首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Na(+)/K(+)-ATPase as a signal transducer.   总被引:19,自引:0,他引:19  
  相似文献   

4.
The movement of intracellular monovalent cations has previously been shown to play a critical role in events leading to the characteristics associated with apoptosis. A loss of intracellular potassium and sodium occurs during apoptotic cell shrinkage establishing an intracellular environment favorable for nuclease activity and caspase activation. We have now investigated the potential movement of monovalent ions in Jurkat cells that occur prior to cell shrinkage following the induction of apoptosis. A rapid increase in intracellular sodium occurs early after apoptotic stimuli suggesting that the normal negative plasma membrane potential may change during cell death. We report here that diverse apoptotic stimuli caused a rapid cellular depolarization of Jurkat T-cells that occurs prior to and after cell shrinkage. In addition to the early increase in intracellular Na(+), (86)Rb(+) studies reveal a rapid inhibition of K(+) uptake in response to anti-Fas. These effects on Na(+) and K(+) ions were accounted for by the inactivation of the Na(+)/K(+)-ATPase protein and its activity. Furthermore, ouabain, a cardiac glycoside inhibitor of the Na(+)/K(+)-ATPase, potentiated anti-Fas-induced apoptosis. Finally, activation of an anti-apoptotic signal, i.e. protein kinase C, prevented both cellular depolarization in response to anti-Fas and all downstream characteristics associated with apoptosis. Thus cellular depolarization is an important early event in anti-Fas-induced apoptosis, and the inability of cells to repolarize via inhibition of the Na(+)/K(+)-ATPase is a likely regulatory component of the death process.  相似文献   

5.
Short-term exposure of coho salmon smolts (Oncorhynchus kisutch) to a gradual increase in salinity over 2 d (0 per thousand -32 per thousand ) resulted in a decrease in proton pump abundance, detected as changes in immunoreactivity with a polyclonal antibody against subunit A of bovine brain vacuolar H(+)-ATPase. N-ethylmaleimide (NEM)-sensitive H(+)-ATPase activities in gill homogenates remained unchanged over 8 d to coincide with a 3.5-fold increase in Na(+)/K(+)-ATPase activities. A transient increase in plasma [Na(+)] and [Cl(-)] levels over the 8-d period was preceded by a 10-fold increase in plasma cortisol levels, which peaked after 12 h. Long-term (1 mo) acclimation to seawater resulted in the loss of apical immunoreactivity for vH(+)-ATPase and band 3-like anion exchanger in the mitochondria-rich cells identified by high levels of Na(+)/K(+)-ATPase immunoreactivity. The polyclonal antibody Ab597 recognized a Na(+)/H(+) exchanger (NHE-2)-like protein in what appears to be an accessory cell (AC) type. Populations of these ACs were found associated with Na(+)/K(+)-ATPase rich chloride cells in both freshwater- and seawater-acclimated animals.  相似文献   

6.
7.
The mechanisms of cadmium (Cd)-dependent nephrotoxicity were studied in a rat proximal tubule (PT) cell line. CdCl(2) (5 microM) increased the production of reactive oxygen species (ROS), as determined by oxidation of dihydrorhodamine 123 to fluorescent rhodamine 123. The levels of ubiquitin-conjugated cellular proteins were increased by Cd in a time-dependent fashion (maximum at 24-48 h). This was prevented by coincubation with the thiol antioxidant N-acetylcysteine (NAC, 15 mM). Cd also increased apoptosis (controls: 2.4+/-1.6%; Cd: 8.1+/-1.9%), but not necrosis (controls: 0.5 +/- 0.3%; Cd: 1.4+/- 2.5%). Exposure of PT cells with Cd decreased protein levels of the catalytic subunit (alpha1) of Na+/K(+)-ATPase, a long-lived membrane protein (t(1/2)>48 h) that drives reabsorption of ions and nutrients through Na(+)-dependent transporters in PT. Incubation of PT cells for 48 h with Cd decreased Na+/K(+)-ATPase alpha1-subunit, as determined by immunoblotting, by approximately 50%, and NAC largely prevented this effect. Inhibitors of the proteasome such as MG-132 (20 microM) or lactacystin (10 microM), as well as lysosomotropic weak bases such as chloroquine (0.2 mM) or NH(4)Cl (30 mM), significantly reduced the decrease of Na(+)/K(+)-ATPase alpha1-subunit induced by Cd, and in combination abolished the effect of Cd on Na+/K(+)-ATPase. Immunofluorescence labeling of Na+/K(+)-ATPase showed a reduced expression of the protein in the plasma membrane of Cd-exposed cells. After addition of lactacystin and chloroquine to Cd-exposed PT cells, immunoreactive material accumulated into intracellular vesicles. The data indicate that micromolar concentrations of Cd can increase ROS production and exert a toxic effect on PT cells. Oxidative damage increases the degradation of Na+/K(+)-ATPase through both the proteasomal and endo-/lysosomal proteolytic pathways. Degradation of oxidatively damaged Na+/K(+)-ATPase may contribute to the 'Fanconi syndrome'-like Na(+)-dependent transport defects associated with Cd-nephrotoxicity.  相似文献   

