根系对光合同化物的竞争能力较强,且13C分配率均为N1处理下最高;果实膨大期和成熟期,叶片和果实的竞争能力较强,叶片13C含量和分配率在N3处理下最高,而果实13C含量和分配率则在N2处理下最大。综上,根据不同施氮水平各器官对碳同化物的吸收分配特征,以提高产量为目标,建议6年树龄的库尔勒香梨果园最佳施氮量为300 kg·hm-2。  相似文献   

8.
2010年在四川卧龙自然保护区选择海拔为2350、2700、3150和3530 m的4个分布地点,研究了巴郎山海拔梯度对奇花柳叶片13C、光合、CO2扩散导度、氮含量、光合氮利用效率(PNUE)和比叶面积(SLA)的影响.结果表明: 随着海拔的升高,目标树种叶片氮含量(尤其是单位面积氮含量)及PNUE增加,叶片13C值也随之显著增加,且海拔每升高1000 m,13C增加1.4‰;CO2扩散导度(气孔导度和叶肉细胞导度)的增加,在一定程度上阻碍了叶片13C值随海拔升高,但不足以改变13C值随海拔升高的趋势;羧化能力是羧化位点与外界CO2分压比(Pc/Pa),甚至13C的限制因子.在海拔2350~2700 m,奇花柳光合系统内部氮素分配主要受温度的影响,而2700~3530 m的光照作用可能更大.奇花柳的SLA随海拔无显著变化.  相似文献   

9.
采用离轴积分腔输出光谱技术测定华北低丘山区栓皮栎人工林冠层上缘(11 m)和下部(6 m)大气CO2浓度和δ13C值,在小时尺度上分析冠层CO2浓度和δ13C变化及其影响因素.结果表明: 冠层CO2浓度呈先高后低再升高的日变化趋势,而δ13C值没有明显一致的日变化规律.白天大气不稳定状态出现的频率为70.2%,在光合作用和林内湍流的共同作用下,栓皮栎冠层下部CO2浓度高于冠层上缘约1.70 μmol·mol-1,而δ13C值低于冠层上缘约0.81‰.晚上大气稳定状态出现的频率为76.2%,湍流弱,冠层叶片呼出的CO2不易流动,导致冠层下部CO2浓度高于上缘约1.24 μmol·mol-113C值低于冠层上缘约0.58‰.白天和晚上冠层上下缘的CO2浓度差值与δ13C差值均呈显著的相关关系.逐步回归分析表明,白天太阳辐射和相对湿度是影响冠层CO2浓度和δ13C值差异的主要环境因子,晚上温度显著影响冠层下部与上缘δ13C值的变化,这些环境因子通过增强或减弱光合和呼吸作用来影响冠层大气中CO2浓度和δ13C值的变化.  相似文献   

10.
以苹果M9T337幼苗为试材进行水培试验,采用15N和13C同位素示踪技术,研究不同供钾水平(0、3、6、9、12 mmol·L-1,分别以K0、K1、K2、K3、K4表示)对M9T337幼苗生长、光合特性与15N、13C吸收利用的影响.结果表明: K2处理M9T337幼苗各器官干质量、根系长度、根系表面积、根尖数和根系活力均显著高于其他处理.叶片净光合速率(Pn)随着供钾水平的升高先上升后下降,在K2处理时达到最高值,为15.5 μmol CO2·m-2·s-1.处理30 d后,硝酸还原酶(NR)和碳代谢酶活性均以K2处理最高,K0处理最低.随着供钾水平的提高,各处理幼苗的13C积累量呈先升高后降低的趋势,且在K2处理时各器官13C分配率最均衡.各处理间15N吸收量和利用率差异显著,K2处理下幼苗的15N吸收量和利用率最高,分别为16.11 mg和17.9%,是K0处理的3.0倍.因此,钾素供应过低或过高均抑制幼苗根系生长和叶片光合作用,不利于植株碳氮吸收,而适宜的钾素供应水平可以提高根系活力和净光合速率,增强硝酸还原酶(NR)和碳代谢酶活性,从而促进碳氮代谢.  相似文献   

