首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During investigations on the catabolism of carbohydrate by the bacteria of the genus Erwinia, it was found that a large amount of 2-ketogluconic acid was aerobically produced from glucose by several strains of the Erwinia amylovora group of bacteria, while no production of 5-ketogluconic acid was ascertained in their growing cultures.  相似文献   

2.
Ferrario-Méry  S.  Suzuki  A.  Kunz  C.  Valadier  M.H.  Roux  Y.  Hirel  B.  Foyer  C.H. 《Plant and Soil》2000,221(1):67-79
Tobacco (Nicotiana tabacum) plants expressing a partial ferredoxin-dependent glutamine-2-oxoglutarate aminotransferase (Fd-GOGAT) cDNA in the antisense orientation under the control of the 35S promoter, were used to study the metabolism of amino acids, 2-oxoglutarate and ammonium following the transition from CO2 enrichment (where photorespiration is inhibited) to air (where photorespiration is a major process of ammonium production in leaves). The leaves of the lowest Fd-GOGAT expressors accumulated more foliar glutamine (Gln) and α-ketoglutarate (α-KG) than the untransformed controls in both growth conditions. Photorespiration-dependent increases in foliar ammonium, glutamine, α-KG and total amino acids were proportional to the decreases in foliar Fd-GOGAT activity. No change in endoprotease activity was observed following transfer to air in the Fd-GOGAT transformants or the untransformed controls which has similar activities over a broad range of pH values. We conclude that several pathways of amino acid biosynthesis are modified when NH3 + and Gln accumulate in leaves. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Klebsiella aerogenes NCTC 418 was grown in chemostat cultures (D=0.17 hr-1; pH 6.8; 35° C) that were, successively, carbon-, sulphate-, ammonia-, and phosphate-limited, and which contained as the sole carbon-substrate first glucose, then glycerol, mannitol and lactate. Quantitative analyses of carbon-substrate used and products formed allowed carbon balances to be constructed and direct comparisons to be made of the effciency of substrate utilization. With all sixteen cultures, carbon recoveries of better than 90% were obtained.Optimum utilization of the carbon substrate was invariably found with the carbon-limited cultures, the sole products being organisms and carbon dioxide. But the extent to which excess substrate was over-utilized varied markedly with both the nature of the growth-limitation and the identity of the carbon-substrate. In general, sulphate-, ammonia-, and phosphate-limited cultures utilized glycerol more efficiently than mannitol, mannitol better than lactate, and glucose least efficiently. Glucose-containing cultures also synthesized some extracellular polysaccharide.When the carbon source was in excess, a range of acidic compounds generally were excreted. Sulphate-limited cultures, growing on glucose, excreted much pyruvate and acetate, whereas similarly-limited cultures growing on glycerol, mannitol or lactate produced only acetate. Ammonialimited cultures invariably excreted 2-oxoglutarate and acetate, whereas phosphate-limited cultures produced gluconic acid, 2-ketogluconic acid and acetate, when growing on glucose, but only acetate when growing on mannitol or lactate.From the rates of substrate and oxygen consumption, and the rates of cell synthesis, yield values for both substrate and oxygen were calculated. These showed different trends, but were similar in being highest under carbon-limitation and substantially lower under all other limitations.The physiological significance of these findings, and the probable nature of the regulatory mechanisms underlying overflow metabolism are discussed.  相似文献   

4.
Growth of Pseudomonas fluorescens in batch culture with glucose and organic acids resulted in typical diauxic responses at 30° C but no detectable diauxic lag at 5° C.At 30° C, organic acids were preferentially utilized during the first growth phase. Glucose utilization was delayed unitl onset of the second growth phase. Systems involved in direct uptake and catabolism of glucose responded in a manner compatible with respression by malate and/or its metabolites and induction by glucose and/or its metabolites. The oxidative non-phosphorylated pathway, through gluconate and 2-ketogluconate (2-KG) as intermediates, was not induced during either growth phase.At 5° C, growth with glucose and organic acids was biphasic but without diauxic lag. Organic acids were preferentially utilized during the first growth phase. Although carbon from glucose was not fully catabolized until onset of the second growth phase, glucose was oxidized to and accumulated extracellularly as gluconate and 2-KG during the first growth phase. No significant repression of glucose-catabolizing enzymes was observed during growth with organic acids in the presence of glucose. However, uptake activities for gluconate and 2-KG did not increase significantly until onset of the second growth phase.Thus, at low temperatures, psychrotrophic P. fluorescens oxidized glucose to extracellular 2-KG, while growing on preferred carbon sources. The 2-KG was then catabolized after depletion of the organic acid.  相似文献   

