首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The behavior of nuclear proteins in Amoeba proteus was studied by tritiated amino acid labeling, nuclear transplantation, and cytoplasmic amputation. During prophase at least 77% (but probably over 95%) of the nuclear proteins is released to the cytoplasm. These same proteins return to the nucleus within the first 3 hr of interphase. When cytoplasm is amputated from an ameba in mitosis (shen the nuclear proteins are in the cytoplasm), the resultant daughter nuclei are depleted in the labeled nuclear proteins. The degree of depletion is less than proportional to the amount of cytoplasm removed because a portion of rapidly migrating protein (a nuclear protein that is normally shuttling between nucleus and cytoplasm and is thus also present in the cytoplasm) which would normally remain in the cytoplasm is taken up by the reconstituting daughter nuclei. Cytoplasmic fragments cut from mitotic cells are enriched in both major classes of nuclear proteins, i.e. rapidly migrating protein and slow turn-over protein. An interphase nucleus implanted into such an enucleated cell acquires from the cytoplasm essentially all of the excess nuclear proteins of both classes. The data indicate that there is a lack of binding sites in the cytoplasm for the rapidly migrating nuclear protein. The quantitative aspects of the distribution of rapidly migrating protein between the nucleus and the cytoplasm indicate that the distribution is governed primarily by factors within the nucleus.  相似文献   

3.
The nuclear accumulation of proteins may depend on the presence of short targeting sequences, which are known as nuclear localization signals (NLSs). Here, we found that NLSs are predicted in some cytosolic proteins and examined the hypothesis that these NLSs may be functional under certain conditions. As a model, human cardiac troponin I (hcTnI) was used. After expression in cultured non-muscle or undifferentiated muscle cells, hcTnI accumulated inside nuclei. Several NLSs were predicted and confirmed by site-directed mutagenesis in hcTnI. Nuclear import occurred via the classical karyopherin-α/β nuclear import pathway. However, hcTnI expressed in cultured myoblasts redistributed from the nucleus to the cytoplasm, where it was integrated into forming myofibrils after the induction of muscle differentiation. It appears that the dynamic retention of proteins inside cytoplasmic structures can lead to switching between nuclear and cytoplasmic localization.  相似文献   

4.
Moon DC  Choi CH  Lee SM  Lee JH  Kim SI  Kim DS  Lee JC 《PloS one》2012,7(6):e38974
Nuclear targeting of bacterial proteins has emerged as a pathogenic mechanism whereby bacterial proteins induce host cell pathology. In this study, we examined nuclear targeting of Acinetobacter baumannii transposase (Tnp) and subsequent epigenetic changes in host cells. Tnp of A. baumannii ATCC 17978 possesses nuclear localization signals (NLSs), (225)RKRKRK(230). Transient expression of A. baumannii Tnp fused with green fluorescent protein (GFP) resulted in the nuclear localization of these proteins in COS-7 cells, whereas the truncated Tnp without NLSs fused with GFP were exclusively localized in the cytoplasm. A. baumannii Tnp was found in outer membrane vesicles, which delivered this protein to the nucleus of host cells. Nuclear expression of A. baumannii Tnp fused with GFP in A549 cells induced DNA methylation of CpG regions in the promoters of E-cadherin (CDH1) gene, whereas the cytoplasmic localization of the truncated Tnp without NLSs fused with GFP did not induce DNA methylation. DNA methylation in the promoters of E-cadherin gene induced by nuclear targeting of A. baumannii Tnp resulted in down-regulation of gene expression. In conclusion, our data show that nuclear traffic of A. baumannii Tnp induces DNA methylation of CpG regions in the promoters of E-cadherin gene, which subsequently down-regulates gene expression. This study provides a new insight into the epigenetic control of host genes by bacterial proteins.  相似文献   

