首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 805 毫秒
1.
Mushroom tyrosinase (EC 1.14.18.1) is a copper containing oxidase that catalyzes both the hydroxylation of tyrosine into o-diphenols and the oxidation of o-diphenols into o-quinones. In the present study, the kinetic assay was performed in air-saturated solutions and the kinetic behavior of this enzyme in the oxidation of L-tyrosine and L-DOPA has been studied. The effects of cupferron on the monophenolase and diphenolase activity of mushroom tyrosinase have been studied. The results show that cupferron can inhibit both monophenolase and diphenolase activity of mushroom tyrosinase. The lag phase of tyrosine oxidation catalyzed by the enzyme was obviously lengthened and the steady-state activity of the enzyme decreased sharply. Cupferron can lead to reversible inhibition of the enzyme, possibly by chelating copper at the active site of the enzyme. The IC(50) value was estimated as 0.52 microM for monophenolase and 0.84 microM for diphenolase. A kinetic analysis shows that the cupferron is a competitive inhibitor for both monophenolase and diphenolase. The apparent inhibition constant for cupferron binding with free enzyme has been determined to be 0.20 microM for monophenolase and 0.48 microM for diphenolase.  相似文献   

2.
Tyrosinase (EC 1.14.18.1) catalyzes both the hydroxylation of tyrosine into o-diphenols and the oxidation of o-diphenols into o-quinones which form brown or black pigments. Here, the inhibitory effects of 4-vinylbenzaldehyde and 4-vinylbenzoic acid on the activity of mushroom tyrosinase have been investigated. The results showed that both 4-vinylbenzaldehyde and 4-vinylbenzoic acid could inhibit both monophenolase activity and diphenolase activity of the enzyme. For the monophenolase activity, 4-vinylbenzoic acid could lengthen the lag time, but 4-vinylbenzaldehyde could not. Both 4-vinylbenzaldehyde and 4-vinylbenzoic acid decreased the steady-state activity, and the IC50 values were estimated as 93 microM and 3.0 mM for monophenolase activity, respectively. For the diphenolase activity, the inhibitory capacity of 4-vinylbenzaldehyde was stronger than that of 4-vinylbenzoic acid, and the IC50 values were estimated as 23 microM and 0.33 mM, respectively. Kinetic analyses showed that inhibition by both compounds was reversible and their mechanisms were mixed-II type; their inhibition constants were also determined and compared.  相似文献   

3.
Tyrosinase (EC 1.14.18.1) catalyzes both the hydroxylation of tyrosine into o-diphenols and the oxidation of o-diphenols into o-quinones that form brown or black pigments. In the present paper, the effects of Cefazolin and Cefodizime on the activity of mushroom tyrosniase have been studied. The results showed that the Cephalosporin antibacterial drugs (Cefazolin and Cefodizime) could inhibit both monophenolase activity and diphenolase activity of the enzyme. For the monophenolase activity, Both Cefazolin and Cefodizime could lengthen the lag time and decrease the steady-state activities, and the IC(50) values were estimated as 7.0 mM and 0.13 mM for monophenolase activity, respectively. For the diphenolase activity, the inhibitory capacity of Cefodizime was obviously stronger than that of Cefazolin, and the IC(50) values were estimated as 0.02 mM and 0.21 mM, respectively. Kinetic analyses showed that inhibition by both compounds was reversible and their mechanisms were competitive and mixed-type, respectively. Their inhibition constants were also determined and compared. The research may offer a lead for designing and synthesizing novel and effective tyrosinase inhibitors and also under the application field of Cephalosporins.  相似文献   

4.
Tyrosinase (EC 1.14.18.1) catalyzes both the hydroxylation of tyrosine into o-diphenols and the oxidation of o-diphenols into o-quinones which form brown or black pigments. Here, the inhibitory effects of 4-vinylbenzaldehyde and 4-vinylbenzoic acid on the activity of mushroom tyrosinase have been investigated. The results showed that both 4-vinylbenzaldehyde and 4-vinylbenzoic acid could inhibit both monophenolase activity and diphenolase activity of the enzyme. For the monophenolase activity, 4-vinylbenzoic acid could lengthen the lag time, but 4-vinylbenzaldehyde could not. Both 4-vinylbenzaldehyde and 4-vinylbenzoic acid decreased the steady-state activity, and the IC50 values were estimated as 93?μM and 3.0?mM for monophenolase activity, respectively. For the diphenolase activity, the inhibitory capacity of 4-vinylbenzaldehyde was stronger than that of 4-vinylbenzoic acid, and the IC50 values were estimated as 23?μM and 0.33?mM, respectively. Kinetic analyses showed that inhibition by both compounds was reversible and their mechanisms were mixed-II type; their inhibition constants were also determined and compared.  相似文献   