8.
Several lines of evidence suggest that cisplatin-induced cell death is not always the result of apoptosis. A distinctive feature between apoptosis and necrosis is the alteration in cell volume regulation and ion homeostasis. Here we analyzed the changes in intracellular element content during cell death induced by exposure to therapeutic concentrations of cisplatin in the PC12 cell line. To quantitate Na, Cl and K content, electron probe X-ray microanalysis (EPXMA) was performed in whole freeze-dried cells. We also traced the alterations in morphological features with fluorescence and transmission electron microscopy. EPXMA demonstrated progressive derangement of the absolute intracellular Na, Cl and K contents. Cisplatin-treated cells showed two microanalytical patterns: 1) cells with alterations in elemental content typical of apoptosis, i.e., an increase in intracellular Na and a decrease in intracellular Cl and K, and 2) cells characterized by an increase in Na content and a decrease in K content, with no changes in Cl content. This intracellular profile for Na, Cl, and K was not typical of necrosis or apoptosis. Morphological analysis revealed two cellular phenotypes: 1) cells characterized by a phenotype typical of apoptosis, and 2) cells characterized by a hybrid phenotype combining variable features of apoptosis and necrosis. Taken together, our findings suggest that therapeutic concentrations of cisplatin may cause a hybrid type of cell death characterized by concurrent apoptosis and necrosis in the same individual PC12 cell.  相似文献   

9.
Basolateral membranes of Aplysia californica foregut epithelia contain an ATP-dependent Na(+)/K(+) transporter (Na(+)/K(+) pump or Na(+)/K (+) -ATPase). This Na(+)/K(+) pump accounts for both the intracellular Na(+) electrochemical potential (micro) being less than the extracelluar Na(+) micro and the intracellular K(+) micro being more than the extracellular K(+ ) micro. Also, K(+) channel activity resides in both luminal and basolateral membranes of the Aplysia foregut epithelial cells. Increased activity of the Na(+)/K(+) pump, coupled to luminal and basolateral membrane depolarization altered the K(+) transport energetics across the basolateral membrane to a greater extent than the alteration in K(+) transport energetics across the luminal membrane. These results suggest that K(+) transport, either into or out of the Aplysia foregut epithelial cells, is rate-limiting at the basolateral membrane.  相似文献   

