首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
叶辉  王军邦  黄玫  齐述华 《植物生态学报》2012,36(12):1237-1247
植被降水利用效率(precipitation use efficiency, PUE)是反映生态系统水、碳循环相互关系的重要指标。该文利用GLOPEM-CEVSA模型模拟了青藏高原2000-2008年植被净初级生产力(net primary production, NPP), 以97个野外草地样点实测地上净初级生产力(above-ground net primary productivity, ANPP)对模拟NPP进行验证, 模拟NPPANPP线性显著相关(R 2 = 0.49, p < 0.001)。利用降水量空间插值数据, 分析了近9年青藏高原植被PUE的空间分布、主要植被类型的PUE及其与降水量之间的变化关系。结果表明: 2000-2008年青藏高原地区植被年平均PUE沿东南向西北递减, 降水量和气温对植被PUE有着重要的影响; PUE在不同植被类型间差异较大, 其中农田PUE最高, 高寒草甸PUE高于高寒草原。在不同降水区域植被PUE与降水量的关系不同, 降水量低于90 mm的区域, 植被PUE值最低((0.026 ± 0.190) g C·m -2·mm -1, 平均值±标准偏差)、波动最大(变异系数CV = 721%), 与降水量和气温不相关(p = 0.38)。降水量为90-300 mm的地区, 植被PUE较低((0.029 ± 0.074) g C·m -2·mm -1, 平均值±标准偏差)、波动较大(CV = 252%), 与降水量和气温显著相关(p < 0.001), 降水量和气温能够解释PUE空间变化的43.4%, 其中降水量的影响是气温的1.7倍。降水量为300-650 mm的区域占整个研究区的45%, 主要植被类型为高寒草原, 植被PUE较高((0.123 ± 0.191) g C·m -2·mm -1, 平均值±标准偏差), CV为155%; 植被PUE的空间变化与降水量和气温极显著相关(p < 0.001), 降水量和气温能够解释植被PUE空间变化的97.8%, 但以气温影响为主导, 其影响是降水量的1.5倍。降水量为650 mm的区域, 植被PUE达到最高(0.26 g C·m -2·mm -1)。降水量为650-845 mm的区域主要是西藏林芝地区, 植被以常绿针叶林为主, PUE最高((0.210 ± 0.246) g C·m -2·mm -1, 平均值±标准偏差)、波动最小(CV = 117%); 降水量和气温可解释植被PUE空间变化的93.1% (p < 0.001), 降水量的影响是气温的3.5倍, 但其影响为负。  相似文献   

2.
水分利用效率(WUE)是深入理解生态系统水碳循环及其耦合关系的重要指标。为了揭示气候变化背景下区域尺度不同植被类型的响应和适应特征, 对中国西南高山亚高山地区2000-2014年的9种植被类型的WUE时空特征及其影响因素进行探究。该研究基于MODIS总初级生产力(GPP)、蒸散发(ET)数据和气象数据, 估算西南高山亚高山区植被WUE, 采用趋势分析及相关分析等方法, 分析了研究区植被WUE与气温、降水及海拔的关系。主要结果: (1)西南高山亚高山区2000-2014年植被WUE多年均值为0.95 g·m-2·mm-1, 整体呈显著增加趋势, 增速为0.011 g·m-2·mm-1·a-1; 空间上WUE呈东南高西北低的分布, 85.84%区域的WUE呈增加趋势。(2)西南高山亚高山区各植被类型WUE多年均值表现为常绿针叶林>稀树草原>常绿阔叶林>有林草原>农田>落叶阔叶林>混交林>郁闭灌丛>草地; 时间上, 各植被类型WUE均呈上升趋势。(3)西南高山亚高山区89.56%区域的WUE与气温正相关, 92.54%区域的WUE与降水量负相关; 各植被类型中, 草地WUE与气温的相关性最高, 有林草原WUE与降水量的相关性最高。(4)西南高山亚高山区典型的地带性顶极植被常绿针叶林的WUE具有较强的海拔适应性及应对气候变化的能力。  相似文献   

