首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
The solution structure of the cytoplasmic B domain of the mannitol (Mtl) transporter (II(Mtl)) from the mannitol branch of the Escherichia coli phosphotransferase system has been solved by multidimensional NMR spectroscopy with extensive use of residual dipolar couplings. The ordered IIB(Mtl) domain (residues 375-471 of II(Mtl)) consists of a four-stranded parallel beta-sheet flanked by two helices (alpha(1) and alpha(3)) on one face and helix alpha(2) on the opposite face with a characteristic Rossmann fold comprising two right-handed beta(1)alpha(1)beta(2) and beta(3)alpha(2)beta(4) motifs. The active site loop is structurally very similar to that of the eukaryotic protein tyrosine phosphatases, with the active site cysteine (Cys-384) primed in the thiolate state (pK(a) < 5.6) for nucleophilic attack at the phosphorylated histidine (His-554) of the IIA(Mtl) domain through stabilization by hydrogen bonding interactions with neighboring backbone amide groups at positions i + 2/3/4 from Cys-384 and with the hydroxyl group of Ser-391 at position i + 7. Modeling of the phosphorylated state of IIB(Mtl) suggests that the phosphoryl group can be readily stabilized by hydrogen bonding interactions with backbone amides in the i + 2/4/5/6/7 positions as well as with the hydroxyl group of Ser390 at position i + 6. Despite the absence of any significant sequence identity, the structure of IIB(Mtl) is remarkably similar to the structures of bovine protein tyrosine phosphatase (which contains two long insertions relative to IIB(Mtl)) and the cytoplasmic B component of enzyme II(Chb), which fulfills an analogous role to IIB(Mtl) in the N,N'-diacetylchitobiose branch of the phosphotransferase system. All three proteins utilize a cysteine residue in the nucleophilic attack of a phosphoryl group covalently bound to another protein.  相似文献   

2.
The assignment of the side-chain NMR resonances and the determination of the three-dimensional solution structure of the C10S mutant of enzyme IIBcellobiose (IIBcel) of the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli are presented. The side-chain resonances were assigned nearly completely using a variety of mostly heteronuclear NMR experiments, including HCCH-TOCSY, HCCH-COSY, and COCCH-TOCSY experiments as well as CBCACOHA, CBCA(CO)NH, and HBHA(CBCA)(CO)NH experiments. In order to obtain the three-dimensional structure, NOE data were collected from 15N-NOESY-HSQC, 13C-HSQC-NOESY, and 2D NOE experiments. The distance restraints derived from these NOE data were used in distance geometry calculations followed by molecular dynamics and simulated annealing protocols. In an iterative procedure, additional NOE assignments were derived from the calculated structures and new structures were calculated. The final set of structures, calculated with approximately 2000 unambiguous and ambiguous distance restraints, has an rms deviation of 1.1 A on C alpha atoms. IIBcel consists of a four stranded parallel beta-sheet, in the order 2134. The sheet is flanked with two and three alpha-helices on either side. Residue 10, a cysteine in the wild-type enzyme, which is phosphorylated during the catalytic cycle, is located at the end of the first beta-strand. A loop that is proposed to be involved in the binding of the phosphoryl-group follows the cysteine. The loop appears to be disordered in the unphosphorylated state.  相似文献   