10.
11.
Krogh introduced the concept of active ion uptake across surface epithelia of freshwater animals, and proved independent transports of Na(+) and Cl(-) in anuran skin and fish gill. He suggested that the fluxes of Na(+) and Cl(-) involve exchanges with ions of similar charge. In the so-called Krogh model, Cl(-)/HCO(3)(-) and Na(+)/H(+) antiporters are located in the apical membrane of the osmoregulatory epithelium. More recent studies have shown that H(+) excretion in anuran skin is due to a V-ATPase in mitochondria-rich (MR) cells. The pump has been localized by immunostaining and H(+) fluxes estimated by pH-stat titration and mathematical modelling of pH-profiles in the unstirred layer on the external side of the epithelium. H(+) secretion is voltage-dependent, sensitive to carbonic-anhydrase inhibitors, and rheogenic with a charge/ion-flux ratio of unity. Cl(-) uptake from freshwater is saturating, voltage independent, and sensitive to DIDS and carbonic-anhydrase inhibitors. Depending on anuran species and probably on acid/base balance of the animal, apical exit of protons is coupled to an exchange of Cl(-) with base (HCO(3)(-)) either in the apical membrane (gamma-type of MR cell) or in the basolateral membrane (alpha-type MR cell). The gamma-cell model accounts for the rheogenic active uptake of Cl(-) observed in several anuran species. There is indirect evidence also for non-rheogenic active uptake accomplished by a beta-type MR cell with apical base secretion and basolateral proton pumping. Several studies have indicated that the transport modes of MR cells are regulated via ion- and acid/base balance of the animal, but the signalling mechanisms have not been investigated. Estimates of energy consumption by the H(+)-ATPase and the Na(+)/K(+)-ATPase indicate that the gamma-cell accomplishes uptake of NaCl in normal and diluted freshwater. Under common freshwater conditions with serosa-positive or zero V(t), the K(+) conductance of the basolateral membrane would have to maintain the inward driving force for Na(+) uptake across the apical membrane. With the K(+) equilibrium potential across the basolateral membrane estimated to -105 mV, this would apply to external Na(+) concentrations down to 40-120 micromol/l. NaCl uptake from concentrations down to 10 micromol/l, as observed by Krogh, presupposes that the H(+) pump hyperpolarizes the apical membrane, which would then have to be associated with serosa-negative V(t). In diluted freshwater, exchange of cellular HCO(3)(-) with external Cl(-) seems to be possible only if the proton pump has the additional function of keeping the external concentration of HCO(3)(-) low. Quantitative considerations also lead to the conclusion that with the above extreme demand, at physiological intracellular pH of 7.2, the influx of Cl(-) via the apical antiporter and the passive exit of Cl(-) via basolateral channels would be possible within a common range of intracellular Cl(-) concentrations.  相似文献   

12.
Although the Na(+)/K(+) pump is one of the key mechanisms responsible for maintaining cell volume, we have observed experimentally that cell volume remained almost constant during 90 min exposure of guinea pig ventricular myocytes to ouabain. Simulation of this finding using a comprehensive cardiac cell model (Kyoto model incorporating Cl(-) and water fluxes) predicted roles for the plasma membrane Ca(2+)-ATPase (PMCA) and Na(+)/Ca(2+) exchanger, in addition to low membrane permeabilities for Na(+) and Cl(-), in maintaining cell volume. PMCA might help maintain the [Ca(2+)] gradient across the membrane though compromised, and thereby promote reverse Na(+)/Ca(2+) exchange stimulated by the increased [Na(+)](i) as well as the membrane depolarization. Na(+) extrusion via Na(+)/Ca(2+) exchange delayed cell swelling during Na(+)/K(+) pump block. Supporting these model predictions, we observed ventricular cell swelling after blocking Na(+)/Ca(2+) exchange with KB-R7943 or SEA0400 in the presence of ouabain. When Cl(-) conductance via the cystic fibrosis transmembrane conductance regulator (CFTR) was activated with isoproterenol during the ouabain treatment, cells showed an initial shrinkage to 94.2 +/- 0.5%, followed by a marked swelling 52.0 +/- 4.9 min after drug application. Concomitantly with the onset of swelling, a rapid jump of membrane potential was observed. These experimental observations could be reproduced well by the model simulations. Namely, the Cl(-) efflux via CFTR accompanied by a concomitant cation efflux caused the initial volume decrease. Then, the gradual membrane depolarization induced by the Na(+)/K(+) pump block activated the window current of the L-type Ca(2+) current, which increased [Ca(2+)](i). Finally, the activation of Ca(2+)-dependent cation conductance induced the jump of membrane potential, and the rapid accumulation of intracellular Na(+) accompanied by the Cl(-) influx via CFTR, resulting in the cell swelling. The pivotal role of L-type Ca(2+) channels predicted in the simulation was demonstrated in experiments, where blocking Ca(2+) channels resulted in a much delayed cell swelling.  相似文献   