3.
《植物生态学报》1958,44(6):628
水分利用效率(WUE)是深入理解生态系统水碳循环及其耦合关系的重要指标。为了揭示气候变化背景下区域尺度不同植被类型的响应和适应特征, 对中国西南高山亚高山地区2000-2014年的9种植被类型的WUE时空特征及其影响因素进行探究。该研究基于MODIS总初级生产力(GPP)、蒸散发(ET)数据和气象数据, 估算西南高山亚高山区植被WUE, 采用趋势分析及相关分析等方法, 分析了研究区植被WUE与气温、降水及海拔的关系。主要结果: (1)西南高山亚高山区2000-2014年植被WUE多年均值为0.95 g·m-2·mm-1, 整体呈显著增加趋势, 增速为0.011 g·m-2·mm-1·a-1; 空间上WUE呈东南高西北低的分布, 85.84%区域的WUE呈增加趋势。(2)西南高山亚高山区各植被类型WUE多年均值表现为常绿针叶林>稀树草原>常绿阔叶林>有林草原>农田>落叶阔叶林>混交林>郁闭灌丛>草地; 时间上, 各植被类型WUE均呈上升趋势。(3)西南高山亚高山区89.56%区域的WUE与气温正相关, 92.54%区域的WUE与降水量负相关; 各植被类型中, 草地WUE与气温的相关性最高, 有林草原WUE与降水量的相关性最高。(4)西南高山亚高山区典型的地带性顶极植被常绿针叶林的WUE具有较强的海拔适应性及应对气候变化的能力。  相似文献   

4.
内蒙古植被降水利用效率的时空格局及其驱动因素   总被引:4,自引:0,他引:4       下载免费PDF全文
植被降水利用效率(precipitation-use efficiency, PUE)是评价干旱、半干旱地区植被生产力对降水量时空动态响应特征的重要指标。该研究利用光能利用率CASA (Carnegie-Ames-Stanford Approach)模型估算了2001-2010年内蒙古地区植被净初级生产力(net primary productivity, NPP), 结合降水量的空间插值数据, 分析了近10年内蒙古地区植被PUE的空间分布、主要植被类型的PUE,及其时空格局的驱动因素。结果表明: 2001-2010年内蒙古地区所有植被的平均PUE为0.94 g C·m-2·mm-1, 且在105-120° E地带性规律明显,PUE上升速率为每10° 0.55 g C·m-2·mm-1。各植被类型间PUE差别较大, 其中灌丛PUE最高, 荒漠PUE最低。在不同的降水量区域, 植被PUE的空间分布与气候因子的关系有较大差别, 0-75 mm降水量区间内, PUE随降水量、气温的升高显著下降(R2 = 0.226, p < 0.05); 175-300 mm降水量区间内, 植被 PUE的空间变化与降水量和气温呈极显著相关关系(R2 = 0.878, p < 0.001), 且随降水量的增加显著上升( R2 = 0.94, p < 0.001), 变化速率约为每100 mm降水0.57 g C·m -2·mm-1; 在降水量大于475 mm的区域, 植被PUE的空间分布与降水量、气温的相关性显著(R2 = 0.19, p < 0.05), 且随着气温的上升、降水量的下降而增加, 其中气温的贡献是降水量的8.61倍。在不同的降水量区域, 植被 PUE的年际波动与气候因子的关系也有较大差别, 对于年降水量0-220 mm的地区, PUE的年际波动与降水量呈正相关性、与气温呈负相关性; 在年降水量为220-310 mm的地区, PUE的年际波动主要受降水量的控制, 受气温影响较小; 在年降水量>310 mm的地区,PUE的年际波动与降水量、气温均呈正相关关系, 但在降水量越高的地区, PUE的年际波动与降水量的相关性越弱, 与气温的相关性越强。植被覆盖度与PUE的空间分布极显著相关(R2 = 0.73, p < 0.001), 且与 PUE的年际波动也存在线性相关关系(R2 = 0.11, p < 0.001); 叶面积指数( LAI)与PUE的年际波动呈线性相关关系(R2 = 0.42, p < 0.001), 而当 LAI < 3.15时, PUE的空间分布随LAI增加而呈线性增加。  相似文献   