5.
The effects of hexylresorcinol and dodecylresorcinol on the monophenolase and diphenolase activity of mushroom tyrosinase have been studied. The results show that hexylresorcinol and dodecylresorcinol can inhibit both monophenolase and diphenolase activity of the enzyme. The lag period of the enzyme was obviously lengthened, and the steady-state activity of the enzyme decreased sharply. Two microM of hexylresorcinol and dodecylresorcinol can lengthen the lag period from 98 s to 260 and 275 s, respectively. Both hexylresorcinol and dodecylresorcinol can lead to reversible inhibition of the enzyme. The IC50 values of hexylresorcinol and dodecylresorcinol were estimated as 1.24 and 1.15 microM for monophenolase and as 0.85 and 0.80 microM for diphenolase, respectively. A kinetic analysis shows that hexylresorcinol and dodecylresorcinol are competitive inhibitors. The apparent inhibition constant for hexylresorcinol and dodecylresorcinol binding with free enzyme has been determined to be 0.443 and 0.405 microM for diphenolase, respectively.  相似文献   

6.
Tyrosinase (EC 1.14.18.1) catalyzes both the hydroxylation of tyrosine into o-diphenols and the oxidation of o-diphenols into o-quinones that form brown or black pigments. In the present paper, the effects of Cefazolin and Cefodizime on the activity of mushroom tyrosniase have been studied. The results showed that the Cephalosporin antibacterial drugs (Cefazolin and Cefodizime) could inhibit both monophenolase activity and diphenolase activity of the enzyme. For the monophenolase activity, Both Cefazolin and Cefodizime could lengthen the lag time and decrease the steady-state activities, and the IC50 values were estimated as 7.0 mM and 0.13 mM for monophenolase activity, respectively. For the diphenolase activity, the inhibitory capacity of Cefodizime was obviously stronger than that of Cefazolin, and the IC50 values were estimated as 0.02 mM and 0.21 mM, respectively. Kinetic analyses showed that inhibition by both compounds was reversible and their mechanisms were competitive and mixed-type, respectively. Their inhibition constants were also determined and compared. The research may offer a lead for designing and synthesizing novel and effective tyrosinase inhibitors and also under the application field of Cephalosporins.  相似文献   

7.
Mushroom tyrosinase (EC 1.14.18.1), a copper containing oxidase, catalyzes both the hydroxylation of tyrosine into o-diphenols and the oxidation of o-diphenols into o-quinones. In the current study, the effects of 4-cyanobenzaldehyde and 4-cyanobenzoic acid on the monophenolase and diphenolase activities of mushroom tyrosinase have been studied. The results show that 4-cyanobenzaldehyde and 4-cyanobenzoic acid can inhibit both the monophenolase activity and the diphenolase activity of mushroom tyrosinase. The lag phase of tyrosine oxidation catalyzed by the enzyme was obviously lengthened, and the steady-state activity of the enzyme decreased sharply. 1.0 mM 4-cyanobenzaldehyde and 4-cyanobenzoic acid can lengthen the lag phase from 78 s to 134 and 115 s, respectively. Both 4-cyanobenzaldehyde and 4-cyanobenzoic acid can lead to reversible inhibition of the enzyme. The IC50 values of 4-cyanobenzaldehyde and 4-cyanobenzoic acid were estimated as 0.62 and 2.45 mM for monophenolase and as 0.72 and 1.40 mM for diphenolase, respectively. A kinetic analysis shows that 4-cyanobenzaldehyde and 4-cyanobenzoic acid are mixed-type inhibitors for the diphenolase. The apparent inhibition constants for 4-cyanobenzaldehyde and 4-cyanobenzoic acid binding with both the free enzyme and the enzyme-substrate complex have been determined and compared.  相似文献   