13.
Isolated salivary glands of Periplaneta americana were used to measure secretion rates and, by quantitative capillary electrophoresis, Na(+), K(+), and Cl(-) concentrations in saliva collected during dopamine (1 micro M) and serotonin (1 micro M) stimulation in the absence and presence of ouabain (100 micro M) or bumetanide (10 micro M). Dopamine stimulated secretion of a NaCl-rich hyposmotic saliva containing (mM): Na(+) 95 +/- 2; K(+) 38 +/- 1; Cl(-) 145 +/- 3. Saliva collected during serotonin stimulation had a similar composition. Bumetanide decreased secretion rates induced by dopamine and serotonin; secreted saliva had lower Na(+), K(+) and Cl(-) concentrations and osmolarity. Ouabain caused increased secretion rates on a serotonin background. Saliva secreted during dopamine but not serotonin stimulation in the presence of ouabain had lower K(+) and higher Na(+) and Cl(-) concentrations, and was isosmotic. We concluded: The Na(+)-K(+)-2Cl(-) cotransporter is of cardinal importance for electrolyte and fluid secretion. The Na(+)/K(+)-ATPase contributes to apical Na(+) outward transport and Na(+) and K(+) cycling across the basolateral membrane in acinar P-cells. The salivary ducts modify the primary saliva by Na(+) reabsorption and K(+) secretion, whereby Na(+) reabsorption is energized by the basolateral Na(+)/K(+)-ATPase which imports also some of the K(+) needed for apical K(+) extrusion.  相似文献   

14.
15.
硅改善盐胁迫下库拉索芦荟生长和离子吸收与分布   总被引:1,自引:0,他引:1  
Si2.0mmol/L处理明显缓解NaCl 100、200mmol/L胁迫120d对库拉索芦荟(Aloevera)生长的抑制作用。Si可显著降低NaCl胁迫下芦荟植株中的Na^+和Cl^-含量,提高K^+含量,从而显著降低K^+/Na^+,促进根对K^+的选择性吸收(ASK,Na)和K^+向地上部的选择性运输(TSK,Na),以维持植株体内的离子稳态。根系和叶片横切面的X-射线能谱微区分析结果进一步证实了这一结果。Si改善盐胁迫下芦荟对K^+的选择性吸收和运输的机制之一是通过显著提高盐胁迫下芦荟根细胞质膜H^+ATPase、液泡膜H^+-ATPase和液泡膜H^+-PPase的活性。  相似文献   

16.
In marine teleost fishes, the gill mitochondria-rich cells (MRCs) are responsible for NaCl elimination; however, in elasmobranch fishes, the specialized rectal gland is considered to be the most important site for salt secretion. The role of the gills in elasmobranch ion regulation, although clearly shown to be secondary, is not well characterized. In the present study, we investigated some morphological properties of the branchial MRCs and the localization, and activity of the important ionoregulatory enzyme Na(+)/K(+)-ATPase, under control conditions and following rectal gland removal (1 month) in the spiny dogfish, Squalus acanthias. A clear correlation can be made between MRC numbers and the levels of Na(+)/K(+)-ATPase activity in crude gill homogenates (r(2)=-0.69). Strong Na(+)/K(+)-ATPase immunoreactivity is also clearly associated with the basolateral membrane of these MRCs. In addition, the dogfish were able to maintain ionic balance after rectal gland removal. These results all suggest a possible role of the dogfish gill in salt secretion. MRCs were, however, unresponsive to rectal gland removal in terms of changes in number, fine structure and Na(+)/K(+)-ATPase activity, as might be expected if they were compensating for the loss of salt secretion by the rectal gland. Thus, the specific role that these MRCs play in ion regulation in the dogfish remains to be determined  相似文献   

17.
Many protists use a H(+) gradient across the plasma membrane, the proton motive force, to drive nutrient uptake. This force is generated in part by the plasma membrane potential (DeltaPsi). We investigated the regulation of the DeltaPsi in Pneumocystis carinii using the potentiometric fluorescent dye bisoxonol. The steady state DeltaPsi in a buffer containing Na(+) and K(+) (standard buffer) was found to be -78+/-8 mV. In the absence of Na(+) and K(+) (NMG buffer) or Cl(-) (gluconate buffer), DeltaPsi was not significantly changed suggesting that cation and anion conductances do not play a significant role in the regulation of DeltaPsi in P. carinii. The DeltaPsi was also not affected by inhibitors of the Na(+)/K(+)-ATPase, ouabain (1 mM), and the K(+)/H(+)-ATPase, omeprazole (1 mM). In contrast, inhibitors of the plasma membrane H(+)-ATPase, dicyclohexylcarbodiimide (100 microM), N-ethylmaleimide (100 microM) and diethylstilbestrol (25 microM), significantly depolarized the DeltaPsi to -43+/-7, -56+/-5 and -40+/-12 mV, respectively. The data support that the plasma membrane H(+)-ATPase plays a significant role in the regulation of DeltaPsi in P. carinii.  相似文献   

