首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Cancer stem cell (CSC) theory suggests that only a small subpopulation of cells having stem cell-like potentials can initiate tumor development. While recent data on acute lymphoblastic leukemia (ALL) are conflicting, some studies have demonstrated the existence of such cells following CD34-targeted isolation of primary samples. Although CD34 is a useful marker for the isolation of CSCs in leukemias, the identification of other specific markers besides CD34 has been relatively unsuccessful. To identify new markers, we first performed extensive analysis of surface markers on several B-ALL cell lines. Our data demonstrated that every B-ALL cell line tested did not express CD34 but certain lines contained cell populations with marked heterogeneity in marker expression. Moreover, the CD9+ cell population possessed stem cell characteristics within the clone, as demonstrated by in vitro and transplantation experiments. These results suggest that CD9 is a useful positive-selection marker for the identification of CSCs in B-ALL.  相似文献   

2.
Malignant mesothelioma (MM) is an aggressive and therapy-resistant neoplasm arising from the pleural mesothelial cells and usually associated with long-term asbestos exposure. Recent studies suggest that tumors contain cancer stem cells (CSCs) and their stem cell characteristics are thought to confer therapy-resistance. However, whether MM cell has any stem cell characteristics is not known. To understand the molecular basis of MM, we first performed serial transplantation of surgical samples into NOD/SCID mice and established new cell lines. Next, we performed marker analysis of the MM cell lines and found that many of them contain SP cells and expressed several putative CSC markers such as CD9, CD24, and CD26. Interestingly, expression of CD26 closely correlated with that of CD24 in some cases. Sorting and culture assay revealed that SP and CD24+ cells proliferated by asymmetric cell division-like manner. In addition, CD9+ and CD24+ cells have higher potential to generate spheroid colony than negative cells in the stem cell medium. Moreover, these marker-positive cells have clear tendency to generate larger tumors in mouse transplantation assay. Taken together, our data suggest that SP, CD9, CD24, and CD26 are CSC markers of MM and could be used as novel therapeutic targets.  相似文献   

3.
Cancer stem cells (CSC) are rare immortal cells within a tumor that are able to initiate tumor progression, development, and resistance. Advances studies show that, like normal stem cells, CSCs can be both self-renewed and given rise to many cell types, therefore form tumors. A number of cell surface markers, such as CD44, CD24, and CD133 are frequently used to identify CSCs. CD133, a transmembrane glycoprotein, either alone or in collaboration with other markers, has been mainly considered to identify CSCs from different solid tumors. However, the exactness of CD133 as a cancer stem cell biomarker has not been approved yet. The clinical importance of CD133 is as a CSC marker in many cancers. Also, it contributes to shorter survival, tumor progression, and tumor recurrence. The expression of CD133 is controlled by many extracellular or intracellular factors, such as tumor microenvironment, epigenetic factors, signaling pathways, and miRNAs. In this study, it was attempted to determine: 1) CD133 function; 2) the role of CD133 in cancer; 3) CD133 regulation; 4) the therapeutic role of CD133 in cancers.  相似文献   

4.
Although CD90 has been identified as a marker for various kinds of stem cells including liver cancer stem cells (CSCs) that are responsible for tumorigenesis, the potential role of CD90 as a marker for CSCs in gliomas has not been characterized. To address the issue, we investigated the expression of CD90 in tissue microarrays containing 15 glioblastoma multiformes (GBMs), 19 WHO grade III astrocytomas, 13 WHO grade II astrocytomas, 3 WHO grade I astrocytomas and 8 normal brain tissues. Immunohistochemical analysis showed that CD90 was expressed at a medium to high level in all tested high-grade gliomas (grade III and GBM) whereas it was barely detectable in low-grade gliomas (grade I and grade II) and normal brains. Double immunofluorescence staining for CD90 and CD133 in GBM tissues revealed that CD133(+) CSCs are a subpopulation of CD90(+) cells in GBMs in vivo. Flow cytometry analysis of the expression of CD90 and CD133 in GBM-derived stem-like neurospheres further confirmed the conclusion in vitro. The expression levels of both CD90 and CD133 were reduced along with the loss of stem cells after differentiation. Furthermore, the limiting dilution assay demonstrated that the sphere formation ability was comparable between the CD90(+)/CD133(+) and the CD90(+)/CD133(-) populations of GBM neurospheres, which is much higher than that of the CD90(-)/CD133(-) population. We also performed double staining for CD90 and a vascular endothelial cell marker CD31 in tissue microarrays which revealed that the CD90(+) cells were clustered around the tumor vasculatures in high-grade glioma tissues. These findings suggest that CD90 is not only a potential prognostic marker for high-grade gliomas but also a marker for CSCs within gliomas, and it resides within endothelial niche and may also play a critical role in the generation of tumor vasculatures via differentiation into endothelial cells.  相似文献   