5.
To reduce the adverse effects of cancer therapies and increase their efficacy, new delivery agents that specifically target cancer cells are needed. We and others have shown that aptamers can selectively deliver therapeutic oligonucleotides to the endosome and cytoplasm of cancer cells that express a particular cell surface receptor. Identifying a single aptamer that can internalize into many different cancer cell-types would increase the utility of aptamer-mediated delivery of therapeutic agents. We investigated the ability of the nucleolin aptamer (AS1411) to internalize into multiple cancer cell types and observed that it internalizes into a wide variety of cancer cells and migrates to the nucleus. To determine if the aptamer could be utilized to deliver therapeutic oligonucleotides to modulate events in the nucleus, we evaluated the ability of the aptamer to deliver splice-switching oligonucleotides. We observed that aptamer-splice-switching oligonucleotide chimeras can alter splicing in the nuclei of treated cells and are effective at lower doses than the splice switching oligonucleotides alone. Our results suggest that aptamers can be utilized to deliver oligonucleotides to the nucleus of a wide variety of cancer cells to modulate nuclear events such as RNA splicing.  相似文献   

6.
真核细胞核膜上的核孔复合体 (nuclear pore complex, NPC) 是细胞核内外进行物质交换的主要通道, 分子量较小的化合物可自由通过NPC或采取被动扩散的方式进入细胞核, 而分子量为50 kD以上的蛋白质则只能通过主动转运进入细胞核. 以这种方式进入细胞核的 蛋白质必须在其氨基酸序列上拥有特殊的核定位信号(nuclear localization signal, NLS)以被相应的核转运蛋白(karyopherins) 识别. 核定位信号具有多样性, 包括经典核定位信号(classical NLS,cNLS), 内输蛋白β2识别的核定位信号(又称PY模体-NLS)和其它类型的NLS. 每一类NLS具有相似的特征, 但并不具有完全保守的氨基酸组成. 不同的NLS, 往往对应着各不相同的核输入机制. 而对同一蛋白质来说, 也可能同时拥有几个功能性的NLS. 研究核定位信号一方面可以帮助揭示新的大分子物质核转运机制, 另一方面也有助于发现一些蛋白质的新功能. 本文对常见NLS的分类进行了总结, 并介绍了两种常用的NLS预测软件及鉴定NLS的一般策略.  相似文献   

7.
Nickel is harmful to humans, being both carcinogenic and allergenic. However, the mechanisms of this toxicity are still unresolved. We propose that Ni(II) ions disintegrate proteins by hydrolysis of peptide bonds preceding the Ser/Thr‐Xaa‐His sequences. Such sequences occur in nuclear localization signals (NLSs) of human phospholipid scramblase 1, Sam68‐like mammalian protein 2, and CLK3 kinase. We performed spectroscopic experiments showing that model nonapeptides derived from these NLSs bind Ni(II) at physiological pH. We also proved that these sequences are prone to Ni(II) hydrolysis. Thus, the aforementioned NLSs may be targets for nickel toxicity. This implies that Ni(II) ions disrupt the transport of some proteins from cytoplasm to cell nucleus.  相似文献   

8.
Biomolecules such as proteins, DNA, and RNA are macromolecules and can not cross the cell membrane. However, cell-penetrating peptide (CPP) has been shown to deliver therapeutic biomolecules successfully into cells. The various and widely used CPPs including TAT, VP22, and Antp are mostly non-human originated CPPs, and are limited by their potential toxicity and immunogenicity. We report here on a newly identified novel cell-penetrating sequence (LPIN; RRKRRRRRK) from the nuclear localization sequence (NLS) of human nuclear phosphatase, LPIN3. LPIN-EGFP recombinant protein was concentration- and time-dependently delivered into cells and localized to the nucleus as well as the cytoplasm. It penetrated the cell membrane by lipid raft-mediated endocytosis by binding to heparan sulfate proteoglycan. LPIN-EGFP was successfully delivered into primary mouse splenocytes in vitro and it could be delivered into various tissues including liver, kidney, and intestine in mice after intra-peritoneal injection. This research suggests that LPIN-CPP could be used in a drug delivery system to deliver therapeutic biomolecules including peptides, proteins, DNA, and RNA and without the limitations of non-human originated CPPs such as TAT-CPP.  相似文献   