8.
The inhibitory effects of hinokitiol, a constituent of the woody oils isolated from Cupressaceae heartwood, on mushroom tyrosinase and melanin formation in B16 melanoma cells as well as its antimicrobial activity were investigated. Our results showed that hinokitiol could strongly inhibit both monophenolase activity and diphenolase activity of the enzyme and the inhibition was reversible. The IC50 values were estimated as 9.67?μM for monophenolase activity and 0.21?μM for diphenolase activity. The lag time of the monophenolase activity was not obviously lengthened by the compound. Kinetic analyses showed that the inhibition mechanism of hinokitiol was a mixed-type inhibition of the diphenolase activity. Hinokitiol effectively inhibited both cellular tyrosinase activity and melanin biosynthesis in B16 melanoma cells with significant cytotoxicity. Furthermore, it was found that hinokitiol could inhibit the proliferation of Salmonella enteritidis, Escherichia coli, Bacillus subtilis, Staphyloccocus aureus, Klebsiella pneumoniae, and Ralstonia solanacearum to different extents. This research may widen the use of hinokitiol in the fields of food preservation, depigmentation, and insecticide use.  相似文献   

9.
The effects of fluorobenzaldehydes (2-,3- and 4-fluorobenzaldehyde) on the activity of mushroom tyrosinase have been studied. The results show that fluorobenzaldehydes can strongly inhibit both monophenolase activity and diphenolase activity of the enzyme and the inhibition is reversible. The IC50 values were estimated as 1.62 mM, 1.06 mM and 0.16 mM for diphenolase activity and as 1.35 mM, 1.18 mM and 1.05 mM for monophenolase activity, respectively. The lag time of the monophenolase was obviously lengthened by these three fluorobenzaldehydes. When the concentration of inhibitors reached 2.0 mM, the lag time was lengthened from 33 s to 142 s, 168 s and 190 s, respectively. Kinetic analyses show that the inhibition mechanism of 2-fluorobenzaldehyde on the diphenolase was competitive inhibition of the diphenolase activity, and that of 3-fluorobenzaldehyde and 4-fluorobenzaldehyde were of a mixed-type. The inhibition constants for these three fluorobenzaldehydes on the diphenolase were determined and compared.  相似文献   

10.
The effects of fluorobenzaldehydes (2-,3- and 4-fluorobenzaldehyde) on the activity of mushroom tyrosinase have been studied. The results show that fluorobenzaldehydes can strongly inhibit both monophenolase activity and diphenolase activity of the enzyme and the inhibition is reversible. The IC50 values were estimated as 1.62 mM, 1.06 mM and 0.16 mM for diphenolase activity and as 1.35 mM, 1.18 mM and 1.05 mM for monophenolase activity, respectively. The lag time of the monophenolase was obviously lengthened by these three fluorobenzaldehydes. When the concentration of inhibitors reached 2.0 mM, the lag time was lengthened from 33 s to 142 s, 168 s and 190 s, respectively. Kinetic analyses show that the inhibition mechanism of 2-fluorobenzaldehyde on the diphenolase was competitive inhibition of the diphenolase activity, and that of 3-fluorobenzaldehyde and 4-fluorobenzaldehyde were of a mixed-type. The inhibition constants for these three fluorobenzaldehydes on the diphenolase were determined and compared.  相似文献   

11.
The inhibitory effects of phloridzin dihydrate on the activity of mushroom tyrosinase have been studied. The results show that phloridzin can inhibit the diphenolase activity of the enzyme and the inhibition displays to be reversible. The IC(50) value was estimated as 110microM. The kinetic analysis showed that the inhibition of phloridzin on the diphenolase activity of the enzyme is of competitive type, and the inhibition constant (K(I)) was determined to be 64.3microM. The inhibitory effects of the different concentrations of phloridzin on the monophenolase activity were also studied. There were almost no changes in the lag period and the steady-state rate, while the plateaus in the inhibitory curve lowered with increasing the concentration of phloridzin when using tyrosine as a substrate.  相似文献   

12.
Inhibitory effects on mushroom tyrosinase by some alkylbenzaldehydes   总被引:1,自引:0,他引:1  
The inhibition kinetics on the diphenolase activity of mushroom tyrosinase by some alkylbenzaldehydes has been investigated. The results show that the alkylbenzaldehydes assayed can lead to reversible inhibition to the enzyme; o-tolualdehyde and m-tolualdehyde are mixed-type inhibitors and p-alkylbenzaldehydes are uncompetitive inhibitors. For the p-alkylbenzaldehydes, the inhibition potency follows the order: p-tolualdehyde < p-ethylbenzaldehyde < p-propylbenzaldehyde = p-Isopropylbenzaldehyde < p-tert-butylbenzaldehyde = p-butylbenzaldehyde < p-pentylbenzaldehyde < p-hexylbenzaldehyde > p-heptylbenzaldehyde > p-octylbenzaldehyde, indicating the hydrophobic p-alkyl group played an important role in inhibition to the enzyme. The inhibitory effects of alkylbenzaldehydes on the monophenolase activity have also been studied. The results show that o-tolualdehyde and m-tolualdehyde can lengthen the lag time and decrease the steady-state activity of the enzyme, but p-alkylbenzaldehydes only decrease the steady-state activity and do not lengthen the lag time, indicating that their inhibitory mechanisms are different.  相似文献   