5.
Serpentine soils, which contain relatively high concentrations of nickel and some other metals, are the preferred substrate for some plants, especially those that accumulate Ni in their tissues. In temperate regions more Ni-hyperaccumulator plants are found in Alyssum than in any other genus. In this study, serpentine soils of two areas (Marivan and Dizaj) in the west/northwest of Iran and also perennial Alyssum plants growing on these soils were analyzed for Ni and some other metals. The highest concentrations of total metals in the soils of these areas for Ni, Cr, Co and Mn were 1,350, 265, 94 and 1,150 μg g−1, respectively, while concentrations of Fe, Mg and Ca reached 3.55%, 16.8% and 0.585% respectively. The concentration of exchangeable Ni in these soils is up to 4.5 μg g−1. In this study two Alyssum species, A. inflatum and A. longistylum, have been collected from Marivan and Dizaj, respectively. Analysis of leaf dry matter shows that they can contain up to 3,700 and 8,100 μg Ni g−1, respectively. This is the first time that such high Ni concentrations have been found in these species. The concentrations of other metals determined in these species were in the normal range for serpentine plants, except for Ca, which was higher, up to 5.3% and 3.5%, respectively  相似文献   

6.
It was assumed in the study that heavy metals occurring in soils and the air accumulate in grasses constituting the main species used in the turfing of soil in road verges and embankments along traffic routes and in other parts of urbanized areas. The aim of the present study was to assess the bioaccumulation of Cu, Pb, and Zn in three selected lawn cultivars of five grass species and in the soil of the roadside green belt in terms of soil properties and heavy metal uptake by plants in the aspect of determining their usefulness in protecting the soils from contamination caused by motor vehicle traffic. Samples of the plant material and soil were collected for chemical analysis in the autumn of 2018 (October) on the embankment along National Road No. 17 between Piaski and ?opiennik (Poland), where 15 lawn cultivars of five grass species had been sown 2 years earlier. During the study, Cu, Pb, and Zn levels were determined in the aboveground biomass of the grasses under study and in the soil beneath these grasses (the 0–20 cm layer). All the grass species under study can thus be regarded as accumulators of Cu and Zn because the levels of these elements in the aboveground biomass of the grasses were higher than in the soil beneath these grasses. The present study demonstrates that the grasses can accumulate a large amount of Cu and Zn from soils and transfer it to the aboveground biomass. Tested species of grasses are not a higher bioaccumulators for Pb. The best grass species for the sowing of roadsides embankment, with the highest BCF values for the studied metals, is Lolium perenne (Taya variety).  相似文献   

7.
134Caesium chloride solution was injected into the surface of a peaty podzol at 3 cm depth with 5 cm spacing over a M2 at two upland sites, one of which had been fertilized and reseeded. The movement of radio caesium in the soil was subsequently followed by coring and/or taking out 10-cm square blocks at monthly intervals over a period of 2 years. There was very little movement of the caesium down the profile, with more than 95% remaining at the point of application. Lateral movement was also minimal. The caesium did not concentrate in the roots. Samples of herbage collected from the surface during the growing season showed a progressively decreasing concentration of caesium over the period. Total caesium removed in herbage amounted to 3.5 and 0.6% of the original present for the improved and umimproved soils, respectively.The extractability of the caesium from the 134Cs-amended peaty soil was compared with that from a low-ash peat which had been treated with the radionuclide for 2 months. Initially 1 M ammonium acetate (pH 7.2) extracted 30 and 56% of the Cs from 0–3 and 3–6 horizous of the improved peaty podzol, respectively. After 5 months only about 12 and 7% of the Cs was extracted by 1 M ammonium acetate and 4 and 1% by 0.1 M sodium pyrophosphate from the 0–3 and 3–6 cm horizons, respectively. After 24 months 1 M ammonium acetate extracted 1.6 and 3.3% of the Cs from the 0–3 and 3–6 cm horizons, respectively. In contrast, the values for the peat after 2 months were 100 and 80% for 1 M ammonium acetate and 0.1 M pyrophosphate, respectively.  相似文献   