5.
Cancer stem cells (CSCs) or tumor-initiating cells are thought to play critical roles in tumorigenesis, metastasis, drug resistance, and tumor recurrence. For the diagnosis and targeted therapy of CSCs, the molecular identity of biomarkers or therapeutic targets for CSCs needs to be clarified. In this study, we identified CD166 as a novel marker expressed in the sphere-forming CSC population of A2780 epithelial ovarian cancer cells and primary ovarian cancer cells. The CD166+ cells isolated from A2780 cells and primary ovarian cancer cells highly expressed CSC markers, including ALDH1a1, OCT4, and SOX2, and ABC transporters, which are implicated in the drug resistance of CSCs. The CD166+ cells exhibited enhanced CSC-like properties, such as increased sphere-forming ability, cell migration and adhesion abilities, resistance to conventional anti-cancer drugs, and high tumorigenic potential in a xenograft mouse model. Knockdown of CD166 expression in the sphere-forming ovarian CSCs abrogated their CSC-like properties. Moreover, silencing of CD166 expression in the sphere-forming CSCs suppressed the phosphorylation of focal adhesion kinase, paxillin, and SRC. These results suggest that CD166 plays a key role in the regulation of CSC-like properties and focal adhesion kinase signaling in ovarian cancer.  相似文献   

6.
Cardiac stromal cells (CSCs) can be derived from explant cultures, and a subgroup of these cells is viewed as cardiac mesenchymal stem cells due to their expression of CD90. Here, we sought to determine the therapeutic potential of CD90‐positive and CD90‐negative CSCs in a rat model of chronic myocardial infarction. We obtain CD90‐positive and CD90‐negative fractions of CSCs from rat myocardial tissue explant cultures by magnetically activated cell sorting. In vitro, CD90‐negative CSCs outperform CD90‐positive CSCs in tube formation and cardiomyocyte functional assays. In rats with a 30‐day infarct, injection of CD90‐negative CSCs augments cardiac function in the infarct in a way superior to that from CD90‐positive CSCs and unsorted CSCs. Histological analysis revealed that CD90‐negative CSCs increase vascularization in the infarct. Our results suggest that CD90‐negative CSCs could be a development candidate as a new cell therapy product for chronic myocardial infarction.  相似文献   

7.
Cancer stem cells (CSCs) are subpopulations of tumor cells that are responsible for tumor initiation, maintenance and metastasis. Recent studies suggested that lung cancer arises from CSCs. In this study, the expression of potential CSC markers in cell line A549 was evaluated. We applied flow cytometry to assess the expression of putative stem cell markers, including aldehyde dehydrogenase 1 (ALDH1), CD24, CD44, CD133 and ABCG2. Cells were then sorted according to the expression of CD44 and CD24 markers by fluorescence-activated cell sorting (FACS) Aria II and characterized using their clonogenic and sphere-forming capacity. A549 cells expressed the CSC markers CD44 and CD24 at 68.16% and 54.46%, respectively. The expression of the putative CSC marker ALDH1 was 4.20%, whereas the expression of ABCG2 and CD133 was 0.93%. Double-positive CD44/133 populations were rare. CD44+/24+ and CD44+/CD24?/low subpopulations respectively exhibited 64% and 27.92% expression. The colony-forming potentials in the CD44+/CD24+ and CD44+/CD24?/low subpopulations were 84.37 ± 2.86% and 90 ± 3.06%, respectively, while the parental A549 cells yielded 56.65 ± 2.33% using the colony-formation assay. Both isolated subpopulations formed spheres in serumfree medium supplemented with basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF). CD44 and CD24 cannot be considered potential markers for isolating lung CSCs in cell line A549, but further investigation using in vivo assays is required.  相似文献   