3.
Enzyme II permeases of the phosphoenolpyruvate:glycose phosphotransferase system comprise one to five separately encoded polypeptides, but most contain similar domains (IIA, IIB, and IIC). The phosphoryl group is transferred from one domain to another, with histidine as the phosphoryl acceptor in IIA and cysteine as the acceptor in certain IIB domains. IIB(Chb) is a phosphocarrier in the uptake/phosphorylation of the chitin disaccharide, (GlcNAc)(2) by Escherichia coli and is unusual because it is separately encoded and soluble. Both the crystal and solution structures of a IIB(Chb) mutant (C10S) have been reported. In the present studies, homogeneous phospho-IIB(Chb) was isolated, and the phosphoryl-Cys linkage was established by (31)P NMR spectroscopy. Rate constants for the hydrolysis of phospho-IIB(Chb) plotted versus pH gave the same shape peak reported for the model compound, butyl thiophosphate, but was shifted about 4 pH units. Evidence is presented for a stable complex between homogeneous Cys10SerIIB(Chb) (which cannot be phosphorylated) and phospho-IIA(Chb), but not with IIA(Chb). The complex (a tetramer (3)) contains equimolar quantities of the two proteins and has been chemically cross-linked. It appears to be an analogue of the transition state complex in the reaction: phospho-IIA(Chb) + IIB(Chb) <--> IIA(Chb) + phospho-IIB(Chb). This is apparently the first report of the isolation of a transition state analogue in a protein-protein phosphotransfer reaction.  相似文献   

4.
The solution structure of a stably phosphorylated form of the cytoplasmic B domain of the mannitol-specific transporter (IIB(Mtl)) of the Escherichia coli phosphotransferase system, containing a mutation of the active site Cys384 to Ser, has been solved by NMR. The strategy employed relies principally on backbone residual dipolar couplings recorded in three different alignment media, supplemented by nuclear Overhauser enhancement data and torsion angle restraints related specifically to the active site loop (residues 383-393). As judged from the dipolar coupling data, the remainder of the structure is unchanged upon phosphorylation within the errors of the coordinates of the previously determined solution structure of unphosphorylated wild-type IIB(Mtl). Thus, only the active site loop was refined. Phosphorylation results in a backbone atomic rms shift of approximately 0.7 angstroms in the active site loop. The resulting conformation is less than 0.5 angstroms away from the equivalent P-loop in both the low and high molecular mass eukaryotic tyrosine phosphatases. 3J(NP) coupling constant measurements using quantitative J-correlation spectroscopy provide a direct demonstration of a hydrogen bond between the phosphoryl group and the backbone amide of Ser391 at position i + 7 from phospho-Ser384, with an approximately linear P-O-H(N) bond angle. The structure also reveals additional hydrogen bonding interactions involving the backbone amides of residues at positions i + 4 and i + 5, and the hydroxyl groups of two serine residues at positions i + 6 and i + 7 that stabilize the phosphoryl group.  相似文献   

5.
Pochapsky TC  Jain NU  Kuti M  Lyons TA  Heymont J 《Biochemistry》1999,38(15):4681-4690
A refined model for the solution structure of oxidized putidaredoxin (Pdxo), a Cys4Fe2S2 ferredoxin, has been determined. A previous structure (Pochapsky et al. (1994) Biochemistry 33, 6424-6432; PDB entry ) was calculated using the results of homonuclear two-dimensional NMR experiments. New data has made it possible to calculate a refinement of the original Pdxo solution structure. First, essentially complete assignments for diamagnetic 15N and 13C resonances of Pdxo have been made using multidimensional NMR methods, and 15N- and 13C-resolved NOESY experiments have permitted the identification of many new NOE restraints for structural calculations. Stereospecific assignments for leucine and valine CH3 resonances were made using biosynthetically directed fractional 13C labeling, improving the precision of NOE restraints involving these residues. Backbone dihedral angle restraints have been obtained using a combination of two-dimensional J-modulated 15N,1H HSQC and 3D (HN)CO(CO)NH experiments. Second, the solution structure of a diamagnetic form of Pdx, that of the C85S variant of gallium putidaredoxin, in which a nonligand Cys is replaced by Ser, has been determined (Pochapsky et al. (1998) J. Biomol. NMR 12, 407-415), providing information concerning structural features not observable in the native ferredoxin due to paramagnetism. Third, a crystal structure of a closely related ferredoxin, bovine adrenodoxin, has been published (Müller et al. (1998) Structure 6, 269-280). This structure has been used to model the metal binding site structure in Pdx. A family of fourteen structures is presented that exhibits an rmsd of 0.51 A for backbone heavy atoms and 0.83 A for all heavy atoms. Exclusion of the modeled metal binding loop region reduces overall the rmsd to 0.30 A for backbone atoms and 0.71 A for all heavy atoms.  相似文献   