8.
Soil fungi accumulate radiocaesium from contaminated soil and it has been hypothesised that this may alter the plant availability and movement of the radionuclide in soil. The effect of twice-monthly addition of an aqueous suspension of the fungicide ‘Captan’ on the changes in a peaty podzol soil at 2 sites, contaminated 2 or 3 years earlier by the injection of 134Cs, has been quantified. The sites had different soil acidity and vegetation cover. The less acid soil (pHwater 5.0) had been improved by the addition of lime and fertilizer and was reseeded with grass and clover. The more acid soil (pHwater 3.8) was under hill grasses, herbs and heather. On both sites the addition of fungicide did not alter the amount or concentration of radiocaesium in plant material sampled monthly or the depth distribution of radiocaesium in the soil profile. The concentration of the fungal constituent, ergosterol, in the soil, measured monthly, was unaffected by the fungicide treatment but evidence was obtained from a pot experiment to show that ergosterol decomposes slowly in cold, wet soils. On the more acid soil, two weeks after the last application of fungicide, there was a decline in active fungi as measured by fluorescein diacetate staining. Chloroform fumigation of the more acid soil resulted in a small increase in the amount of 134Cs exchangeable with 1 M ammonium acetate. Radiocaesium in seven different fungi grown in pure culture was found to be almost entirely extractable (> 95%) with 1 M ammonium acetate. Another, Amanita rubescens, showed some retention and 88% was extractable. These findings do not preclude the fungal biomass as an important soil component controlling plant availability of radiocaesium from acid, organic soils by maintaining radiocaesium in a biological cycle, but make it unlikely that any fixation by fungi in a chemical sense is involved.  相似文献   

9.
Five annual clover species from Ethiopia and Kenya were evaluated in greenhouse studies for biomass production, water use efficiency, and total nitrogen (N) accumulation when grown under different moisture conditions. Two Ethiopian highland soils (Nitosol and Vertisol) were maintained under either high or low soil moisture conditions until maturity. The largest biomass yields and N accumulations occurred in the high moisture treatment on both soils. One species (Trifolium tembense) was superior to the other four in biomass production over all soil and moisture treatments. Two species (T. decorum and T. quartinianum) were intermediate in performance, and two species (T. rueppellianum and T. steudneri) demonstrated low productivity over treatments. The results imply that at least three of the clovers evaluated may be capable of substantial biomass production and N accumulation on two Ethiopian soils that are commonly found in the central African highlands. These clovers should be evaluated in field trials in Africa to determine their use as pasture legumes to support livestock production.  相似文献   

10.
Uncultivated plants growing on disturbed sites may be useful for assessing the bioavailability of some metals in soils, and thus the potential for metal mobilization up the terrestrial food chain, an important element in ecological risk assessment. A planted chicory cultivar (Cichorium intybus L. var. foliosum Hegi.) and the uncultivated plants horseweed (Canada fleabane) (Erigeron canadensis L.) and dogfennel (Eupatorium capillifolium (Lam.) Small) were evaluated for their ability to act as index plant species for soil Cd, Cr, Ni, and V at two field sites where these metals had been applied five yr previously to two highly weathered sandy Ultisols. Soil Cd was available to all analyzed plant tissues of all three plant species at both sites, particularly on the sandier Blanton soil. Chicory was an effective index plant for Cd on the finer textured Orangeburg soil but functioned as an indicator plant (toxicity symptoms were observed) on the sandier Blanton soil. Horseweed and dogfennel were effective index plants for Cd in both contaminated soils. Soil Cr, Ni, and V were less bioavailable than soil Cd and plant metal uptake was more sensitive to residual soil Cr, Ni, and V than was soil extraction with double acid. Horseweed and chicory may have potential as index plants for soil Cr. Chicory may have potential as a Ni index plant. Chicory and dogfennel may have potential as V index plants.  相似文献   