11.
采用FACE(Free Air Carbon-dioxide Enrichment)技术,研究了不同N、P施肥水平下,水稻分蘖期、拔节期、抽穗期和成熟期根、茎、叶、穗生长,C/N比,N、P含量及N、P吸收对大气CO2浓度升高的响应.结果表明,高CO2促进水稻茎、穗和根的生长.增加分蘖期叶干重,对拔节期、抽穗期和成熟期叶干重没有显著增加.降低茎、叶N含量;增加抽穗期穗N含量,降低成熟期穗N含量;对分蘖期根N含量影响不显著,而降低拔节期、抽穗期和成熟期根N含量.增加拔节期、抽穗期和成熟期叶P含量,对茎、穗、根P含量影响不显著.水稻各组织C含量变化不显著.C/N比增加.显著增加水稻地上部分P吸收;增加N吸收,但没有统计显著性.N、P施用对水稻各组织生物量没有显著影响.高N(HN)比低N(LN)增加组织中N含量,而不同P肥水平间未表现出明显差异.高N条件下高CO2增加水稻成熟期地下部分/地上部分比.文中还讨论了高CO2对N、P含量及地下部分/地上部分比的影响机制.  相似文献   

12.
增施有机肥对冬小麦同化物积累与分配的影响   总被引:2,自引:0,他引:2  
基于13CO2脉冲标记法,设置单施化肥(CF)和有机肥+化肥(OF)两个处理,通过分析不同施肥模式对麦田土壤和小麦植株中的有机碳含量、光合特性和同化物转化的影响,探讨增施有机肥对冬小麦同化物积累与分配的影响.结果表明: OF处理有利于提高麦田土壤有机碳含量和小麦光合特性,从而提高了小麦植株有机碳含量和干物质积累总量.同一时期标记至成熟与标记后第7天相比,两个施肥处理下叶和茎鞘中的13C含量与13C分配率均减少;穗部13C含量在拔节期和灌浆期均增加,开花期均减少,13C分配率各时期均增加.两个施肥处理相比,OF处理有利于灌浆期光合碳向穗部转运与积累,提高小麦穗部的13C分配率.相关分析结果表明,干物质积累量与净输入13C含量、净输入13C分配率呈极显著正相关关系,与植株中有机碳含量呈负相关关系;净输入13C含量与净输入13C分配率呈极显著正相关关系,与光系统II的最大光能转化效率(Fv/Fm)和净光合速率(Pn)呈负相关关系.综上,增施有机肥能增加麦田土壤有机碳含量,提高小麦的光合能力和光合产物向穗部的转运,最终有利于小麦穗部的同化物积累.  相似文献   

13.
运用磷脂脂肪酸(phospholipid fatty acid,PLFA)和Biolog方法,研究了秸秆不还田不施肥(CK)、秸秆还田+尿素1(N分配:麦收后∶水稻移栽前∶分蘖期∶孕穗期=0∶6∶2∶2,T1)、秸秆还田+尿素2(N分配:麦收后∶水稻移栽前∶分蘖期∶孕穗期=3∶3∶2∶2,T2)、秸秆还田+沼液+尿素(N分配:麦收后∶水稻移栽前∶分蘖期∶孕穗期=3(沼液)∶3(2沼液+1尿素)∶2(尿素)∶2(尿素),T3) 4种氮肥运筹方式对水稻各生育期(分蘖期、孕穗期、成熟期)土壤微生物群落结构的影响。结果表明: 1)T3处理显著提高了各生育期土壤中的有效氮含量,其中成熟期有效氮含量显著高于分蘖期和孕穗期;T1~T3处理的有效磷和速效钾含量在各生育期均高于CK,且分蘖期的含量高于孕穗期和成熟期;稻田各生育期与各处理的交互作用对土壤有效氮、有效磷、速效钾含量均有显著影响;2)T3能提高稻田土壤中微生物碳源代谢强度,碳水化合物、氨基酸、聚合物、羧酸是稻田土壤微生物利用的主要碳源,稻田各生育期与各处理的交互作用对微生物利用碳水化合物和羧酸的能力有显著影响;3)T2、T3能显著提高土壤微生物生物量;T2处理真菌/细菌比较高,以真菌为主导,更有利于稻田土壤生态系统的稳定。表明秸秆还田同步施用氮肥(尿素或沼液)能提高土壤微生物活性,改善土壤环境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号