8.
Glioblastomas (GBMs) are the most lethal primary brain tumours. Increasing evidence shows that brain tumours contain the population of stem cells, so‐called cancer stem cells (CSCs). Stem cell marker CD133 was reported to identify CSC population in GBM. Further studies have indicated that CD133 negative cells exhibiting similar properties and are able to initiate the tumour, self‐renew and undergo multilineage differentiation. GBM is a highly heterogeneous tumour and may contain different stem cell populations with different functional properties. We characterized five GBM cell lines, established from surgical samples, according to the marker expression, proliferation and differentiation potential. CD133 positive cell lines showed increased proliferation rate in neurosphere condition and marked differentiation potential towards neuronal lineages. Whereas two cell lines low‐expressing CD133 marker showed mesenchymal properties in vitro, that is high proliferation rate in serum condition and differentiation in mesenchymal cell types. Further, we compared therapy resistance capacity of GBM cell lines treated with hydroxyurea. Our results suggest that CSC concept is more complex than it was believed before, and CD133 could not define entire stem cell population within GBM. At least two different subtypes of GBM CSCs exist, which may have different biological characteristics and imply different therapeutic strategies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
CD133 can be a marker of tumorigenic CSCs (cancer stem cells) in human GBM (glioblastoma multiforme), although tumorigenic CD133-negative CSCs have been also isolated. Additional evidence indicates that CSCs from GBM exhibit different phenotypes, with increasing interest in the potential significance of the different CSCs with respect to diagnosis, prognosis and the development of novel targets for treatment. We have analysed the expression of CD133 in freshly isolated cells from 15 human GBM specimens. Only 4 of them contained cells positive for AC133 by FACS analysis, and all of them yielded distinct CSC lines, whereas only 6 CSC lines were obtained from the other 11 GBMs. Of these 10 CSCs lines, we further characterized 6 CSC lines. Three CSCs grew as fast-growing neurospheres with higher clonogenic ability, whereas the remaining 3 grew as slow-growing semi-adherent spheres of lower clonogenicity. In addition, the former CSC lines displayed better differentiation capabilities than the latter ones. PCR and Western blot analysis showed that all 6 GBM CSC lines expressed CD133/prominin-1, suggesting that cells negative by FACS analysis may actually represent cells expressing low levels of CD133 undetected by FACS. Nevertheless, all the 6 CSC lines were tumorigenic in nude mice. In conclusion, CSCs from human primary GBMs show different phenotypes and variable levels of CD133 expression, but these parameters did not directly correlate with the tumorigenic potential.  相似文献   

10.
Notch1 mutations are found in more than 50% of human T cell acute lymphoblastic leukemia (T-ALL) cells. However, the functions of Notch1 for human T cell development and leukemogenesis are not well understood. To examine the role of Notch1, human hematopoietic stem cells (HSCs), which had been transduced with a constitutively active form of Notch1 (ICN1), were transplanted into severely immunodeficient NOD/Shi-scid-IL2rγnull (NOG) mice. We found that the great majority of the ICN1-expressing hematopoietic cells in the bone marrow expressed surface markers for T cells, such as CD3, CD4, and CD8, and that this T cell development was independent of the thymus. Accordingly, phenotypically mature CD8+ single positive (SP) T cells were observed in the spleen. Furthermore, T-ALL developed in one NOG recipient mouse out of 26 that had been secondary transferred with the T cells developed in the first NOG mice. These results indicate that Notch1 signaling in HSCs promotes CD8+ SP T cell development, and that T cell leukemogenesis may require additional oncogenic factors other than Notch1 activation.  相似文献   

