首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
张岩 《生命科学》2009,(5):679-689
造血干细胞(hematopoietic stem cell,HSC)是目前研究方法最为多样、研究技术手段最为成熟的一类组织干细胞,并且已经被成功运用于临床上对白血病以及先天性免疫缺陷等疾病的治疗。近年来,通过对一系列“转基因”与“基因敲除”小鼠模型的分析,人们对造血干细胞在胚胎早期发育过程中的发生与起源、造血干细胞“自我更新”与“定向分化”的调节机制、骨髓中造血干细胞的微环境(niche)对造血干细胞功能维持的调控,以及造血干细胞与白血病干细胞之间的相互关系等诸多方面都取得了很大的进展。如何实现造血干细胞的体外长期培养与扩增,实现胚胎干细胞(embryonic stem cell,ESC)或诱导多能干细胞(induced pluripotent stem cell,iPS细胞)向造血干细胞进行有效的定向分化,以及探索造血干细胞在病理状态(如癌症、贫血、衰老等)或应激状态下(如炎症与感染、组织损伤、代谢异常等)的功能变化,都将会是今后造血干细胞研究的重要方向。  相似文献   

3.
The elements of stem cell self-renewal: a genetic perspective   总被引:3,自引:0,他引:3  
Pazianos G  Uqoezwa M  Reya T 《BioTechniques》2003,35(6):1240-1247
Every day, the body produces billions of new blood cells. Each of these is derived from a rare cell in the bone marrow called the hematopoietic stem cell (HSC). Because most mature blood cells have a limited lifespan, the ability of HSCs to self-renew and replenish the mature cell compartment is critical to sustaining life. While great progress has been made in isolating HSCs and defining their functional and phenotypic characteristics, the molecular mechanisms that regulate their self-renewal remain a mystery. Over the last few years, alterations in HSC frequency and self-renewal capacity in transgenic and knock-out mice have led to the identification of novel mediators of HSC homeostasis in vivo. These genetically modified mice have revealed that maintenance of survival, proliferation, quiescence, and normal telomere length all contribute to the self-renewal of HSCs. They also highlight the need to test in context of the normal microenvironment the role of signaling molecules such as Notch and Wnt, which have emerged recently as important regulators of HSC self-renewal. The emerging picture these data provide of the regulation of self-renewal in HSCs has provided a better understanding of the basic biology of stem cells and holds promise for designing strategies to improve bone marrow transplantation.  相似文献   

4.
5.
The stem cell niche is a unique tissue microenvironment that regulates the self-renewal and differentiation of stem cells. Although several stromal cells and molecular pathways have been identified, the microenvironment of the stem cell niche remains largely unclear. Recent evidence suggests that stem cells are localized in areas with low oxygen. We have hypothesized that hypoxia maintains the undifferentiated phenotype of stem/precursor cells. In this report, we demonstrate that hypoxia reversibly arrests preadipocytes in an undifferentiated state. Consistent with this observation, hypoxia maintains the expression of pref-1, a key stem/precursor cell gene that negatively regulates adipogenic differentiation. We further demonstrate that the hypoxia-inducible factor-1 (HIF-1) constitutes an important mechanism for the inhibition of adipogenic differentiation by hypoxia. Our findings suggest that hypoxia in the stem cell niche is critical for the maintenance of the undifferentiated stem or precursor cell phenotype.  相似文献   

6.
7.
Development and homeostasis of the haematopoietic system is dependent upon stem cells that have the unique ability to both self-renew and to differentiate in all cell lineages of the blood. The crucial decision between haematopoietic stem cell (HSC) self-renewal and differentiation must be tightly controlled. Ultimately, this choice is regulated by the integration of intrinsic signals together with extrinsic cues provided by an exclusive microenvironment, the so-called haematopoietic niche. Although the haematopoietic system of vertebrates has been studied extensively for many decades, the specification of the HSC niche and its signals involved are poorly understood. Much of our current knowledge of how niches regulate long-term maintenance of stem cells is derived from studies on Drosophila germ cells. Now, two recently published studies by Mandal et al.1 and Krezmien et al.2 describe the Drosophila haematopoietic niche and signal transduction pathways that are involved in the maintenance of haematopoietic precursors. Both reports emphasize several features that are important for controlling stem cell behavior and show parallels to both the vertebrate haematopoietic niche as well as the Drosophila germline stem cell niches in ovary and testis. The findings of both papers shed new light on the specific interactions between haematopoietic progenitors and their microenvironment.  相似文献   

8.
9.
The molecular basis of pluripotency in mouse embryonic stem cells   总被引:6,自引:0,他引:6  
  相似文献   

10.
Neural stem cells: balancing self-renewal with differentiation   总被引:3,自引:0,他引:3  
Stem cells are captivating because they have the potential to make multiple cell types yet maintain their undifferentiated state. Recent studies of Drosophila and mammalian neural stem cells have shed light on how stem cells regulate self-renewal versus differentiation and have revealed the proteins, processes and pathways that all converge to regulate neural progenitor self-renewal. If we can better understand how stem cells balance self-renewal versus differentiation, we will significantly advance our knowledge of embryogenesis, cancer biology and brain evolution, as well as the use of stem cells for therapeutic purposes.  相似文献   

