首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
以H2O2为中心的活性氧(reactive oxygen species, ROS)的产生是动植物发育与响应外界生物与非生物胁迫的普遍 特征, 其在生理和分子2个水平上调控植物的发育和对外界胁迫的响应, 并与一系列信号转导过程相关联。作为关键的ROS产生酶, 质膜NADPH氧化酶(plasma membrane NADPH oxidase, PM-NOX)在植物应对各种生物和非生物胁迫中具有重要作用, 被广泛认为是胁迫条件下植物细胞ROS产生并积累的主要来源。该文简要综述了近年来人们在植物细胞ROS产生、清除、生理功能以及PM-NOX酶的结构特征与功能等方面的研究进展, 并认为H2O2-NOX系统是一种植物体内普遍存在的重要发育调控与胁迫响应机制。  相似文献   

2.
硫化氢(H2S)是继一氧化氮(NO)和一氧化碳(CO)之后第3个气体信号分子, 在植物体内参与许多重要的生理活动, 能够促进植物光合作用和有机物的积累, 缓解各种生物和非生物胁迫并促进植物生长发育。该文综述了植物体内H2S的物理化学性质、产生机制、主要生理功能和作用机制以及与其它信号分子的互作关系, 并展望了H2S信号分子的研究前景。  相似文献   

3.
作为新兴的气体信号分子,硫化氢(hydrogen sulfide, H2S)能够调节植物生长发育,广泛参与植物抵御生物及非生物胁迫的过程。琥珀酸脱氢酶(succinate dehydrogenase, SDH)结合于线粒体内膜,既是参与三羧酸循环的关键酶,也是氧化磷酸化过程的重要电子载体,在植物响应各类胁迫中发挥着重要作用。鉴于H2S与SDH参与调控的生理过程有很大相关性,本文以模式植物拟南芥为实验材料,对H2S与SDH之间的关系进行了探索。结果表明,在AtSDH1-1-OE中,H2S的关键生成酶编码基因LCD和DES1大量表达,且H2S产率和含量较WT显著升高。SDH抑制剂TTFA处理导致活性氧(ROS)大量产生,幼苗根的伸长受到极显著抑制,根发育生长基因RHD2、TRH和SCN1表达下调;而同时进行生理浓度的NaHS(H2S供体)熏蒸,能够清除过量ROS,幼苗生长有所恢复。但在AtSDH1-1-OE中,施加HT(H2S清除剂)后的...  相似文献   

4.
以高山冰缘植物高山离子芥(Chorispora bungeana)试管苗为实验材料,研究了0.3 mol·L-1甘露醇模拟干旱胁迫响应过程中硫化氢(H2S)调节高山离子芥的膜系统损伤程度、渗透调节物质和抗氧化酶系的作用,以及磷脂酶D(PLD)、活性氧(ROS)与H2S信号分子在高山离子芥中响应干旱胁迫中的作用和可能存在的信号关系。结果显示:干旱胁迫下,外施H2S供体NaHS显著降低高山离子芥电解质渗漏率及MDA含量、抑制ROS产生,提高渗透调节物质和抗氧化水平,从而增强高山离子芥的抗旱能力;干旱可诱导PLD活性、H2S含量、ROS发生显著变化;当分别外施PLD下游产物PA与ROS供体H2O2均可促进干旱胁迫下H2S的释放,当同时外施PA和ROS抑制剂DPI时对干旱胁迫下H2S含量没有显著影响,当同时外施PLD抑制剂正丁醇与ROS抑制剂DPI则显著抑制干旱胁迫下H2S含量的产生,表明干旱胁迫下,高山离子芥中ROS位于PLD的下游、H2S的上游发挥作用。  相似文献   