6.
The solution conformation of a synthetic snake venom toxin waglerin I, has been determined by using proton nuclear magnetic resonance spectroscopy. By y a combination of various two-dimensional NMR techniques, the 1H-NMR spectrum of waglerin I was completely assigned. A set of 247 interproton distance restraints was derived from nuclear Overhauser enhancement (NOE) measurements. These NOE constraints, in addition to the 2 dihedral angle restraints (from coupling constant measurements) and 7 ω torsion angle restraints for prolines, formed the basis of three-dimensional structure determined by molecular dynamics techniques. The 19 structures that were obtained satisfy the experimental restraints, and display small deviation from idealized covalent geometry. Analysis of converged structures indicates that the toxin has no special secondary structure. In the solution structure of waglerin I, the central ring region is well defined but the N- and C-termini possesses more disorder.  相似文献   

7.
Solution structure and dynamics of melanoma inhibitory activity protein   总被引:2,自引:0,他引:2  
Melanoma inhibitory activity (MIA) is a small secreted protein that is implicated in cartilage cell maintenance and melanoma metastasis. It is representative of a recently discovered family of proteins that contain a Src Homologous 3 (SH3) subdomain. While SH3 domains are normally found in intracellular proteins and mediate protein-protein interactions via recognition of polyproline helices, MIA is single-domain extracellular protein, and it probably binds to a different class of ligands.Here we report the assignments, solution structure, and dynamics of human MIA determined by heteronuclear NMR methods. The structures were calculated in a semi-automated manner without manual assignment of NOE crosspeaks, and have a backbone rmsd of 0.38 Å over the ordered regions of the protein. The structure consists of an SH3-like subdomain with N- and C-terminal extensions of approximately 20 amino acids each that together form a novel fold. The rmsd between the solution structure and our recently reported crystal structure is 0.86 Å over the ordered regions of the backbone, and the main differences are localized to the most dynamic regions of the protein. The similarity between the NMR and crystal structures supports the use of automated NOE assignments and ambiguous restraints to accelerate the calculation of NMR structures.  相似文献   

8.
The solution structure of recombinant wild-type hirudin and of the putative active site mutant Lys-47----Glu has been investigated by nuclear magnetic resonance (NMR) spectroscopy at 600 MHz. The 1H NMR spectra of the two hirudin variants are assigned in a sequential manner with a combination of two-dimensional NMR techniques. Some assignments made in our previous paper [Sukumaran, D. K., Clore, G. M., Preuss, A., Zarbock, J., & Gronenborn, A. M. (1987) Biochemistry 26, 333-338] were found to be incorrect and are now corrected. Analysis of the NOE data indicates that hirudin consists of an N-terminal compact domain (residues 1-49) held together by three disulfide linkages and a disordered C-terminal tail (residues 50-65) which does not fold back on the rest of the protein. This last observation corrects conclusions drawn by us previously on hirudin extracted from its natural source, the leech Hirudo medicinalis. The improved sensitivity of the 600-MHz spectrometer relative to that of our old 500-MHz spectrometer, the availability of two variants with slightly different chemical shifts, and the additional information arising from stereospecific assignments of methylene beta-protons and methyl protons of valine have permitted the determination of the solution structure of hirudin with much greater precision than before. Structure calculations on the N-terminal domain using the hybrid distance geometry-dynamical simulated annealing method were based on 685 and 661 approximate interproton distance restraints derived from nuclear Overhauser enhancement (NOE) data for the wild-type and mutant hirudin, respectively, together with 16 distance restraints for 8 backbone hydrogen bonds identified on the basis of NOE and amide NH exchange data and 26 phi backbone and 18 chi 1 side-chain torsion angle restraints derived from NOE and three-bond coupling constant data. A total of 32 structures were computed for both the wild-type and mutant hirudin. The structure of residues 2-30 and 37-48 which form the core of the N-terminal domain is well determined in both cases with an average atomic rms difference between the individual structures and the respective mean structures of approximately 0.7 A for the backbone atoms and approximately 1 A for all atoms. As found previously, the orientation of the exposed finger of antiparallel beta-sheet (residues 31-36) with respect to the core could not be determined on the basis of the present data due to the absence of any long-range NOEs between the exposed finger and the core.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Adler M 《Proteins》2000,39(4):385-392
In an ideal world, every NOE cross peak would have a unique assignment. However, the interpretation of NOE peaks is frequently complicated by overlapping resonances. In theory, ambiguous assignments could be resolved by performing separate structure calculations with each possible interpretation. Unfortunately, this would require an astronomical amount of computing time. A modified genetic algorithm has been developed that efficiently resolves hundreds of ambiguous restraints in parallel. Each NOE assignment becomes a gene that can be passed on to a new generation. New individuals are constructed by making a constraint lists from a subset of the genes. The constraint lists are then tested for self-consistency by using molecular dynamics to generate new structures for each list. To a first-degree approximation, there is enough information retained in each list to determine the global fold of the protein. Self-consistent constraint lists receive higher scores and their genes (or NOEs) stand a better chance of surviving into the next generation. The process selects NOEs that are consistent with the global fold. Under normal conditions, the program converges in 3 to 8 generations using 70 structures per generation. The final constraints are self-consistent and contain almost no residual NOE violations.  相似文献   