5.
为揭示我国西北山地温带针叶林降水利用效率(RUE)的年际变化及其对气象因子响应的差异性, 在宁夏六盘山研究了华山松(Pinus armandii)天然林、华北落叶松(Larix principis-rupprechtii)和油松(Pinus tabulaeformis)人工林的RUE及其与气象因子间的关系。结果表明: 3种针叶林RUE及其年际变化存在种间差异。生产力高的林分(两种人工林)具有更高的RUE, 华北落叶松林年平均生产力和RUE分别为6.72 t·hm -2·a -1和1.12 g·m -2·mm -1, 是华山松林的2.53倍和2.49倍; 油松林分别为5.76 t·hm -2·a -1和0.97 g·m -2·mm -1, 也远高于华山松林。在林龄小于32年时, 3种林分RUE总体表现出随林龄而增加的趋势, 但存在着种间差异, 其中两种人工林增速更快; 华山松林在林龄为32-45年时, RUE呈波动变化, 之后呈下降趋势。RUE的年际变化趋势与林分生产力相似, 即在生产力较高的年份RUE也较高。气象因子对RUE的影响有明显的“滞后效应”和种间差异。RUE受年降水量及其年内分配格局的影响。随年降水量增加, 华山松林RUE逐渐减小, 而华北落叶松和油松林RUE均先升高后降低; 在干旱年份3种针叶林RUE趋向于相近的值(不一定是最大值), 而在湿润年份趋向于相同的最小值; 除受当年春季(4月)或秋季(9-11月)的降水量影响外, 3种针叶林的RUE还受上一年夏秋(8-9月)的降水量影响。3种针叶林的RUE都极显著地受到上年6月、当年3与6月气温的影响; 此外, 华山松林RUE与当年2月气温负相关, 两人工林均受到当年4、5月气温的显著促进作用。  相似文献   

6.
高寒灌丛草甸和草甸均是青藏高原广泛分布的植被类型, 在生态系统碳通量和区域碳循环中具有极其重要的作用。然而迄今为止, 对其碳通量动态的时空变异还缺乏比较分析, 对碳通量的季节和年际变异的主导影响因子认识还不够清晰, 不利于深入理解生态系统碳通量格局及其形成机制。该研究选取位于青藏高原东部海北站高寒灌丛草甸和高原腹地当雄站高寒草原化草甸年降水量相近的5年(2004-2008年)的涡度相关CO2通量连续观测数据, 对生态系统净初级生产力(NEP)及其组分, 包括总初级生产力(GPP)和生态系统呼吸的季节、年际动态及其影响因子进行了对比分析。结果表明: 灌丛草甸的CO2通量无论是季节还是年际累积量均高于草原化草甸, 并且连续5年表现为“碳汇”, 平均每年NEP为70 g C·m -2·a -1, 高寒草原化草甸平均每年NEP为-5 g C·m -2·a -1, 几乎处于碳平衡状态, 但其源/汇动态极不稳定, 在2006年-88 g C·m -2·a -1的“碳源”至2008年54 g C·m -2·a -1的“碳汇”之间转换, 具有较大的变异性。这两种高寒生态系统源/汇动态的差异主要源于归一化植被指数(NDVI)的差异, 因为NDVI无论在年际水平还是季节水平都是NEP最直接的影响因子; 其次, 灌丛草甸还具有较高的碳利用效率(CUE, CUE = NEP/GPP), 而年降水量和NDVI是决定两生态系统CUE大小的关键因子。两地区除了CO2通量大小的差异外, 其环境影响因子也有所不同。采用结构方程模型进行的通径分析表明, 灌丛草甸生长季节CO2通量的主要限制因子是温度, NEPGPP主要受气温控制, 随着气温升高而增加; 而草原化草甸的CO2通量多以季节性干旱导致的水分限制为主, 其次才是气温的影响, 受二者的共同限制。此外, 两生态系统生长季节生态系统呼吸主要受GPP和5 cm土壤温度的直接影响, 其中GPP起主导作用, 非生长季节生态系统呼吸主要受5 cm土壤温度影响。该研究还表明, 水热因子的协调度是决定青藏高原高寒草地GPPNEP的关键要素。  相似文献   

7.
为了探明西北半干旱区典型沙生植物油蒿(Artemisia ordosica)叶水平资源利用效率的相对变化及对环境因子的响应机制, 该研究于2018年5-10月, 使用LI-6400XT便携式光合仪测定了毛乌素沙地油蒿叶片的净光合速率(Pn)、蒸腾速率(E)、叶表面光合有效辐射(PARl)、叶表面温度(Tl)、叶表面相对湿度(RHl), 在实验室计算叶片单位面积氮含量(Narea), 分析了叶片氮利用效率(NUE)、水分利用效率(WUE)、光利用效率(LUE)与环境因子之间的关系及NUEWUELUE之间的相对变化。研究结果表明, 在充足且稳定光强下油蒿的Pn主要受温度的影响, NUEWUEVPDlTl之间具有显著负相关关系, NUEWUELUE间为正相关关系, NUEWUELUE最大值分别发生在5、7和9月, 分别为9.43 μmol CO2·g-1·s-1、3.86 mmol·mol-1、0.04 mol·mol-1, 资源利用效率的变化主要受Pn的影响。温度通过影响植物N分配来改变Pn, 进而影响着资源利用效率, WUELUE显著正相关, 对构建荒漠区生态系统能量交换过程模型有重要意义。  相似文献   