5.
硫化氢(H2S)作为一种新兴的气体信号分子,在植物体内主要由半胱氨酸脱巯基酶(CDes)降解半胱氨酸产生。已有报道表明,H2S信号与植物激素共同作用增强植物的镉(Cd)耐受。然而,H2S信号响应重金属Cd胁迫的作用机制尚缺乏系统研究。本文以拟南芥为实验材料,从不同水平探究H2S分子对Cd胁迫诱导氧化应激的保护作用。结果表明,CDes基因表达量和H2S的产率随CdCl2浓度升高而逐渐增加。重金属Cd胁迫导致幼苗干重降低约33%、体内过氧化氢显著增加、丙二醛含量升高约110%、超氧化物歧化酶活性增加约100%、谷胱甘肽还原酶活性和过氧化氢酶活性分别下降27%和21%,还原性谷胱甘肽含量随之显著降低。生理浓度NaHS(H2S供体)预处理显著缓解以上Cd胁迫产生的影响,使恢复到对照水平。同时,H2S处理可显著下调质膜中Cd转运蛋白(HMA4和IRT1)的表达,同时上调液泡膜中MRP3和CAX2的表达。利用非损伤微测技术测定植物根系Cd2+的流动速度和流动方向。结果显示,生理浓度的H2S显著抑制Cd2 +内流,最终表现为植物叶片和根中的Cd含量显著降低,分别下降了15%和38.4%。总之,在Cd胁迫条件下,H2S信号可激活植物体内的抗氧化酶促和非酶促系统,以清除细胞内H2O2。H2S对Cd2+转运和液泡区式化的调节,降低了体内Cd2+的浓度,减小Cd毒性对植物生长的影响。为理解农作物应对重金属胁迫的机制提供了新的思路。  相似文献   

6.
硫化氢(H2S)作为一种新兴的气体信号分子,在植物体内主要由半胱氨酸脱巯基酶(CDes)降解半胱氨酸产生。已有报道表明,H2S信号与植物激素共同作用增强植物的镉(Cd)耐受。然而,H2S信号响应重金属Cd胁迫的作用机制尚缺乏系统研究。本文以拟南芥为实验材料,从不同水平探究H2S分子对Cd胁迫诱导氧化应激的保护作用。结果表明,CDes基因表达量和H2S的产率随CdCl2浓度升高而逐渐增加。重金属Cd胁迫导致幼苗干重降低约33%、体内过氧化氢显著增加、丙二醛含量升高约110%、超氧化物歧化酶活性增加约100%、谷胱甘肽还原酶活性和过氧化氢酶活性分别下降27%和21%,还原性谷胱甘肽含量随之显著降低。生理浓度NaHS(H2S供体)预处理显著缓解以上Cd胁迫产生的影响,使恢复到对照水平。同时,H2S处理可显著下调质膜中Cd转运蛋白(HMA4和IRT1)的表达,同时上调液泡膜中MRP3和CAX2的表达。利用非损伤微测技术测定植物根系Cd2+的流动速度和流动方向。结果显示,生理浓度的H2S显著抑制Cd2 +内流,最终表现为植物叶片和根中的Cd含量显著降低,分别下降了15%和38.4%。总之,在Cd胁迫条件下,H2S信号可激活植物体内的抗氧化酶促和非酶促系统,以清除细胞内H2O2。H2S对Cd2+转运和液泡区式化的调节,降低了体内Cd2+的浓度,减小Cd毒性对植物生长的影响。为理解农作物应对重金属胁迫的机制提供了新的思路。  相似文献   

7.
活性氧(reactive oxygen species,ROS)是植物体代谢所产生的小分子化合物,既是生长发育和防御途径的关键调节因子,又是需氧代谢的有毒副产物。植物细胞的生理过程受一个被活性氧调节的氧化还原网状途径的调控,本文从植物体内ROS产生的部位与时空特异性、ROS信号与NO和Ca2+波信号的互作等方面综述了ROS信号对植物抗性的调控作用研究进展。  相似文献   