9.
The signal responsible for the nuclear localization of the progesterone receptor has been characterized. It is a complex signal. The study of the mechanism of this nuclear localization has revealed that the receptor continuously shuttles between the nucleus and the cytoplasm. The receptor diffuses into the cytoplasm and is constantly and actively transported back into the nucleus. The same phenomenon exists for estradiol and glucocorticoid receptors. The mechanism of entry of proteins into the nucleus is well documented, whereas the mechanism of their outward movement into the cytoplasm is not understood. We have grafted different nuclear localization signals (NLSs) onto β-galactosidase and have studied the traffic of this protein using heterokaryons and microinjection experiments. We have demonstrated that the same NLSs are involved in both the inward and the outward movement of proteins through the nuclear membrane. These results suggest that the nucleocytoplasmic shuttling may be a general phenomenon for nuclear proteins that could possibly undergo modifications in the cytoplasm and exert some biological activities there. These conclusions also imply that at least part of the cellular machinery involved in the nuclear import of proteins may function bidirectionally. Using these techniques, we have shown that two major antiprogestins, RU486 and ZK98299, act at the same distal level of hormone action.  相似文献   

10.
We have purified proteins of 70 kD from Drosophila, HeLa cells, and Z. mays that specifically bind nuclear localization sequences (NLSs). These proteins are recognized by antibodies raised against a previously identified NLS-binding protein (NBP) from the yeast S. cerevisiae. All NBPs are associated with nuclei and also present in the cytosol. NBPs are phosphorylated and phosphatase treatment abolished NLS binding. The requirement for NBPs in nuclear protein uptake is demonstrated in semipermeabilized Drosophila melanogaster tissue culture cells. Proper import of a fluorescent protein containing the large T antigen NLS requires cytosol and ATP. In the absence of cytosol and/or ATP, NLS-containing proteins are bound to cytosolic structures and the nuclear envelope. Addition of cytosol and ATP results in movement of this bound intermediate into the nucleus. Anti-NBP antibodies specifically inhibited the binding part of this import reaction. These results indicate that a phosphoprotein common to several eukaryotes acts as a receptor that recognizes NLSs before their uptake into the nucleus.  相似文献   

11.
Hepatoma-derived growth factor (HDGF) is the original member of the HDGF family of proteins, which contains a well-conserved N-terminal amino acid sequence (homologous to the amino terminus of HDGF; hath) and nuclear localization signals (NLSs) in gene-specific regions other than the hath region. In addition to a bipartite NLS in a gene-specific region, an NLS-like sequence is also found in the hath region. In cells expressing green fluorescence protein (GFP)-HDGF, green fluorescence was observed in the nucleus, whereas it was detected in the cytoplasm of cells expressing GFP-HDGF with both NLSs mutated or deleted. GFP-hath protein (GFP-HATH) was distributed mainly in the nucleus, although some was present in the cytoplasm, whereas GFP-HDGF with a deleted hath region (HDGFnonHATH) was found only in the nucleus. Exogenously supplied GFP-HDGF was internalized and translocated to the nucleus. GFP-HATH was internalized, whereas GFP-HDGFnonHATH was not. Overexpression of HDGF stimulated DNA synthesis and cellular proliferation, although HDGF with both NLSs deleted did not. Overexpression of HDGFnonHATH caused a significant stimulation of DNA synthesis, whereas that of hath protein did not. HDGF containing the NLS sequence of p53 instead of the bipartite NLS did not stimulate DNA synthesis, and truncated forms without the C- or N-terminal side of NLS2 did not. These findings suggest that the gene-specific region, at least the bipartite NLS sequence and the N- and C-terminal neighboring portions, is essential for the mitogenic activity of HDGF after nuclear translocation.  相似文献   

12.
How proteins enter the nucleus   总被引:127,自引:0,他引:127  
P A Silver 《Cell》1991,64(3):489-497
Nuclear protein import is a selective process. Proteins destined for the nucleus contain NLSs. These short stretches of amino acids interact with proteins located in the cytoplasm, on the nuclear envelope, and/or at the nuclear pore complex. Following binding at the pore complex, proteins are translocated through the pore into the nucleus in a manner requiring ATP. The biochemical dissection of the nuclear pore complex has begun. Alteration of protein import into the nucleus is emerging as a new and complex form of regulation. However, we are left with the following problems: How do proteins move through the cytoplasm to reach the nuclear pore? How does the nuclear pore complex open and close in a selective manner? How is ATP utilized during import? And finally, how is bi-directional traffic of both proteins and RNA through the pore regulated?  相似文献   