10.
The proton and nitrogen (15NH-H alpha-H beta) resonances of bacteriophage T4 lysozyme were assigned by 15N-aided 1H NMR. The assignments were directed from the backbone amide 1H-15N nuclei, with the heteronuclear single-multiple-quantum coherence (HSMQC) spectrum of uniformly 15N enriched protein serving as the master template for this work. The main-chain amide 1H-15N resonances and H alpha resonances were resolved and classified into 18 amino acid types by using HMQC and 15N-edited COSY measurements, respectively, of T4 lysozymes selectively enriched with one or more of alpha-15N-labeled Ala, Arg, Asn, Asp, Gly, Gln, Glu, Ile, Leu, Lys, Met, Phe, Ser, Thr, Trp, Tyr, or Val. The heteronuclear spectra were complemented by proton DQF-COSY and TOCSY spectra of unlabeled protein in H2O and D2O buffers, from which the H beta resonances of many residues were identified. The NOE cross peaks to almost every amide proton were resolved in 15N-edited NOESY spectra of the selectively 15N enriched protein samples. Residue specific assignments were determined by using NOE connectivities between protons in the 15NH-H alpha-H beta spin systems of known amino acid type. Additional assignments of the aromatic proton resonances were obtained from 1H NMR spectra of unlabeled and selectively deuterated protein samples. The secondary structure of T4 lysozyme indicated from a qualitative analysis of the NOESY data is consistent with the crystallographic model of the protein.  相似文献   