11.
Irrigation with untreated wastewater from several industrial, commercial, and domestic discharges for decades caused accumulation of various heavy metals and metalloids in soils along the Akaki River in Ethiopia. Assessment of environmental threats and the potential phytoremediation of the soils require understanding of the toxic elements’ uptake and distribution in plant parts. Hence, a greenhouse study was performed to examine the phytoavailability and distribution of Cr, Ni, Co, Cu, Zn, Cd, Pb, Hg, Se, V, and As in forage grasses: Oat (Avena sativa), Rhodes grass (Chloris gayana), Setaria (Setaria sphacelata), and the legumes Alfalfa (Medicago sativa) and Desmodium (Desmodium unicinatum). The average contents of Cr, Ni, Co, Cu, Zn, Pb, Hg, Se, and V in the plants were generally higher than the background levels for forage grasses/legumes, and some of these elements were in the phytotoxic range. Root bioconcentration factor (BCF = root to soil concentration ratio) > 1 was observed for Cu (Oat, Rhodes, Desmodium, and Setaria: Fluvisol), Zn (Setaria: Fluvisol), Cd (Rhodes: Fluvisol; Setaria from both soils) and Hg (Oat and Alfalfa: Fluvisol). Alfalfa and Desmodium displayed translocation factor > 1 (TF = shoot to root concentration ratio) for most heavy metals. Most heavy metals/metalloids may pose a health threat to humans and stock via introduction to the food chain. The plant factors (species and plant part), soil factors (soil type, soil fractions, pH, and CEC), and their interactions significantly (p < 0.05) influenced plant heavy metal and metalloid levels. However, the role of plant part and species emerged as the most important on heavy metal uptake, translocation, sequestration, and ultimately transfer to the food chain. Accordingly, the uptake and distribution of heavy metals/metalloids in the plants reflect the potential environmental and health hazards attributable to the use of fodder grasses, legumes, and cultivation of vegetables in soils with polymetallic and metalloid contamination.  相似文献   

12.
Summary Genets of Trifolium repens (white clover) were collected from three patches of old permanent pasture dominated by Agrostis capillaris, Holcus lanatus or Lolium perenne. Plants derived from the genets were grown with plants of one grass species present on one side of each T. repens, and a different grass species on the other side, in all combinations of two of the three grasses. Different modules (a node with its associated internode, leaf, and axillary bud) on the same clover plant responded independently to the microenvironment provided by their own neighbouring grasses. In contrast, all apical meristems on the plant reacted similarly, showing a unified response and integrating the effects of the different microenvironments experienced by the whole clover plant. This is consistent with what is known both physiologically about the nutrition of meristems and modules, and ecologically about the exploratory growth habit of the species. Averaged over all associated grasses, there was no significant variation in the final dry weight of the different clover genets but these differed in their growth habit response to different grasses. In response to Agrostis as a neighbour, each meristem of T. repens rapidly produced many small modules. New modules were produced more slowly and were larger when Holcus or Lolium was the neighbour. The same pattern of differences occurred among clovers sampled from different backgrounds. Either genetic differences paralleled plastic responses, or plastic changes in phenotype that developed in response to different neighbours in the field persisted in the greenhouse. Plants taken from backgrounds of different grass species showed different responses to growing with those grass species. The differences were manifest primarily in a positive leading diagonal effect of Holcus or not-Holcus. They were the result primarily of differences in the dry weight per module and the probability of development of the axillary bud into a branch. This confirms earlier results, and implicates the central importance of branching as a means of local response to the microenvironment.  相似文献   