8.
植被净初级生产力(NPP)是草原湿地生态系统碳收支平衡和气候变化的核心内容之一。本研究基于植被指数、气象数据(降水和气温)、植被类型数据,利用CASA模型对若尔盖草原湿地1999—2015年NPP进行估算,分析了若尔盖草原湿地NPP时空格局特征及其与气候因子的关系。结果表明: NPP实测值与模拟值之间显著相关,R2为0.78,均方根误差为120.3 g C·m-2·a-1;研究区年均和生长季(4—9月)NPP分别为329.0、229.4 g C·m-2·a-1,年际间波动明显,以2.3、1.6 g C·m-2·a-1的微弱趋势下降,不同植被类型的年均及生长季NPP的年际波动与整个研究区的波动趋势基本一致;年均和生长季NPP的变化斜率分别为-21.3~18.7、-31.5~23.1 g C·m-2·a-1,显著增加的面积分别占研究区总面积的0.3%和0.7%,主要分布于森林覆盖区和湿地生态补偿区;显著下降的面积分别占研究区总面积的1.4%和6.4%,主要分布于人类活动集中的地区;研究区不同植被的固碳能力存在差异,其中,森林最强,草地次之,湿地最弱;降水是影响草原湿地植被NPP的主导气候因子。  相似文献   

9.
为揭示生态功能保护区归一化植被指数(NDVI)与气候因子相关性, 为今后该区域植被动态监测提供有用的信息, 该研究基于2000-2015年MODIS NDVI数据和逐月格点降水与气温数据, 采用生态功能保护区和像元两种空间尺度, 应用线性倾向分析、偏相关分析、复相关分析等方法研究了46个生态功能保护区NDVI变化及其与气候因子的关系, 在此基础上基于相关系数显著性水平对生态功能保护区NDVI动态进行了气候因子驱动分区。主要结果: (1)生态功能保护区NDVI总体呈增加趋势, 其增率加权平均值为0.045·a-1。像元分析表明, NDVI显著增加的区域主要分布在中部和东北部。(2)生态功能保护区NDVI与降水的偏相关系数在-0.30-0.72之间, 在32个分区呈正相关关系。NDVI与气温的偏相关性在-0.36-0.92之间, 在39个分区呈正相关关系。像元分析表明, 50.6%的像元NDVI与降水呈显著正偏相关关系, 主要分布在东北及西北地区。64.6%的像元NDVI与气温呈显著正偏相关关系, 主要分布在东北及青藏高原北缘地区。(3)气温-降水强驱动型是主要驱动类型, 占总面积的38.7%; 气温驱动型为次要驱动类型, 占27.3%; 非气候因子驱动型占17.6%。以上结果表明, 生态功能保护区NDVI与气温、降水气候因子改变具有显著相关性, 气候因子驱动的地区共占82.4%。研究气候变暖背景下生态功能保护区NDVI变化及其对气候因子的响应, 对于认识该区植被动态变化规律具有重要作用。  相似文献   

10.
为探究长白山生态功能区气候变化特征,本研究利用区域内及周边36个气象站数据与CN05.1格点数据集,采用线性倾向估计法、Mann-Kendall突变检验、累积距平法、Morlet小波分析等方法研究1961—2016年长白山生态功能区内温度(平均气温、四季气温、极端气温)、水分(年降水量、四季降水量、降水日数、相对湿度)、光照(日照时数与日照百分率)和风速因子的时空变化规律.结果表明: 1961—2016年,长白山生态功能区气温升高、日照减少、风速减弱、降水量周期振荡变化.其中,冬季气温[0.45 ℃·(10 a)-1]与最低温度[0.74 ℃·(10 a)-1]大幅上升.年平均风速显著降低[-0.21 m·s-1·(10 a)-1]但并未发生气候突变.年降水日数大幅降低[-7.01 d·(10 a)-1],使其与东北地区气候变化特点有所不同.虽然功能区内年降水量倾向率为16.06 mm·(10 a)-1,但不能以简单的趋势增加或减少来描述降水量变化特征,功能区内降水量变化以26年长周期叠加3年的短周期为主.研究结果对区域生态评估、生态系统响应气候变化、物候变化等研究具有指示意义.  相似文献   