8.
线粒体是细胞进行氧化还原反应的主要场所,其数量、质量和功能的完整性对调节细胞内环境稳态和维持细胞正常生理功能发挥着重要作用。当机体受不利环境影响时,体内产生活性氧类(reactive oxygen species,ROS)和活性氮类(reactive nitrogen species,RNS)的水平显著增加,导致线粒体结构紊乱与功能障碍,引发机体氧化损伤,并且激活PINK1(PTEN induced putative kinase 1)/Parkin信号通路诱导的线粒体自噬,该通路同时也参与了细胞氧化损伤过程。该文从ROS与氧化应激、PINK1/Parkin通路与线粒体自噬及氧化损伤等方面展开,重点概述了PINK1/Parkin通路调控线粒体自噬在氧化损伤中的作用,为抗氧化产品的研发和机体氧化损伤相关疾病的防治提供新的思路与科学依据。  相似文献   

9.
氧化还原信号转导的分子机制   总被引:5,自引:0,他引:5  
氧化还原调控参与多种生物学过程,包括细胞增殖、分化和凋亡等的细胞信号转导和基因表达调控,因而在细胞生命活动中扮演着非常重要的角色。细胞内各种氧化还原介质,如活性氧(reactive oxygen species,ROS)和活性氮(reactive nitrogen species,RNS)等,能对多种蛋白质在半胱氨酸残基上进行可逆性修饰。ROS或RNS对靶蛋白的氧化还原修饰方式主要有巯基/二硫键转换反应、S-亚硝基化及谷胱甘肽化等,这些修饰方式构成了胞内氧化还原信号转导的主要机制。  相似文献   

10.
植物中参与活性氧调控的基因网络   总被引:4,自引:0,他引:4  
宋莉璐  张荃 《生命科学》2007,19(3):346-352
植物体内活性氧(reactive oxygen species,ROS)是氧化还原反应的必然副产物,具极高的活性和毒性,从而对细胞产生毒害。同时,活性氧作为信号分子对很多生理过程诸如植物生长发育、细胞程序化死亡及生物和非生物胁迫应答起调控作用。植物中ROS双重作用的协调机制目前尚不明确,确定的是细胞中ROS维持于稳定水平需要精细的调节。拟南芥中至少包括152个基因组成的网络参与ROS的调控,该网络具高度的灵活性和互补性。本文综述了ROS网络中鉴定的一些关键基因及细胞学定位和协同作用,ROS信号转导,尤其是叶绿体中ROS信号的调控。  相似文献   

11.
植物过氧化物酶体在活性氧信号网络中的作用   总被引:2,自引:0,他引:2  
过氧化物酶体是高度动态、代谢活跃的细胞器,主要参与脂肪酸等脂质的代谢及产生和清除不同的活性氧(reactive oxygen species, ROS)。ROS是细胞有氧代谢的副产物。当胁迫长期作用于植物,过量的ROS会引起氧胁迫,损害细胞结构和功能的完整性,导致细胞代谢减缓,活性降低,甚至死亡;但低浓度的ROS则作为分子信号,感应细胞ROS/氧化还原变化,从而触发由环境因素导致的过氧化物酶体动力学以及依赖ROS信号网络改变而产生快速、特异性的应答。ROS也可以通过直接或间接调节细胞生长来控制植物的发育,是植物发育的重要调节剂。此外,过氧化物酶体的动态平衡由ROS、过氧化物酶体蛋白酶及自噬过程调节,对于维持细胞的氧化还原平衡至关重要。本文就过氧化物酶体中ROS的产生和抗氧化剂的调控机制进行综述,以期为过氧化物酶体如何感知环境变化,以及在细胞应答中,ROS作为重要信号分子的研究提供参考。  相似文献   