13.
The accumulation of copper, zinc and cadmium inA. yokoscense collected from Ashio (copper-contaminated area), Bandai (zinc- and cadmium-contaminated area) and Tama (non-contaminated area), has been investigated. Copper and zinc were accumulated most highly in the root, whilst cadmium was accumulated more in the leaf. The root ofA. yokoscense growing in areas contaminated with metals contained maximum amounts of Cu (5, 989 mg. kg−1 dry weight) and Zn (6,384 mg.kg−1 dry weight), while in the leaf from the Bandai area 164.8 mg Cd.kg−1 dry weight was accumulated. These amounts are far greater than those found inA yokoscense growing on the non-metalliferous habitat (Tama). Twenty five times more zinc and three times more cadmium were found in the dead leaf than in the living leaf. InA. yokoscense growing on soils containing more than 1,000 mg Cu or Zn.kg−1 dry weight, the uptake of copper by the root increased considerably with increasing copper content in the soils, while the uptake of zinc increased only slightly compared with the increase of zinc in the soils.  相似文献   

14.
为探讨油茶(Camellia oleifera)产地土壤和油茶果实中金属元素分布和富集特征,在油茶果实成熟期,对浙江5个油茶产地土壤及油茶果实中金属元素进行污染分析和富集能力评价。结果表明,浙江油茶产地土壤中Pb、Cr、Cd、As、Hg、Ni、Cu和Zn含量低于农用地土壤污染风险筛选值,综合污染等级为安全。个别产区常山县土壤中As、Ni、Cu和江山县土壤中Pb、Cr、Fe含量显著高于其他产地;常山和建德土壤中Cd单因子污染指数分别为0.93和0.81,处于污染警戒线。Cr、Ni、Cu、Zn主要分布在油茶籽中,Hg主要分布在壳中,Pb、Cd、As、Fe和Mn主要分布在青皮中。油茶籽中Cu、Fe、Mn的富集系数大于0.4,吸收能力强,Ni、Zn的富集系数小于0.4,具有一定吸收能力,Pb、Cr、Cd、As和Hg的富集系数小于0.1,吸收能力低;壳中Cu、Mn的富集系数大于0.4,吸收能力强,Fe的富集系数小于0.4,具有一定吸收能力,Pb、Cr、Cd、As、Hg、Ni、Zn的富集系数小于0.1,吸收能力低;青皮中Cu、Fe、Mn的富集系数大于0.4,吸收能力强,Pb、Cr、Cd、As、Hg、Ni、Zn的富集系数小于0.1,吸收能力低。浙江油茶主产区土壤质量安全,适合油茶种植。油茶果实对Cu、Fe、Mn有一定富集能力,对Pb、Cr、Cd、As和Hg无富集能力。  相似文献   

15.
Two experiments were conducted to investigate the effects of organic and inorganic amendments on metal stabilization and the potential of three forage grasses, i.e., Pennisetum americanum × Pennisetum, Euchlaena mexicana, and Sorghum dochna, for phytostabilization of acidic heavy metal-contaminated soils. The three grasses died 5 days after transplanting into the contaminated soils. Organic fertilizer (pig slurry and plant ash) only or combined with lime, NPK fertilizer, and sewage sludge resulted in adequate grass growth in the contaminated soils through a significant increase in the soil pH, N, P, K, and organic matter contents, and a decrease in the metal concentrations. The shoot biomass of P. americanum×P. purpureum and S. dochna was 1.92 and 2.00 times higher than that of E. Mexicana. The solubility of Cd, Pb, and Zn strongly depends on organic matter, while the solubility of Cu strongly depends on both soil organic matter and pH. The concentrations of Cd, Pb, and Zn in plant shoots growing in soil with a mixed amendment were significantly lower than plants growing in soil amended with an organic fertilizer only, whereas the Cu concentrations in plant shoots exhibited the opposite trend. The results indicated that 5% organic fertilizer only or combined with 5% sewage sludge were appropriate amendments and S. dochna and P. americanum × Pennisetum are suitable plants for phytostabilization of acidic heavy metal-polluted soils.  相似文献   