11.
One bottleneck in NMR structure determination lies in the laborious and time-consuming process of side-chain resonance and NOE assignments. Compared to the well-studied backbone resonance assignment problem, automated side-chain resonance and NOE assignments are relatively less explored. Most NOE assignment algorithms require nearly complete side-chain resonance assignments from a series of through-bond experiments such as HCCH-TOCSY or HCCCONH. Unfortunately, these TOCSY experiments perform poorly on large proteins. To overcome this deficiency, we present a novel algorithm, called Nasca (NOE Assignment and Side-Chain Assignment), to automate both side-chain resonance and NOE assignments and to perform high-resolution protein structure determination in the absence of any explicit through-bond experiment to facilitate side-chain resonance assignment, such as HCCH-TOCSY. After casting the assignment problem into a Markov Random Field (MRF), Nasca extends and applies combinatorial protein design algorithms to compute optimal assignments that best interpret the NMR data. The MRF captures the contact map information of the protein derived from NOESY spectra, exploits the backbone structural information determined by RDCs, and considers all possible side-chain rotamers. The complexity of the combinatorial search is reduced by using a dead-end elimination (DEE) algorithm, which prunes side-chain resonance assignments that are provably not part of the optimal solution. Then an A* search algorithm is employed to find a set of optimal side-chain resonance assignments that best fit the NMR data. These side-chain resonance assignments are then used to resolve the NOE assignment ambiguity and compute high-resolution protein structures. Tests on five proteins show that Nasca assigns resonances for more than 90% of side-chain protons, and achieves about 80% correct assignments. The final structures computed using the NOE distance restraints assigned by Nasca have backbone RMSD 0.8–1.5 Å from the reference structures determined by traditional NMR approaches.  相似文献   

12.
The solution conformation of the antibacterial polypeptide cecropin A from the Cecropia moth is investigated by nuclear magnetic resonance (NMR) spectroscopy under conditions where it adopts a fully ordered structure, as judged by previous circular dichroism studies [Steiner, H. (1982) FEBS Lett. 137, 283-287], namely, 15% (v/v) hexafluoroisopropyl alcohol. By use of a combination of two-dimensional NMR techniques the 1H NMR spectrum of cecropin A is completely assigned. A set of 243 approximate interproton distance restraints is derived from nuclear Overhauser enhancement (NOE) measurements. These, together with 32 distance restraints for the 16 intrahelical hydrogen bonds identified on the basis of the pattern of short-range NOEs, form the basis of a three-dimensional structure determination by dynamical simulated annealing [Nilges, M., Clore, G.M., & Gronenborn, A.M. (1988) FEBS Lett. 229, 317-324]. The calculations are carried out starting from three initial structures, an alpha-helix, an extended beta-strand, and a mixed alpha/beta structure. Seven independent structures are computed from each starting structure by using different random number seeds for the assignments of the initial velocities. All 21 calculated structures satisfy the experimental restraints, display very small deviations from idealized covalent geometry, and possess good nonbonded contacts. Analysis of the 21 converged structure indicates that there are two helical regions extending from residues 5 to 21 and from residues 24 to 37 which are very well defined in terms of both atomic root mean square differences and backbone torsion angles. For the two helical regions individually the average backbone rms difference between all pairs of structures is approximately 1 A. The long axes of the two helices lie in two planes, which are at an angle of 70-100 degrees to each other. The orientation of the helices within these planes, however, cannot be determined due to the paucity of NOEs between the two helices.  相似文献   

13.
14.
Determining an accurate initial native-like protein fold is one of the most important and time-consuming steps of de novo NMR structure determination. Here we demonstrate that high-quality native-like models can be rapidly generated from initial structures obtained using limited NOE assignments, through replica exchange molecular dynamics refinement with a generalized Born implicit solvent (REX/GB). Conventional structure calculations using an initial sparse NOE set were unable to identify a unique topology for the zinc-bound C-terminal domain of E. coli chaperone Hsp33, due to a lack of unambiguous long range NOEs. An accurate overall topology was eventually obtained through laborious hand identification of long range NOEs. However we were able to obtain high-quality models with backbone RMSD values of about 2 Å with respect to the final structures, using REX/GB refinement with the original limited set of initial NOE restraints. These models could then be used to make further assignments of ambiguous NOEs and thereby speed up the structure determination process. The ability to calculate accurate starting structures from the limited unambiguous NOE set available at the beginning of a structure calculation offers the potential of a much more rapid and automated process for NMR structure determination. Jianhan Chen: Authors contributed equally to this work.Hyung-Sik Won: Authors contributed equally to this work.  相似文献   