11.
《植物生态学报》2017,41(5):506
Aims Xinjiang is located in the hinterland of the Eurasian arid areas, with grasslands widely distributed. Grasslands in Xinjiang provide significant economic and ecological benefits. However, research on evapotranspiration (ET) and water use efficiency (WUE) of the grasslands is still relatively weak. This study aimed to explore the spatio-temporal characteristics on ET and WUE in the grasslands of Xinjiang in the context of climate change.Methods The Biome-BGC model was used to determine the spatio-temporal characteristics of ET and WUE of the grasslands over the period 1979-2012 across different seasons, areas and grassland types in Xinjiang.Important findings The average annual ET in the grasslands of Xinjiang was estimated at 245.7 mm, with interannual variations generally consistent with that of precipitation. Overall, the value of ET was lower than that of precipitation. The higher values of ET mainly distributed in the Tianshan Mountains, Altai Mountains, Altun Mountains and the low mountain areas on the northern slope of Kunlun Mountains. The lower values of ET mainly distributed in the highland areas of Kunlun Mountains and the desert plains. Over the period 1979-2012, average annual ET was 183.2 mm in the grasslands of southern Xinjiang, 357.9 mm in the grasslands of the Tianshan Mountains, and 221.3 mm in grasslands of northern Xinjiang. In winter, ET in grasslands of northern Xinjiang was slightly higher than that of Tianshan Mountains. Average annual ET ranked among grassland types as: mid-mountain meadow > swamp meadow > typical grassland > desert grassland > alpine meadow > saline meadow. The highest ET value occurred in summer, and the lowest ET value occurred in winter, with ET in spring being slightly higher than that in autumn. The higher WUE values mainly distributed in the areas of Tianshan Mountains and Altai Mountains. The lower WUE values mainly distributed in the highland areas of Kunlun Mountains and part of the desert plains. The average annual WUE in the grasslands of Xinjiang was 0.56 g·kg-1, with the seasonal values of 0.43 g·kg-1 in spring, 0.60 g·kg-1 in summer, and 0.48 g·kg-1 in autumn, respectively. Over the period 1979-2012, the values of WUE displayed significant regional differences: the average values were 0.73 g·kg-1 in northern Xinjiang, 0.26 g·kg-1 in southern Xinjiang, and 0.69 g·kg-1 in Tianshan Mountains. There were also significant differences in WUE among grassland types. The values of WUE ranked in the order of mid-mountain meadow > typical grassland > swamp meadow > saline meadow > alpine meadow > desert grassland.  相似文献   

12.
氮利用效率是植物的关键功能性状, 同时紧密关联生态系统功能, 但是目前对氮利用效率的区域格局及影响因素仍然不清楚。该研究分析了内蒙古和青藏高原草原82个调查地点、139种植物叶片和根系的氮利用效率及其与环境因素、植物功能群之间的关系, 实验结果显示: 1)草甸草原植物叶片的氮利用效率为53 g·g -1, 显著大于高寒草甸(46 g·g -1)、荒漠草原(41 g·g -1)和典型草原(39 g·g -1)。高寒草甸根系氮利用效率为108 g·g -1, 显著高于其他生态系统。2)叶片氮利用效率比根系对温度更加敏感, 但随着干旱指数的增加, 两者均表现出显著的降低趋势。3)杂类草叶片和根系氮利用效率低于莎草科和禾本科植物, 豆科植物叶片和根系氮利用效率分别比非豆科植物低48%和60%。4)植物氮利用效率与土壤氮含量之间没有显著关系。总体上, 内蒙古和青藏高原草原植物叶片和根系氮利用效率的空间格局存在差异, 主要影响因素为植物功能群和干旱指数。本研究系统揭示内蒙古和青藏高原草原植物氮利用效率的空间格局及关键驱动因子, 有助于在全球变化背景下了解我国草地生产力维持机制, 同时为草原生态系统管理提供科学依据。  相似文献   