13.
Programmed cell death or apoptosis leads to the activation of the caspase-activated DNase (CAD), which degrades chromosomal DNA into nucleosomal fragments. Biochemical studies revealed that CAD forms an inactive heterodimer with the inhibitor of caspase-activated DNase (ICAD), or its alternatively spliced variant, ICAD-S, in the cytoplasm. It was initially proposed that proteolytic cleavage of ICAD by activated caspases causes the dissociation of the ICAD/CAD heterodimer and the translocation of active CAD into the nucleus in apoptotic cells. Here, we show that endogenous and heterologously expressed ICAD and CAD reside predominantly in the nucleus in nonapoptotic cells. Deletional mutagenesis and GFP fusion proteins identified a bipartite nuclear localization signal (NLS) in ICAD and verified the function of the NLS in CAD. The two NLSs have an additive effect on the nuclear targeting of the CAD-ICAD complex, whereas ICAD-S, lacking its NLS, appears to have a modulatory role in the nuclear localization of CAD. Staurosporine-induced apoptosis evoked the proteolysis and disappearance of endogenous and exogenous ICAD from the nuclei of HeLa cells, as monitored by immunoblotting and immunofluorescence microscopy. Similar phenomenon was observed in the caspase-3-deficient MCF7 cells upon expressing procaspase-3 transiently. We conclude that a complex mechanism, involving the recognition of the NLSs of both ICAD and CAD, accounts for the constitutive accumulation of CAD/ICAD in the nucleus, where caspase-3-dependent regulation of CAD activity takes place.  相似文献   

14.
The maize regulatory protein Opaque-2 (O2) localizes to the nucleus in both maize and tobacco cells. Here we show that in-frame carboxy- and amino-terminal fusions of O2 to reporter protein beta-glucuronidase (GUS) were sufficient to direct GUS to the nucleus in transgenic tobacco plants and in transiently transformed onion cells. Two independent regions of O2 containing 135 and 149 amino acids were identified that were able to redirect GUS to the nucleus in both systems. A quantitative biochemical analysis of GUS in nuclei isolated from transgenic tobacco plants revealed that the second region was more efficient than the first one. The precise location of nuclear localization signals (NLSs) was determined using an onion transformation system. The first NLS was located between residues 101 and 135 and had the structure of a simian virus 40 NLS. The second NLS was located in the basic, DNA binding domain (between residues 223 and 254) and had a bipartite structure. The presence of one of the O2 NLSs in the basic domain is in complete agreement with similar findings of NLSs in the basic domain of three other basic/leucine zipper proteins, suggesting that this domain may be bifunctional. The effect of amino- versus carboxy-terminal GUS fusions is discussed.  相似文献   

15.
Nuclear and nucleolar targeting of human ribosomal protein S6.   总被引:11,自引:1,他引:10       下载免费PDF全文
Chimeric proteins were constructed to define the nuclear localization signals (NLSs) of human ribosomal protein S6. The complete cDNA sequence, different cDNA fragments and oligonucleotides of the human ribosomal proteins S6, respectively, were joined to the 5' end of the entire LacZ gene of Escherichia coli by using recombinant techniques. The hybrid genes were transfected into L cells, transiently expressed, and the intracellular location of the fusion proteins was determined by their beta-galactosidase activity. Three NLSs were identified in the C-terminal half of the S6 protein. Deletion mutagenesis demonstrated that a single NLS is sufficient for targeting the corresponding S6-beta-galactosidase chimera into the nucleus. Removal of all three putative NLSs completely blocked the nuclear import of the resulting S6-beta-galactosidase fusion protein, which instead became evenly distributed in the cytoplasm. Chimeras containing deletion mutants of S6 with at least one single NLS or unmodified S6 accumulated in the nucleolus. Analysis of several constructs reveals the existence of a specific domain that is essential but not sufficient for nucleolar accumulation of S6.  相似文献   