15.
The solution structure of a synthetic 36-residue polypeptide comprising the C-terminal cellulose binding domain of cellobiohydrolase I (CT-CBH I) from Trichoderma reesei was investigated by nuclear magnetic resonance (NMR) spectroscopy. The 1H NMR spectrum was completely assigned in a sequential manner by two-dimensional NMR techniques. A large number of stereospecific assignments for beta-methylene protons, as well as ranges for the phi, psi, and chi 1 torsion angles, were obtained on the basis of sequential and intraresidue nuclear Overhauser enhancement (NOE) and coupling constant data in combination with a conformational data base search. The structure calculations were carried out in an iterative manner by using the hybrid distance geometry-dynamical simulated annealing method. This involved computing a series of initial structures from a subset of the experimental data in order to resolve ambiguities in the assignments of some NOE cross-peaks arising from chemical shift degeneracy. Additionally, this permitted us to extend the stereospecific assignments to the alpha-methylene protons of glycine using information on phi torsion angles derived from the initial structure calculations. The final experimental data set consisted of 554 interproton distance restraints, 24 restraints for 12 hydrogen bonds, and 33 phi, 24 psi, and 25 chi 1 torsion angle restraints. CT-CBH I has two disulfide bridges whose pairing was previously unknown. Analysis of structures calculated with all three possible combinations of disulfide bonds, as well as without disulfide bonds, indicated that the correct disulfide bridge pairing was 8-25 and 19-35. Forty-one structures were computed with the 8-25 and 19-35 disulfide bridges, and the average atomic rms difference between the individual structures and the mean structure obtained by averaging their coordinates was 0.33 +/- 0.04 A for the backbone atoms and 0.52 +/- 0.06 A for all atoms. The protein has a wedgelike shape with an amphiphilic character, one face being predominantly hydrophilic and the other mainly hydrophobic. The principal element of secondary structure is made up of an irregular triple-stranded antiparallel beta-sheet composed of residues 5-9 (beta 1), 24-28 (beta 2), and 33-36 (beta 3) in which strand beta 3 is hydrogen bonded to the other two strands.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The solution structure of neuronal bungarotoxin (nBgt) has been studied by using two-dimensional 1H NMR spectroscopy. Sequence-specific assignments for over 95% of the backbone resonances and 85% of the side-chain resonances have been made by using a series of two-dimensional spectra at four temperatures. From these assignments over 75% of the NOESY spectrum has been assigned, which has in turn provided 582 distance constraints. Twenty-seven coupling constants (NH-alpha CH) were determined from the COSY spectra, which have provided dihedral angle constraints. In addition, hydrogen exchange experiments have suggested the probable position of hydrogen bonds. The NOE constraints, dihedral angle constraints, and the rates of amide proton exchange suggest that a triple-stranded antiparallel beta sheet is the major component of secondary structure, which includes 25% of the amino acid residues. A number of NOE peaks were observed that were inconsistent with the antiparallel beta-sheet structure. Because we have confirmed by sedimentation equilibrium that nBgt exists as a dimer, we have reinterpreted these NOE constraints as intermolecular interactions. These constraints suggest that the dimer consists of a six-stranded antiparallel beta sheet (three from each monomer), with residues 55-59 forming the dimer interface.  相似文献   

17.
Application of two-dimensional nuclear Overhauser enhancement (NOE) spectroscopy to yeast tRNAPhe in H2O solution demonstrates that all imino-proton resonances, related to the secondary structure, and nearly all imino proton resonances, originating from the tertiary structure, can be assigned efficiently by this method. The results corroborate the assignments of the imino-proton resonances of this tRNA as established previously by one-dimensional NOE experiments (only the assignment of base pairs G1 X C72 and C2 X G71 should be reversed). The advantages of two-dimensional NOE spectroscopy over one-dimensional NOE spectroscopy for the assignments of imino-proton resonances and the structure elucidation of tRNA are illustrated and discussed. Furthermore, the use of non-exchangeable proton resonances as probes of the molecular structure is explored.  相似文献   