13.
《植物生态学报》2018,42(8):831
为阐明青海省森林生态系统乔木层植被碳储量现状及其分布特征, 该研究利用240个标准样地实测的乔木数据, 估算出青海省森林生态系统不同林型处于不同龄级阶段的平均碳密度, 并结合青海省森林资源清查资料所提供的不同龄级的各林型面积, 估算了青海省森林生态系统乔木层的固碳现状、速率和潜力。结果表明: 1) 2011年青海省森林乔木层平均碳密度为76.54 Mg·hm -2, 总碳储量为27.38 Tg。云杉(Picea spp.)林、柏木(Cupressus funebris)林、桦木(Betula spp.)林、杨树(Populus spp.)林是青海地区的主要林型, 占青海省森林面积的96.23%, 占青海省乔木层碳储量的86.67%, 其中云杉林的碳储量(14.78 Tg)和碳密度(106.93 Mg·hm -2)最高。按龄级划分, 乔木层碳储量表现为过熟林>中龄林>成熟林>近熟林>幼龄林。2)青海省乔木层总碳储量从2003年的23.30 Tg增加到2011年的27.38 Tg, 年平均碳增量为0.51 Tg·a -1。乔木层固碳速率为1.06 Mg·hm -2·a -1, 其中柏木林的固碳速率最大(0.44 Mg·hm -2·a -1); 桦木林的固碳速率为负值(-1.06 Mg·hm -2·a -1)。3)青海省乔木层植被固碳潜力为8.50 Tg, 其中云杉林固碳潜力最高(3.40 Tg)。该研究结果表明青海省乔木层具有较大的固碳潜力, 若对现有森林资源进行合理管理和利用, 将会增加青海省森林的碳固存能力。  相似文献   

14.
《植物生态学报》2016,40(4):364
Aims
Accurate estimation of carbon density and storage is among the key challenges in evaluating ecosystem carbon sink potentials for reducing atmospheric CO2 concentration. It is also important for developing future conservation strategies and sustainable practices. Our objectives were to estimate the ecosystem carbon density and storage of Picea schrenkiana forests in Tianshan region of Xinjiang, and to analyze the spatial distribution and influencing factors.
Methods
Based on field measurements, the forest resource inventories, and laboratory analyses, we studied the carbon storage, its spatial distribution, and the potential influencing factors in Picea schrenkiana forest of Tianshan. Field surveys of 70 sites, with 800 m2 (28.3 m × 28.3 m) for plot size, was conducted in 2011 for quantifying arbor biomass (leaf, branch, trunk and root), grass and litterfall biomass, soil bulk density, and other laboratory analyses of vegetation carbon content, soil organic carbon content, etc.
Important findings
The carbon content of the leaf, branch, trunk and root of Picea schrenkiana is varied from 46.56% to 52.22%. The vegetation carbon content of arbor and the herbatious/litterfall layer was 49% and 42%, respectively. The forest biomass of Picea schrenkiana was 187.98 Mg·hm-2, with 98.93% found in the arbor layer. The biomass in all layers was in the order of trunk (109.81 Mg·hm-2) > root (39.79 Mg·hm-2) > branch (23.62 Mg·hm-2) > leaf (12.76 Mg·hm-2). From the age-group point of view, the highest and the lowest biomass was found at the mature forest (228.74 Mg·hm-2) and young forest (146.77 Mg·hm-2), respectively. The carbon density and storage were 544.57 Mg·hm-2 and 290.84 Tg C, with vegetation portion of 92.57 Mg·hm-2 and 53.14 Tg C, and soil portion of 452.00 Mg·hm-2 and 237.70 Tg C, respectively. The spatial distribution of carbon density and storage appeared higher in the western areas than those in the eastern regions. In the western Tianshan Mountains (e.g., Ili district), carbon density was the highest, whereas the central Tianshan Mountains (e.g., Manas County, Fukang City, Qitai County) also had high carbon density. In the eastern Tianshan Mountains (e.g., Hami City), it was low. This distribution seemed consistent with the changes in environmental conditions. The primary causes of carbon density difference might be a combined effects of multiple environmental factors such as terrain, precipitation, temperature, and soil.  相似文献   