11.
Patients with advanced head and neck squamous cell carcinoma (HNSCC) have a poor prognosis with the currently available therapy, and tumor recurrence is frequently observed. The discovery of specific membrane-associated cancer stem cell (CSC) markers is crucial for the development of novel therapeutic strategies to target these CSCs. To address this issue, we established sphere cultures to enrich CSCs and used them for plasma membrane proteomics to identify specific membrane signatures of the HNSCC spheres. Of a dataset that included a total of 376 identified proteins, 200 were bona fide membrane proteins. Among them, 123 proteins were at least 1.5-fold up- or down-regulated in the spheres relative to the adherent cultures. These proteins included cell adhesion molecules, receptors, and transporter proteins. Some of them play key roles in wnt, integrin, and TGFβ signaling pathways. When we compared our dataset with two published hESC membrane protein signatures, we found 18 proteins common to all three of the databases. CD166 and CD44 were two such proteins. Interestingly, the expression of CD166, rather than that of the well-established HNSCC CSC marker CD44, was significantly related to the malignant behavior of HNSCC. Relative to CD166low HNSCC cells, CD166high HNSCC cells had a greater sphere-formation ability in vitro and tumor formation ability in vivo. Patients whose tumors expressed high levels of CD166 had a significantly poorer clinical outcome than those whose tumors expressed low levels of CD166 (cohort 1: 96 cases, p = 0.040), whereas the level of CD44 expression had only a marginal influence on the clinical outcome of patients with HNSCC (p = 0.078). The level of CD166 expression in HNSCC tumors was also associated with the tumor recurrence rate (cohort 2: 104 cases, p = 0.016). This study demonstrates that CD166 is a valuable cell surface marker for the enrichment of HNSCC stem cells and that plasma membrane proteomics is a promising biological tool for investigating the membrane proteins of CSCs.Head and neck squamous cell carcinoma (HNSCC)1 is the sixth most common cancer worldwide. Despite ongoing improvement in traditional treatments, the long-term survival rate of patients with HNSCC has not significantly improved over the past several decades. More than 60% of patients with advanced tumors or localized lymph node metastases die within five years of their diagnosis (1). Tumor recurrence and resistance to therapy are the major causes of death. Recently, newly recognized cancer stem cells (CSCs) or tumor-initiating cells have been associated in a cause-and-effect manner with tumor recurrence and resistance to therapy. The concept of CSCs was established because of the heterogeneous nature of cancer and suggests that CSCs are a subpopulation of cancer cells with stem-cell-like traits and the source of all cells in the cancer. Conventional cancer therapies such as chemotherapy and radiotherapy may destroy only those cells that form the bulk of the tumor, leaving the CSCs intact and able to give rise to tumor recurrence. Based on this theory, researchers are searching for therapies that would destroy CSCs in the hope of finally curing cancer (2). In order to develop strategies that target CSCs, experimental assays are required to determine how to distinguish CSCs from their progeny. Different methods have been used to isolate CSCs from a range of hematopoietic and solid tumors, and some CSC-specific cell surface markers have been found. These markers are primarily selected from the corresponding normal stem-cell markers based on their heterogeneous expression in the pertinent cancers. Despite some controversy, the CD34+CD38- marker signature was chosen to define the CSCs of leukemia (3), the CD44+CD24- signature was chosen to define breast cancer CSCs (4), and the CD44 marker was chosen to define the CSCs of HNSCC (5). Though membrane proteins represent only one-third of the proteins encoded by the human genome, they represent more than two-thirds of the known protein targets of drugs. These cell surface markers are not only useful for enriching CSCs from different tumors, but also of significant interest for drug discovery.However, as more cell surface markers for different cancers have been identified, conflicting results have been reported regarding the usefulness of some of the markers and the reproducibility of some of the marker profiles (6). Quintana et al. examined the expression of 22 common CSC markers in melanoma and found that none of them were exclusively enriched in tumorigenic cells relative to non-tumorigenic cells derived from melanoma (7). CD133 is a widely accepted cell surface marker for glioblastoma CSCs, but Beier et al. found that some glioblastoma CSCs were CD133- (8). CD44 is a CSC marker that is commonly expressed by different malignancies of hematopoietic and epithelial origin, including HNSCC (5). However, increasing data have demonstrated a high level of expression of CD44 in the great majority of cells in head and neck tissues, including normal mucosa and carcinomas, and its subsequent expression could not be used to distinguish normal from benign or malignant epithelia of the head and neck. These observations suggest the need for a comprehensive investigation and greater understanding of the cell surface molecules of CSCs.Many different “omic” technologies have shown promise as means to identify markers for cancer stem cells and tumors (9). Among them, membrane proteomics can directly detect changes in the cell surface content and provide insights into the post-translational regulation of cell surface functions. Therefore, in this study, we chose to use membrane proteomics both to investigate the cell surface molecules of CSCs that were enriched from the HNSCC cell populations based on their ability to form spheres and to relate their expression to that of stem cell traits. Our results may contribute to further clinical applications of CSCs by providing tools for purifying and identifying CSCs.  相似文献   