16.
17.
The basic carboxy terminus of p53 plays an important role in directing the protein into the nuclear compartment. The C terminus of the p53 molecule contains a cluster of several nuclear localization signals (NLSs) that mediate the migration of the protein into the cell nucleus. NLSI, the most active domain, is highly conserved in genetically diverged species and shares perfect homology with consensus NLS sequences found in other nuclear proteins. The other two NLSs, II and III, appear to be less effective and less conserved. Although nuclear localization is dictated primarily by the NLSs inherent in the primary amino acid sequence, the actual nuclear homing can be modified by interactions with other proteins expressed in the cell. Comparison between wild-type p53 and naturally occurring mutant p53 showed that both protein categories could migrate into the nucleus of rat primary embryonic fibroblasts by essentially similar mechanisms. Nuclear localization of both proteins was totally dependent on the existence of functional NLS domains. In COS cells, however, we found that NLS-deprived wild-type p53 molecules could migrate into the nucleus by complexing with another nuclear protein, simian virus 40 large-T antigen. Wild-type and mutant p53 proteins differentially complexed with viral or cellular proteins, which may significantly affect the ultimate compartmentalization of p53 in the cell; this finding suggests that the actual subcellular compartmentalization of proteins may differ in various cell type milieux and may largely be affected by the ability of these proteins to complex with other proteins expressed in the cell. Experiments designed to test the physiological significance of p53 subcellular localization indicated that nuclear localization of mutant p53 is essential for this protein to enhance the process of malignant transformation of partially transformed cells, suggesting that p53 functions within the cell nucleus.  相似文献   

18.
Porcine circovirus type 1 (PCV1) contains two major open reading frames encoding the replication-associated proteins and the major structural capsid (Cap) protein. PCV1 Cap has an N-terminus carrying several potential monopartite or bipartite nuclear localization signals (NLS). The contribution of these partially overlapping motifs to nuclear importing was identified by expression of mutated PCVI Cap versions fused to enhanced green fluorescent protein (EGFP). The Cterminus truncated PCV1 Cap-EGFP was localized in nuclei of PK-15 cells similar to the wild-type PCV1 Cap-EGFP, whereas truncation of the N-terminus rendered the fusion protein distributed into cytoplasm, indicating that the nuclear import of PCV1 Cap was efficiently mediated by its N-terminal region. Substitutions of basic residues in stretches 9RR- RR12 or the right part of 25RRPYLAHPAFRNRYRWRRK43 resulted in a diffused distribution of the fusion protein in both nuclei and cytoplasm, indicating that the two NLSs were responsible for restricted nuclear targeting of PCV1 Cap.  相似文献   

19.
Dual-color fluorescent cells with one color fluorescent protein in the nucleus and another color fluorescent protein in the cytoplasm were genetically engineered. The dual-color cancer cells enable real-time nuclear-cytoplasmic dynamics to be visualized in living cells in vivo as well as in vitro. To obtain the dual-color cells, red fluorescent protein (RFP) was expressed in the cytoplasm of a series of human and rodent cancer cells, and green fluorescent protein (GFP) linked to histone H2B was expressed in the nucleus. Nuclear GFP expression enabled visualization of nuclear dynamics, whereas simultaneous cytoplasmic RFP expression enabled visualization of nuclear-cytoplasmic ratios as well as simultaneous cell and nuclear shape changes. Using the Olympus OV100 Whole-Mouse Imaging System, total sub-cellular dynamics can be visualized in the living dual-color cells in real time in the live mouse after cell injection. Highly elongated cancer cells and nuclei in narrow capillaries were visualized where both the nuclei and cytoplasm deform. Both cytoplasm and nuclei were visualized to undergo extreme deformation during extravasation with cytoplasmic processing exiting vessels first and nuclei following along these processes. The dual-color cells described here thus enable the sub-cellular dynamics of cancer cell trafficking to be imaged in the living animal.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号