15.
《植物生态学报》2017,41(7):779
Aims Our main purposes were to analyze the relationship between vegetation and pollen in the surface soil of the Turpan region, which is located in the southern slope of the eastern Tianshan Mountains, and to compare different pollen assemblages between the Turpan region and the northern slope of the Tianshan Mountains.Methods We collected 36 modern pollen samples and carried out modern vegetation survey in the Turpan region along an altitudinal gradient from 2 000 m to -154 m. Detrended correspondence analysis and Redundancy analysis were applied to analyze the distribution pattern of pollen in surface soils. Important findings We divided the pollen spectra into four pollen assemblage zones (mountain desert-steppe and desert, Gobi gravel, typical desert and salt mash vegetation), corresponding to the major vegetation types in the Turpan region. When compared with the northern slope, the characteristics of pollen assemblages in the mountain desert-steppe and desert were similar to those in the forest-steppe on the northern slope of the Tianshan Mountains; the pollen assemblages in the Gobi gravel and the typical desert seemed to be more consistent with those in the typical desert on the northern slope; however, no analogue was found in the salt mash vegetation. Obviously, the vertical pollen spectra in Turpan region were incomplete, lacking typical forest and Artemisia desert pollen zones. Besides, similar pollen zones in the Turpan region were found at an elevation of about 300 m higher than those in the northern slope. It is remarkable that the typical tree pollen, such as Picea and Pinus, showed their extra representation in the Turpan region. On one hand, the valley forest on the southern slope of the Tianshan mountains played an important role in pollen dispersal. On the other hand, with the cold air on the northern slope over the Tianshan Mountains, pollen may be carried and deposited in the Turpan region. The rivers feeding into Aiding Lake in the Turpan region may also contribute to the distribution of Picea and Pinuspollen. Lots of pollen studies have shown that the ratio of Artemisia to Chenopodiaceae (A/C) can be used as a good indicator of the degree of humidity in the semi-arid and arid areas. Our study revealed that A/C can roughly reflect the characteristics of the desert zone in the study area. The results of Redundancy Analysis ordination on pollen assemblages and environmental factors (mean annual temperature (MAT), mean annual precipitation (MAP) and altitude (ALT)) revealed that MAP was the main environmental factor affecting the pollen assemblages in the surface soil in the Turpan region and had more significant effects on the distribution of Nitraria pollen than on the distribution of Artemisia and Chenopodiaceae.  相似文献   

16.
在全球变化的影响下, 中国亚热带地区近几十年降水格局发生了急剧变化。这种变化对亚热带常绿阔叶林植物的生长和森林水分平衡的影响尚不清楚。为此, 该研究从植物整树蒸腾角度出发, 通过在天然次生林中进行人工隔除降雨模拟降水格局变化, 研究降水变化对植物水分利用的影响。试验于2012年9月至2014年12月在广东鹤山森林生态系统国家野外科学观测研究站内的常绿阔叶林内进行, 通过林下搭建遮雨棚, 截留干季(10月至次年3月)的降雨, 并在湿季(次年4至9月)等量返还到样地中, 在保证总降水量不变的前提下模拟干季更干、湿季更湿(DD)的降雨格局变化。在此期间对样地内的木荷(Schima superba)与火力楠(Michelia macclurei)树干液流特征进行连续监测。运用独立样本t检验对对照组(AC)两个树种间的平均最大液流通量密度(¯JS)差异性进行分析, 并将DD处理下两个树种的¯JS与AC进行对比, 来检验隔除降雨对森林蒸腾的效应。结果表明: 当光合有效辐射(PAR)大于1 100 μmol·m -2·s -1时, 对照样地火力楠和木荷的¯JS分别为(49.5 ± 1.7)和(43.6 ± 2.0) mL∙m -2∙s -1, 且前者表现出对光合有效辐射(PAR)更强的敏感性。截留降雨处理开始后(2012-10), 两个树种DD与AC处理的¯JS比值(DD:AC)均先减小后增加, 其中木荷的比值从处理前的0.74下降到了第1次截留降雨处理期(2012-10至2013-03)的0.68, 增加到了第2次截留降雨处理期(2013-10至2014-03)的0.93以及第3次截留降雨处理期(2014-10至2014-11)的1.04; 火力楠则从处理前的1.00下降到了第1次截留降雨处理期的0.94, 在第2次截留降雨处理期增长到1.06, 变化幅度小于木荷。此外, 在第3次截留降雨处理期, 木荷在相同的水汽压亏缺及PAR下能够保持更高的¯JS。这些结果表明, 短期干旱事件会促使森林蒸腾急剧下降, 然而在长期干旱下, 植物会通过提高¯JS来弥补干旱带来的损失, 而木荷由于具有较大的¯JS可塑性, 从而使其在干旱条件下维持更高的水分传输速率。  相似文献   