18.
Essential role of NKCC1 in NGF-induced neurite outgrowth   总被引:1,自引:0,他引:1  
The Na(+)/K(+)/2Cl(-) cotransporter (NKCC) mediates electroneutral transport of 2Cl(-) coupled with Na(+) and K(+) across the plasma membrane, and plays crucial roles in Cl(-) uptake into the cells, homeostasis of cellular Cl(-), and cell volume regulation. However, we have very limited information on the roles of ion transporters in neurite outgrowth in neuronal cells. In the present study, we report the role of NKCC1 (an isoform of NKCC) in NGF-induced neurite outgrowth of rat pheochromocytoma PC12D cells. The expression level of NKCC1 protein was increased by NGF treatment. Knock-down of NKCC1 by RNA interference (RNAi) drastically diminished the NGF-induced neurite outgrowth. Transfection of enhanced green fluorescent protein (EGFP)-tagged rat NKCC1 into cells for clarification of intracellular localization of NKCC1 revealed that the EGFP-rNKCC1 was mainly localized in the plasma membrane at growth cone during neurite outgrowth. These observations suggest that NKCC1 plays a fundamental role in NGF-induced neurite outgrowth of PC12D cells.  相似文献   

19.
Membrane excitability is a critical regulatory step in skeletal muscle contraction and is modulated by local ionic concentrations, conductances, ion transporter activities, temperature, and humoral factors. Intense fatiguing contractions induce cellular K(+) efflux and Na(+) and Cl(-) influx, causing pronounced perturbations in extracellular (interstitial) and intracellular K(+) and Na(+) concentrations. Muscle interstitial K(+) concentration may increase 1- to 2-fold to 11-13 mM and intracellular K(+) concentration fall by 1.3- to 1.7-fold; interstitial Na(+) concentration may decline by 10 mM and intracellular Na(+) concentration rise by 1.5- to 2.0-fold. Muscle Cl(-) concentration changes reported with muscle contractions are less consistent, with reports of both unchanged and increased intracellular Cl(-) concentrations, depending on contraction type and the muscles studied. When considered together, these ionic changes depolarize sarcolemmal and t-tubular membranes to depress tetanic force and are thus likely to contribute to fatigue. Interestingly, less severe local ionic changes can also augment subtetanic force, suggesting that they may potentiate muscle contractility early in exercise. Increased Na(+)-K(+)-ATPase activity during exercise stabilizes Na(+) and K(+) concentration gradients and membrane excitability and thus protects against fatigue. However, during intense contraction some Na(+)-K(+) pumps are inactivated and together with further ionic disturbances, likely precipitate muscle fatigue.  相似文献   

20.
Unidirectional (22)Na, Li(+) and Rb(+) fluxes and net fluxes of Na(+) and K(+) were measured in U937 human leukemic cells before and after induction of apoptosis by staurosporine (1 microM, 4 h) to answer the question which ion transporter(s) are responsible for changes in cell ion and water balance at apoptosis. The original version of the mathematical model of cell ion and water balance was used for analysis of the unidirectional ion fluxes under the balanced distribution of major monovalent ions across the cell membrane. The values of all major components of the Na(+) and K(+) efflux and influx, i.e. fluxes via the Na(+),K(+)-ATPase pump, Na(+) channels, K(+) channels, Na/Na exchanger and Na-Cl symport were determined. It is concluded that apoptotic cell shrinkage and changes in Na(+) and K(+) fluxes typical of apoptosis in U937 cells induced by staurosporine are caused by a complex decrease in the pump activity, Na-Cl symport and integral Na(+) channel permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号