18.
Identification of I:A mismatch base-pairing structure in DNA   总被引:7,自引:0,他引:7  
Deoxyoligonucleotides containing deoxyinosine residues at positions corresponding to ambiguous nucleotides derived from an amino acid sequence have been successfully used as hybridization probes. It is assumed that the hypoxanthine residue can make base pairs with multiple bases. In order to obtain direct evidence for I:A base-pairing, a self-complementary deoxyoligonucleotide, d(G-G-I-A-C-C), was synthesized and its properties were examined by NMR spectroscopy. Three hydrogen-bonded imino proton resonances are observed at low temperatures in H2O suggesting the formation of a self-duplex with complete base pairing. Nuclear Overhauser effect (NOE) experiments showed that a signal at 15.1 ppm originated from the imino proton (H1) of the dI residue (I3) which is hydrogen-bonded to the dA residue (A4). Both the I3 and A4 residues were assumed to have taken an anti glycosidic conformation since irradiating the H1 of I3 gave NOEs both to its own H2 and to that of A4, an NOE also being observed between the H2 protons of I3 and A4. Comparison of the 31P NMR spectra of d(G-G-I-A-C-C) and d(G-G-I-C-C-C) showed the backbone structure of d(G-G-I-A-C-C) to have been disturbed by the presence of purine:purine base pairs in the middle of the hexamer duplex.  相似文献   

19.
The local structure within an 8-A radius around residue 45 of a recombinant F45W variant of human ubiquitin has been determined using 67 interproton distance restraints measured by two-dimensional proton NMR. Proton chemical shift evidence indicates that structural perturbations due to the F45W mutation are minimal and limited to the immediate vicinity of the site of mutation. Simulated annealing implemented with stochastic boundary molecular dynamics was applied to refine the structure of Trp 45 and 10 neighboring residues. The stochastic boundary method allowed the entire protein to be reassembled from the refined coordinates and the outlying unrefined coordinates with little distortion at the boundary. Refinement began with four low-energy indole ring orientations of F45W-substituted wild-type (WT) ubiquitin crystal coordinates. Distance restraints were derived from mostly long-range NOE cross peaks with 51 restraints involving the Trp 45 indole ring. Tandem refinements of 64 structures were done using either (1) upper and lower bounds derived from qualitative inspection of NOE crosspeak intensities or (2) quantitative analysis of cross-peak heights using the program MARDIGRAS. Though similar to those based on qualitative restraint, structures obtained using quantitative NOE analysis were superior in terms of precision and accuracy as measured by back-calculated sixth-root R factors. The six-membered portion of the indole ring is nearly coincident with the phenyl ring of the WT and the indole NH is exposed to solvent. Accommodation of the larger ring is accompanied by small perturbations in the backbone and a 120 degrees rotation of the chi 2 dihedral angle of Leu 50.  相似文献   

20.
K H Mayo 《Biochemistry》1985,24(14):3783-3794
When H2O-exchanged, lyophilized mouse epidermal growth factor (mEGF) is dissolved in deuterium oxide at low pH (i.e., below approximately 6.0), 13 well-resolved, amide proton resonances are observed in the downfield region of an NMR spectrum (500 MHz). Under the conditions of these experiments, the lifetimes of these amide protons in exchange for deuterons of the deuterium oxide solvent suggest that these amide protons are hydrogen-bonded, backbone amide protons. Several of these amide proton resonances show splittings (i.e., JNH alpha-CH) of approximately 8-10 Hz, indicating that their associated amide protons are in some type of beta-structure. Selective nuclear Overhauser effect (NOE) experiments performed on all amide proton resonances strongly suggest that all 13 of these backbone amide protons are part of a single-tiered beta-sheet structural domain in mEGF. Correlation of 2D NMR correlated spectroscopy data, identifying scaler coupled protons, with NOE data, identifying protons close to the irradiated amide protons, allows tentative assignment of some resonances in the NOE difference spectra to specific amino acid residues. These data allow a partial structural model of the tiered beta-sheet domain in mEGF to be postulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号