12.
Cancer stem cells (CSCs) are believed to play an important role in tumor growth and recurrence. These cells exhibit self-renewal and proliferation properties. CSCs also exhibit significant drug resistance compared with normal tumor cells. Finding new treatments that target CSCs could significantly enhance the effect of chemotherapy and improve patient survival. Notch signaling is known to regulate the development of the lungs by controlling the cell-fate determination of normal stem cells. In this study, we isolated CSCs from the human lung adenocarcinoma cell line A549. CD133 was used as a stem cell marker for fluorescence-activated cell sorting (FACS). We compared the expression of Notch signaling in both CD133+ and CD133− cells and blocked Notch signaling using the γ-secretase inhibitor DAPT (GSI-IX). The effect of combining GSI and cisplatin (CDDP) was also examined in these two types of cells. We observed that both CD133+ and CD133− cells proliferated at similar rates, but the cells exhibited distinctive differences in cell cycle progression. Few CD133+ cells were observed in the G2/M phase, and there were half as many cells in S phase compared with the CD133− cells. Furthermore, CD133+ cells exhibited significant resistance to chemotherapy when treated with CDDP. The expression of Notch signaling pathway members, such as Notch1, Notch2 and Hes1, was lower in CD133+ cells. GSI slightly inhibited the proliferation of both cell types and exhibited little effect on the cell cycle. The inhibitory effects of DPP on these two types of cells were enhanced when combined with GSI. Interestingly, this effect was especially significant in CD133+ cells, suggesting that Notch pathway blockade may be a useful CSC-targeted therapy in lung cancer.  相似文献   

13.
14.
Cancer stem cells (CSCs) are defined as a subset of slow cycling and undifferentiated cells that divide asymmetrically to generate highly proliferative, invasive, and chemoresistant tumor cells. Therefore, CSCs are an attractive population of cells to target therapeutically. CSCs are predicted to contribute to a number of types of malignancies including those in the blood, brain, lung, gastrointestinal tract, prostate, and ovary. Isolating and enriching a tumor cell population for CSCs will enable researchers to study the properties, genetics, and therapeutic response of CSCs. We generated a protocol that reproducibly enriches for ovarian cancer CSCs from ovarian cancer cell lines (SKOV3 and OVCA429). Cell lines are treated with 20 µM cisplatin for 3 days. Surviving cells are isolated and cultured in a serum-free stem cell media containing cytokines and growth factors. We demonstrate an enrichment of these purified CSCs by analyzing the isolated cells for known stem cell markers Oct4, Nanog, and Prom1 (CD133) and cell surface expression of CD177 and CD133. The CSCs exhibit increased chemoresistance. This method for isolation of CSCs is a useful tool for studying the role of CSCs in chemoresistance and tumor relapse.  相似文献   

15.
The cancer stem cell (CSC) theory represents a breakthrough in cancer research. We characterized the protein pattern of CSCs to identify specific intracellular pathways in this subpopulation of tumor cells. We studied colon CSCs using two different colon cancer cell lines: CaCo-2 and HCT-116. Putative CSCs were separated from non-CSCs by flow cytometry using CD133 as stemness marker. Total protein extracts of CD133+ cells were then compared to protein extracts of CD133- cells by 2D DIGE. The protein spots differentially expressed in the two subpopulations of cells were analyzed by mass spectrometry. Bioinformatics analysis of the identified proteins indicated alteration of two main processes: energy metabolism and the Wnt pathway. Interestingly, we observed upregulation of the splicing factor SRp20, a newly identified target gene of the Wnt/β-catenin pathway, and we demonstrated a direct cause-effect relationship between Wnt pathway activation and the increased SRp20 expression. Our results also show that SRp20 influences cell proliferation, which suggests it plays a role in the tumorigenicity of CD133+ cells. In conclusion, activation of the Wnt pathway in CD133+ cells and upregulation of SRp20, which is implicated in tumorigenesis, raises the possibility of a sequential series of molecular events occurring in connection with this process.  相似文献   

16.
The recent discovery of cancer cell plasticity, i.e. their ability to reprogram into cancer stem cells (CSCs) either naturally or under chemotherapy and/or radiotherapy, has changed, once again, the way we consider cancer treatment. If cancer stemness is a reversible epigenetic state rather than a genetic identity, opportunities will arise for therapeutic strategies that remodel epigenetic landscapes of CSCs. However, the systematic use of DNA methyltransferase and histone deacetylase inhibitors, alone or in combination, in advanced solid tumors including colorectal cancers, regardless of their molecular subtypes, does not seem to be the best strategy. In this review, we first summarize the knowledge researchers have gathered on the epigenetic signatures of CSCs with the difficulty of isolating rare populations of cells. We raise questions about the relevant use of currently available epigenetic inhibitors (epidrugs) while the expression of numerous cancer stem cell markers are often repressed by epigenetic mechanisms. These markers include the three cluster of differentiation CD133, CD44 and CD166 that have been extensively used for the isolation of colon CSCs.and . Finally, we describe current treatment strategies using epidrugs, and we hypothesize that, using correlation tools comparing associations of relevant CSC markers with chromatin modifier expression, we could identify better candidates for epienzyme targeting.  相似文献   