12.
过氧化物酶体是高度动态、代谢活跃的细胞器,主要参与脂肪酸等脂质的代谢及产生和清除不同的活性氧(reactive oxygen species,ROS)。ROS是细胞有氧代谢的副产物。当胁迫长期作用于植物,过量的ROS会引起氧胁迫,损害细胞结构和功能的完整性,导致细胞代谢减缓,活性降低,甚至死亡;但低浓度的ROS则作为分子信号,感应细胞ROS/氧化还原变化,从而触发由环境因素导致的过氧化物酶体动力学以及依赖ROS信号网络改变而产生快速、特异性的应答。ROS也可以通过直接或间接调节细胞生长来控制植物的发育,是植物发育的重要调节剂。此外,过氧化物酶体的动态平衡由ROS、过氧化物酶体蛋白酶及自噬过程调节,对于维持细胞的氧化还原平衡至关重要。本文就过氧化物酶体中ROS的产生和抗氧化剂的调控机制进行综述,以期为过氧化物酶体如何感知环境变化,以及在细胞应答中,ROS作为重要信号分子的研究提供参考。  相似文献   

13.
硫化氢(H2S)被认为是一种无色具有臭鸡蛋气味的有毒气体,大量吸入可导致多种组织器官的损害,严重者可导致死亡。但近年来的研究表明,H2S在心血管系统具有多种生理和病理调节作用,是心血管功能调节的第三种气体信号分子,主要由酶促反应生成,受多种代谢途径调节。作为一种生理性血管调节因子,H2S具有抑制血管细胞增殖、凋亡和自噬,并调控血管张力的作用。H2S通路的下调参与了多种血管疾病的发病,如高血压、肺动脉高压、动脉粥样硬化等,并且可以通过补充H2S来调节血管张力,抑制血管炎症,防止血管细胞钙化、氧化应激和增殖以及调节血管细胞凋亡及焦亡,进而极大地帮助防治血管疾病,这一结论已在动物和细胞实验,甚至临床研究中得到验证。本文主要论述H2S在血管生理和病理生理中的作用及作用机制的研究现状,旨在为多种血管疾病的防治提供新的思路和启发。  相似文献   

14.
硫化氢(H2S)一直被认为是一种有毒气体,作为第三种气体信号分子,H2S在生物体中的生理功能逐渐被揭示。植物中H2S信号研究在不到10年时间已取得了长足进步。植物体内H2S的生成酶比动物细胞丰富,定位于细胞质、线粒体和叶绿体等多个亚细胞部位,表达具有时空性。目前,植物领域H2S的功能研究主要采用药理学方法。随着研究的深入,遗传学证据不断加强。内源H2S的研究手段也在不断进步,从亚甲基蓝间接测定,发展到气/液相色谱、荧光探针、活体电极等直接检测手段。植物中H2S的生理功能研究主要集中在对干旱、重金属等环境非生物胁迫的缓解作用及机理,也有一些植物生长发育调控方面的报道。目前了解到,H2S可通过与植物激素、其它气体信号分子、活性氧等相互作用以及蛋白质巯基化修饰等方式发挥生理功能。虽然植物气体信号的研究有其特殊性,也遇到很多困难,但是H2S信号的广泛而特殊的生理功能是一个具有重要科学意义和应用前景的研究领域。  相似文献   

15.
胡海涛  钱婷婷  杨玲 《植物学报》2022,57(3):320-326
活性氧(reactive oxygen species, ROS)是植物体内的一把“双刃剑”。ROS作为信号分子在植物生命活动中发挥关键作用, 但ROS过量积累会对生物大分子造成氧化损伤。准确测定ROS含量对于评估植物细胞内的氧化还原状态至关重要。由于植物体内ROS各组分半衰期短且反应活性强, 定性定量检测较为困难。因此, 选择合适的检测方法以提高检测的时空准确性非常重要。目前, 荧光分析法因其具有灵敏度高、选择性好、检出限低和直观性强等优点, 受到研究人员的广泛关注。该文详细描述基于流式细胞仪和激光共聚焦显微镜, 利用2′,7′-二氯二氢荧光素二乙酸酯(H2DCFDA)荧光探针检测水稻(Oryza sativa)体内ROS水平和时空分布的操作流程及注意事项。该技术也可用于直接检测拟南芥(Arabidopsis thaliana)、玉米(Zea mays)和大豆(Glycine max)等模式植物组织中ROS的水平和分布。  相似文献   