17.
《植物生态学报》2018,42(10):1000
准确估算光合电子流对CO2响应的变化趋势对深入了解光合过程具有重要意义。该研究在植物光合作用对CO2响应新模型(模型I)的基础上构建了电子传递速率(J)对CO2的响应模型(模型II), 并对用LI-6400-40便携式光合仪测量的玉米(Zea mays)和千穗谷(Amaranthus hypochondriacus)的数据进行了拟合。结果表明, 模型II可以很好地拟合玉米和千穗谷叶片J对CO2浓度的响应曲线(J-Ca曲线), 得到玉米和千穗谷的最大电子传递速率分别为262.41和393.07 mmol·m -2·s -1, 与估算值相符合。在此基础上, 对光合电子流分配到其他路径进行了探讨。结果显示, 380 mmol·mol -1 CO2浓度下玉米和千穗谷碳同化所需的电子流为247.92和285.16 mmol·m -2·s -1, 分配到其他途径的光合电子流为14.49和107.91 mmol·m -2·s -1(考虑植物CO2的回收利用)。比较两种植物的其他途径光合电子流分配值发现, 两者相差6倍之多。分析认为这与千穗谷和玉米的催化脱羧反应酶种类以及脱羧反应发生的部位不同密切相关。该发现为人们研究C4植物中烟酰胺腺嘌呤二核苷磷酸苹果酸酶型和烟酰胺腺嘌呤二核苷酸苹果酸酶型两种亚型之间的差异提供了一个新的视角。此外, 构建的电子传递速率对CO2的响应模型为人们研究C4植物的光合电子流的变化规律提供了一个可供选择的数学工具。  相似文献   

18.
中国西南地区草地主要为暖性及热性草丛、灌草丛, 约占全国草地面积的1/10, 分析灌木植物盖度与草地碳库及其构成的关系对于准确评估尚处于次生演替阶段的南方草地碳储量具有重要意义。该研究基于野外实地调查, 将西南地区不同地貌类型的41个代表性草地样地依据灌木植物盖度划分为3种类型: 无灌木植物草地群落(灌木植物盖度为0)、低灌木植物盖度草地群落(灌木植物盖度0-10%)和高灌木植物盖度草地群落(灌木植物盖度10%-30%), 测定了群落地上、地下生物量和凋落物生物量以及植物和土壤碳含量, 计算碳密度。结果表明: 随着草地群落灌木植物盖度增大, 生态系统植被碳密度从0.304 kg·m -2增加到1.574 kg·m -2, 其中根系和凋落物碳库也呈增长趋势; 土壤碳密度从7.215 kg·m -2增加到9.735 kg·m -2, 生态系统碳密度从7.519 kg·m -2增加到11.309 kg·m -2。草地碳库构成中, 低灌木植物盖度草地群落的土壤碳库占生态系统碳库比例最小。草地群落灌木植物盖度增加改变了草地生态系统碳库构成并导致生态系统碳库增加, 建议在估算草地生态系统碳库时, 需要统筹考虑并兼顾南方地区草地群落灌木植物盖度变化。  相似文献   

19.
全球气候变暖背景下, 西南地区气候呈现出明显的暖干化特征, 但区域优势树种云南松(Pinus yunnanensis)对气候暖干化的响应存在不确定性。该研究根据树木年代学方法选择研究区域87株云南松样本进行树芯采集, 构建云南松树轮年表, 结合1952-2016年的气温和降水等气象资料, 利用响应分析、多元回归分析以及滑动相关分析等方法研究了影响南盘江流域云南松径向生长的关键气候因子及其对气候暖干化的响应规律。研究结果表明: 1985年以来, 研究区域气候暖干化特征明显, 气温上升和降水量下降的速率是1984年前的5和6倍, 年平均气温、年平均最高气温、年平均最低气温的上升速率为0.044、0.041和0.050 ℃·a -1, 年降水量的下降速率为 6.02 mm·a -1。气候暖干化使云南松的生长对温度响应的敏感度降低, 对水分响应的敏感度增强, 气温的解释率由暖干化前的44.95%下降到21.97%, 水分的解释率由暖干化前的55.05%上升到78.03%。暖干化增强了当年气候因子对径向生长的影响, 减弱了上年气候因子的影响, 与径向生长显著相关的当年气候因子增加了3个, 当年气候因子对径向生长的解释率增加了16.05%。暖干化减弱了云南松生长的“滞后效应”, 气候变化对树木生长影响的时效性增强。在5-7月和9-11月, 气候变暖使径向生长与气温、水分的响应关系变得不稳定。该研究可为气候暖干化区域云南松林的经营、管理以及区域气候重建提供理论依据和基础数据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号