17.
The CD133 antigen, identified as a hematopoietic stem cell marker, appears in various human embryonic epithelia including the neural tube, gut, and kidney. We herein investigated whether CD133(+) cells isolated from human hepatocellular carcinoma cell lines possess cancer stem/progenitor cell-like properties. Among the three cell lines studied, the CD133 antigen was found to be expressed only on the surface of Huh-7 cells. CD133(+) cells from Huh-7 performed a higher in vitro proliferative potential and lower mRNA expressions of mature hepatocyte markers, glutamine synthetase and cytochrome P450 3A4, than CD133(-) population of Huh-7 cells. When either CD133(+) or CD133(-) cells were subcutaneously injected into SCID mice, CD133(+) cells formed tumors, whereas CD133(-) cells induced either a very small number of tumors or none at all. Taken together, the identification of CD133(+) cells could thus be a potentially powerful tool to investigate the tumorigenic process in the hepatoma system and to also develop effective therapies targeted against hepatocellular carcinoma.  相似文献   

18.
Cancer stem cells (CSCs) which are known to be residing deep inside the core of the tumor in its hypoxia niche is responsible for relapse of cancers. Owing to this hypoxic niche, the residing CSCs simultaneously fuel their stemness, cancerous and drug resistance properties. Attributes of CSCs are still not properly understood in its hypoxia niche. Addressing this, we sorted CSCs from Saos-2 (osteosarcoma) cell line using CD133 antibody. The CD133+ve CSCs exhibited quiescent cell proliferation in DNA doubling, Ca2+ signaling and cell cycle analysis. CD133+ve CSCs exhibited increased production of ATP and lactate dehydrogenase (LDH) activity under hypoxia. CD133+ve cells exhibited decreased glucose uptake compared to ATP levels under hypoxia. Moreover, there was only negligible LDH activity in CD133+ve cells under normoxia which do not rely on Warburg effect. Stemness markers (such as c-Myc, SOX2, Oct4 and TERT), metastasis marker (CD44) and drug resistance marker (ABCG2) were highly expressed in CD133+ve cells. In summary, both CD133+ve/?ve cells of Saos-2 (osteosarcoma) cell line did not exhibit Warburg effect under normoxic condition. Moreover, this significantly indicates an uncoupling between stemness and Warburg effect in CD133+ve. This work provides a novel insight into the metabolic and functional features of CSCs in a hypoxic environment which could open new avenues for therapeutic strategies aimed to target CSCs.  相似文献   

19.
20.

Background

The normal stem cell marker CD133 is also a putative marker of cancer stem cells (CSCs) in different types of cancers. Hence, a major challenge when targeting CD133-expressing CSCs is to prevent depletion of the normal stem cell pool. We hypothesized that the site-specific and light-controlled drug delivery method photochemical internalization (PCI) may have the potential to enhance selectivity and endosomal escape of CD133-targeting immunotoxins in stem-like sarcoma cells.

Methods

We have used a sarcoma model, SW872 cells isolated from xenografts harboring CSCs within a ~ 2% CD133high subpopulation to investigate the potential of PCI of CD133-targeting toxin as a novel strategy to kill CSCs. Model immunotoxins were generated by binding the ribosome-inactivating protein toxin saporin to each of the monoclonal antibodies CD133/1 (AC133) or CD133/2 (293C), specific for individual CD133-epitopes. Cellular targeting, intracellular co-localization with the PCI photosensitizer, disulfonated meso-tetraphenylchlorin (TPCS2a), and cytotoxic efficacy of PCI of the CD133-targeting toxins were evaluated.

Results

PCI of CD133–saporin efficiently targets CD133-expressing SW872 and HT1080 sarcoma cells and results in loss of cell viability. Following sub-toxic treatment, surviving SW872 cells, depleted of the CD133-expressing population, display reduced proliferative capacity and attenuated CSC properties, such as reduced colony-forming ability and tumorigenicity.

Conclusion

Here we present a proof-of-concept study, where PCI enables light-triggered delivery of CD133-targeting antibody-drug conjugates, resulting in decreased sarcoma tumor-initiating capacity.

General significance

PCI of CD133-targeting toxins may be used as a minimal invasive strategy in the treatment of sarcomas, and potentially as a therapeutic for other solid tumors expressing CD133.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号