13.
Wang Q  Shi Y  Song KK  Guo HY  Qiu L  Chen QX 《The protein journal》2004,23(5):303-308
The effects of 4-halobenzoic acids (4-fluorobenzoic acid, 4-chlorobenzoic acid, and 4-bromobenzoic acid) on the activity of mushroom tyrosinase have been studied. The results show that 4-halobenzoic acids can strongly inhibit both monophenolase activity and diphenolase activity of the enzyme, and the inhibition displays a reversible course. The IC50 values were estimated as 0.26, 0.20, and 0.18 mM for diphenolase activity and as 1.03, 0.75, and 0.60 mM for monophenolase activity, respectively. Kinetic analyses show that the inhibition mechanism of all three 4-halobenzoic acids is noncompetitive inhibition to the diphenolase activity, and the inhibition constants (K1) were determined to be 0.25, 0.20, and 0.17 mM, respectively. The lag time of the monophenolase was obviously lengthened by these three 4-halobenzoic acids. When the concentration of inhibitors reached 1.4 mM, the lag time was lengthened from 30 s to 120, 125, and 150 s, respectively.  相似文献   

14.
Tiliroside was found to inhibit both monophenolase and diphenolase activity of mushroom tyrosinase. The lag time of tyrosine oxidation catalyzed by mushroom tyrosinase was obviously lengthened; 0.337?mM of tiliroside resulted in the lag time extension from 46.7?s to 435.1?s. A kinetic analysis shown that tiliroside was a competitive inhibitor for monophenolase and diphenolase with Ki values of 0.052?mM and 0.26?mM, respectively. Furthermore, tiliroside showed 34.5% (p?<?0.05) inhibition of intracellular tyrosinase activity and 54.1% (p?<?0.05) inhibition of melanin production with low cytotoxicity on B16 mouse melanoma cells at 0.168?mM. In contrast, arbutin displayed 9.1% inhibition of cellular tyrosinase activity and 29.5% inhibition of melanin production at the same concentration. These results suggested that tiliroside was a potent tyrosinase inhibitor and might be used as a skin-whitening agent and pigmentation medicine.  相似文献   

15.
Effect of captopril on mushroom tyrosinase activity in vitro   总被引:8,自引:0,他引:8  
The study presented here demonstrates that the antihypertensive drug captopril ([2S]-N-[3-mercapto-2-methylpropionyl]-L-proline) is an irreversible non-competitive inhibitor and an irreversible competitive inhibitor of the monophenolase and diphenolase activities of mushroom tyrosinase when L-tyrosine and L-DOPA were assayed spectrophotometrically in vitro, respectively. Captopril was rendered unstable by tyrosinase catalysis because of the interaction between the enzymatic-generated product (o-quinone) and captopril to give rise to a colourless conjugate. Therefore, captopril was able to prevent melanin formation. The spectrophotometric recordings of the inhibition of tyrosinase by captopril were characterised by the presence of a lag period prior to the attainment of an inhibited steady state rate. The lag period corresponded to the time in which captopril was reacting with the enzymatically generated o-quinone. Increasing captopril concentrations provoked longer lag periods as well as a concomitant decrease in the tyrosinase activity. Both lag period and steady state rate were dependent of captopril, substrate and tyrosinase concentrations. The inhibition of both monophenolase and diphenolase activities of tyrosinase by captopril showed positive kinetic co-operativity which arose from the protection of both substrate and o-quinone against inhibition by captopril. Inhibition experiments carried out using a latent mushroom tyrosinase demonstrated that captopril only bound the enzyme at its active site. The presence of copper ions only partially prevented but not reverted mushroom tyrosinase inhibition. This could be due to the formation of both copper-captopril complex and disulphide interchange reactions between captopril and cysteine rich domains at the active site of the enzyme.  相似文献   