16.
为探究H2S信号在苜蓿(Medicago sativa)体内调节气孔运动的作用,及在此过程中H2S与Ca2+的关系,以蒺藜苜蓿(Medicago truncatula)的野生型和钙离子转运体突变体为试验材料,分别从转录水平、细胞水平和生理水平开展研究。采用qRT-PCR比较相关基因的表达量变化、荧光探针显示体内Ca2+含量、电极法测定H2S含量、光学显微镜观察和测量气孔孔径等。结果表明:蒺藜苜蓿突变体NF3011和NF2734体内H2S的含量与野生型相比极显著降低(P<0.01);H2S信号在一定程度上抑制钙离子转运体编码基因MTR_6g027580的表达;外源生理浓度H2S熏蒸可诱导蒺藜苜蓿气孔关闭,与Ca2+通道阻断剂LaCl3联合处理对野生型气孔运动未产生影响,而在突变体中的结果截然相反;利用荧光探针测定保卫细胞内的Ca2+含量,所得结果与气孔孔径的变化规律完全一致。综上所述,H2S信号促进叶片保卫细胞内Ca2+的含量增加,最终表现为植物气孔孔径变小,在此过程中胞内Ca2+含量变化主要通过Ca2+转运体进行,少部分依赖Ca2+离子通道。该研究结果不仅在理论上丰富了H2S信号的作用机制,更具应用于苜蓿生产实践并推广于其他作物的潜力。  相似文献   

17.
《植物生理学通讯》2009,(7):733-737
(http://mplant.oxfordjournals.org/content/vol2/issue3/index.dtl)1Chang C,Damiani I,Puppo A,Frendo P(2009).Redox changes during the legume-rhizobium symbiosis.MolPlant,3:370-377题目:豆荚-根瘤菌共生过程中氧化还原变化(综述)摘要:当植物应答生物和非生物胁迫以及进行有氧代谢的时候会持续产生活性氧(reactive oxygen species,ROS)。ROS不仅是有氧代谢的有毒产物,而且也是植物生长和适应环境的信号分子。  相似文献   

18.
以H2O2为中心的活性氧(reactive oxygen species,ROS)的产生是动植物发育与响应外界生物与非生物胁迫的普遍特征,其在生理和分子2个水平上调控植物的发育和对外界胁迫的响应,并与一系列信号转导过程相关联。作为关键的ROS产生酶,质膜NADPH氧化酶(plasma membrane NADPH oxidase,PM-NOX)在植物应对各种生物和非生物胁迫中具有重要作用,被广泛认为是胁迫条件下植物细胞ROS产生并积累的主要来源。该文简要综述了近年来人们在植物细胞ROS产生、清除、生理功能以及PM-NOX酶的结构特征与功能等方面的研究进展,并认为H2O2-NOX系统是一种植物体内普遍存在的重要发育调控与胁迫响应机制。  相似文献   

19.
硫化氢(hydrogen sulfide, H2S)是一种具有广泛生理功能的气体信号分子,在肿瘤的发生发展中起着关键作用,因此其代谢酶已成为多种肿瘤的药物治疗靶点。本文对H2S的合成和分解代谢途径及其在肿瘤中的双重作用进行了综述,进一步探讨了外源添加H2S供体化合物以及抑制内源性H2S合成作为抗肿瘤治疗的有效策略,可为临床上以H2S为靶点的肿瘤预防和治疗提供理论基础。  相似文献   

20.
哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)是整合细胞内外各种信号,调节蛋白质翻译与细胞生长增殖等多种生理活动的中心信号分子。活性氧类(reactive oxygen species,ROS)作为第二信使分子,可介导多种细胞信号通路并发挥广泛的生理效应。近年的研究发现ROS可通过一定的途径激活或抑制mTOR通路。而作为反馈调节,mTOR通路活性的轻度上调可促进细胞抗氧化物质的生成,而过度激活则会促进ROS生成,并增加细胞对氧化应激的敏感性,形成正反馈。本文将ROS与mTOR之间相互调节与相互作用的特点及机制的研究进展作一综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号