11.
Leukaemia inhibitory factor (LIF) was the first soluble factor identified as having potential to maintain the pluripotency of mouse embryonic stem (ES) cells. Recently, a second factor, Wnt, with similar activity was found. However, the relationship between these completely different signals mediating the overlapping functions is still unclear. Here, we report that the conditioned medium of L cells expressing Wnt3a maintains ES cells in the undifferentiated state in feeder-free culture, followed by expression of stem cell markers and their ability to generate germline chimaeras. However, although the activity of this conditioned medium is dependent on Wnt3a, recombinant Wnt3a protein cannot maintain ES cells in the undifferentiated state. As supplementation with Wnt3a to the sub-threshold level of LIF alone was not sufficient to maintain ES self-renewal, the results of maintenance of the undifferentiated state indicated the synergistic action of Wnt and LIF. Induction of constitutively activated beta-catenin alone is unable to maintain ES self-renewal but shows a synergistic effect with LIF. These observations indicate that the Wnt signal mediated by the canonical pathway is not sufficient but enhances the effect of LIF to maintain self-renewal of mouse ES cells.  相似文献   

12.
Spermatogonial stem cells (SSCs), like other stem cells, have unique properties: prolonged proliferation, self-renewal, generation of differentiated progeny, and maintenance of developmental potential. Long-term cultivation of normal SSCs into stable cell lines, and maintaining SSCs in an undifferentiated state capable of self-renewal, is a major challenge. Here, we compare the effect of leukemia inhibitory factor (LIF) expression on mouse SSCs isolated from testicular tissue cultured under different conditions. We found that human amniotic epithelial cells (hAECs) with high LIF expression (LIF(high)) feeder cells allowed mouse SSCs to maintain a high level of AP activity when cultured long term. Expression of some important stem cell markers was higher in mouse SSCs cultured on hAECs (LIF(high)) compared to those cultured on hAECs (LIF(low)). Taken together, these results suggest that LIF expression could be a crucial component for feeder cells to maintain mouse SSCs in an undifferentiated, proliferative state capable of self-renewal.  相似文献   

13.
14.
Basic fibroblast growth factor and members of the transforming growth factor-beta superfamily are important regulators of human embryonic stem cell (hESC) self-renewal. Extensive cross-talk between the intracellular signaling pathways activated by these factors contributes to maintenance of the undifferentiated hESC state. Understanding the molecular regulation of hESC self-renewal will facilitate the design of improved systems for hESC propagation and provide a foundation for strategies to direct the differentiation of hESCs to clinically relevant cell types.  相似文献   

15.
Embryonic stem cells (ESCs) - undifferentiated cells originating from preimplantation stage embryos - have prolonged self-renewal capacity and are pluripotent. Activation of the canonical Wnt pathway is implicated in maintenance of and exit from the pluripotent state. Recent findings demonstrate that the essential mediator of canonical Wnt signaling, β-catenin, is dispensable for ESC maintenance; however, its activation inhibits differentiation through derepression of T cell factor 3 (Tcf3)-bound genes. Wnt agonists are useful in deriving ESCs from recalcitrant mouse strains and the rat and in nuclear reprogramming of somatic stem cells. We discuss recent advances in our understanding of the role of canonical Wnt signaling in the regulation of ESC self-renewal and how its manipulation can improve pluripotent ESC derivation and maintenance.  相似文献   

16.
17.
Hematopoietic stem cells (HSCs) undergo self-renewing cell divisions and maintain blood production for their lifetime. Appropriate control of HSC self-renewal is crucial for the maintenance of hematopoietic homeostasis. Here we show that activation of p38 MAPK in response to increasing levels of reactive oxygen species (ROS) limits the lifespan of HSCs in vivo. In Atm(-/-) mice, elevation of ROS levels induces HSC-specific phosphorylation of p38 MAPK accompanied by a defect in the maintenance of HSC quiescence. Inhibition of p38 MAPK rescued ROS-induced defects in HSC repopulating capacity and in the maintenance of HSC quiescence, indicating that the ROS-p38 MAPK pathway contributes to exhaustion of the stem cell population. Furthermore, prolonged treatment with an antioxidant or an inhibitor of p38 MAPK extended the lifespan of HSCs from wild-type mice in serial transplantation experiments. These data show that inactivation of p38 MAPK protects HSCs against loss of self-renewal capacity. Our characterization of molecular mechanisms that limit HSC lifespan may lead to beneficial therapies for human disease.  相似文献   

18.
19.
20.
Whereas multiple growth-promoting cytokines have been demonstrated to be involved in regulation of the hemopoietic stem cell (HSC) pool, the potential role of negative regulators is less clear. However, IFN-gamma, if overexpressed, can mediate bone marrow suppression and has been directly implicated in a number of bone marrow failure syndromes, including graft-vs-host disease. Whether IFN-gamma might directly affect the function of repopulating HSCs has, however, not been investigated. In the present study, we used in vitro conditions promoting self-renewing divisions of human HSCs to investigate the effect of IFN-gamma on HSC maintenance and function. Although purified cord blood CD34(+)CD38(-) cells underwent cell divisions in the presence of IFN-gamma, cycling HSCs exposed to IFN-gamma in vitro were severely compromised in their ability to reconstitute long-term cultures in vitro and multilineage engraft NOD-SCID mice in vivo (>90% reduced activity in both HSC assays). In vitro studies suggested that IFN-gamma accelerated differentiation of targeted human stem and progenitor cells. These results demonstrate that IFN-gamma can negatively affect human HSC self-renewal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号