16.
The effects of α-arbutin on the monophenolase and diphenolase activities of mushroom tyrosinase were investigated. The results showed that α-arbutin inhibited monophenolase activity but it activated diphenolase activity. For monophenolase activity, IC50 value was 4.5 mmol·L−1 and 4.18 mmol·L−1 of α-arbutin could extend the lag time from 40.5 s to 167.3 s. Alpha- arbutin is proposed to be regarded as a triphenolic substrate by the enzyme during catalyzation, leading to the suicide inactivation of the active site of tyrosinase. For diphenolase activity, α-arbutin acted as an activator and its activation mechanism was mixed type activation. To reveal such activation, it should be mainly refered to the conformational changes in tyrosinase caused by the interaction of α-arbutin with residues located at the entrance to the active site, and the decrease of the effect of suicide inactivation.  相似文献   

17.
In order to unify and generalize, we define the International Units used to express the monophenolase and diphenolase activity of mushroom tyrosinase acting on different monophenol/diphenol pairs and establish a quantitative relation. Similarly, the activity units to express tyrosinase activity proposed by suppliers are discussed and compared with the above International Units. Lastly, we study the relation between International Units of diphenolase activity and of monophenolase activity for other biological sources of tyrosinase.  相似文献   

18.
Tyrosinase is known as the key enzyme for melanin biosynthesis, which is effective in preventing skin injury by ultra violet (UV). In past decades, tyrosinase has been well studied in the field of cosmetics, medicine, agriculture and environmental sciences, and a lot of tyrosinase inhibitors have been developed for their needs. Here, we searched for new types of tyrosinase inhibitors and found phenylbenzoic acid (PBA) as a unique scaffold. Among three isomers of PBA, 3-phenylbenzoic acid (3-PBA) was revealed to be the most potent inhibitor against mushroom tyrosinase (IC50 = 6.97 μM, monophenolase activity; IC50 = 36.3 μM, diphenolase activity). The kinetic studies suggested that the apparent inhibition modes for the monophenolase and diphenolase activities were noncompetitive and mixed type inhibition, respectively. Analyses by in silico docking studies using the crystallographic structure of mushroom tyrosinase indicated that the carboxylic acid group of the 3-PBA could adequately bind to two cupric ions in the tyrosinase. To prove this hypothesis, we examined the effect of modification of the carboxylic acid group of the 3-PBA on its inhibitory activity. As expected, the esterification abrogated the inhibitory activity. These observations suggest that 3-PBA is a useful lead compound for the generation of novel tyrosinase inhibitors and provides a new insight into the molecular basis of tyrosinase catalytic mechanisms.  相似文献   

19.
In this study, new tyrosinase inhibitors, (+)-catechin-aldehyde polycondensates, have been developed. Tyrosinase is a copper-containing enzyme that catalyzes the hydroxylation of a monophenol (monophenolase activity) and the oxidation of an o-diphenol (diphenolase activity). In the measurement of tyrosinase inhibition activity, (+)-catechin acted as substrate and cofactor of tyrosinase. On the other hand, the polycondensates inhibited the tyrosine hydroxylation and L-DOPA oxidation by chelation to the active site of tyrosinase. The UV-visible spectrum of a mixture of tyrosinase and the polycondensate exhibited a characteristic shoulder peak ascribed to the chelation of the polycondensate to the active site of tyrosinase. Furthermore, circular dichroism measurement showed a small red shift of the band due to the interaction between tyrosinase and the polycondensate. These data support that the polycondensate acts as an inhibitor of tyrosinase.  相似文献   

20.
The respiratory protein hemocyanin is present in molluscans and in some species of arthropods, and its dioxygen binding site strongly resembles that of the monophenol-hydroxylating and catechol-quinonising enzyme tyrosinase. Moreover, some hemocyanins show a certain extent of tyrosinase activity, so a common ancestry between the two proteins has been suggested. However, in the case purified hemocyanin of Scyllarides latus any attempts to evoke tyrosinase activity failed. A distinct tyrosinase has been purified to homogeneity from the hemolymph, and kinetically characterised. The purified tyrosinase showed both monophenolase and diphenolase enzyme activity and therefore it could be well defined as a true tyrosinase. This finding suggests that in the case of the studied crustacean the evolutionary functional divergence between dioxygen transport and oxidation of phenolics has already reached its completeness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号