16.
Disposal of sewage water in cultivated soils often containing considerable amount of potentially toxic metals such as Cu, Zn, Ni, Cd, Pb and Cr can be beneficial or harmful to plant growth, rhizobial survival, nodulation and nitrogen fixation. Soil samples from 14 such locations were collected. Symbiotic effectivity of host-Rhizobium leguminosarum symbiosis in these soils was assessed. The total metal contents of Cd, Cu, Zn and Ni in all the 14 samples collected from farmer's fields receiving sewage water ranged between 1.3 and 6.7, 55.8-353.2, 356.0-1028.0 and 90.0-199.7 mg kg(-1) of soil, respectively. In Rohtak 1 soil, levels of Cd, Cu and Zn were highest while Ni was highest in Sonipat 2 soil. The content of available Cd, Cu, Zn and Ni in these soils ranged from 1.0-29.3; 6.2-47.0; 2.4-13.5, respectively, and was 2-9 percent of their total metal contents. All the N2 fixing parameters in pea and Egyptian clover were adversely affected by the presence of heavy metals. Available Cd and Cu contents significantly affected the N contents of pea and Egyptian clover plants, whereas Ni contents were negatively correlated with the plant biomass of pea and Egyptian clover.  相似文献   

17.
Competition alters plant species response to nickel and zinc   总被引:1,自引:0,他引:1  
Phytoextraction can be a cost-efficient method for the remediation of contaminated soils. Using species mixtures instead of monocultures might improve this procedure. In a species mixture, an effect of heavy metals on the species' performance can be modified by the presence of a co-occuring species. We hypothesised that (a) a co-occuring species can change the effect of heavy metals on a target species, and (b) heavy metal application may modifiy the competitive behaviour between the plants. We investigated these mechanisms in a greenhouse experiment using three species to serve as a model system (Carex flava, Centaurea angustifolia and Salix caprea). The species were established in pots of monocultures and mixtures, which were exposed to increasing concentrations of Ni and Zn, ranging from 0 to 2,500 mg/kg. Increased heavy metal application reduced the species' relative growth rate (RGR); the RGR reduction being generally correlated with Ni and Zn concentrations in plant tissue. S. caprea was an exception in that it showed considerable Zn uptake but only moderate growth reduction. In two out of six cases, competitors significantly modified the influence of heavy metals on a target species. The interaction can be explained by an increased uptake of Zn by one species (in this case S. caprea) that reduced the negative heavy metal effect on a target species (C. flava). In two further cases, increasing heavy metal application also altered competitive effects between the species. The mechanisms demonstrated in this experiment could be of relevance for the phytoextraction of heavy metals. The total uptake of metals might be maximised in specific mixtures, making phytoextraction more efficient.  相似文献   

18.
Summary It was shown that iron could be determined by atomic absorption by direct aspiration (without preliminary treatment except dilution where necessary) of the filtrates of dry or waterlogged soils extracted with the following reagents:N ammonium acetate pH 7.0,N ammonium acetate pH 3.0, and Morgan's reagent.  相似文献   

19.
Metal preferences with regard to accumulation were compared between populations of the heavy metal hyperaccumulator Thlaspi caerulescens, originating from calamine, serpentine and non-metalliferous soils. Plants were exposed for 3 weeks to factorial combinations of concentrations of different metals in binary mixture in hydroponics. The nature and degree of the interactions varied significantly between populations. In the calamine, non-Cd/Ni-hyperaccumulating population, La Calamine, there were no one-sided or mutual antagonistic interactions among the metals with regard to their accumulation in the plant. In three other populations capable of Cd and Ni hyperaccumulation, from calamine, serpentine and non-metalliferous soil respectively, there were one-sided or mutual antagonistic interactions between Cd and Zn, Cd and Ni, and Ni and Zn, possibly resulting from competition for transporters involved in uptake or plant-internal transport. Significant synergistic interactions, probably resulting from regulation of transporter expression, were also found, particularly in the La Calamine population. All the populations seemed to express a more or less Zn-specific high-affinity system. The serpentine and the non-metallicolous populations seemed to posses low-affinity systems with a preference for Cd and Zn over Ni, one of which may be responsible for the Ni hyperaccumulation of the serpentine population in its natural environment. The calamine population from Ganges also seemed to express a strongly Cd-specific high-affinity system which is in part responsible for the Cd-hyperaccumulation phenotype exhibited by this population in its natural environment.  相似文献   

20.
Phosphate fertilization reduces zinc adsorption by calcareous soils   总被引:1,自引:0,他引:1  
Saeed  M. 《Plant and Soil》1977,48(3):641-649
Summary Zinc adsorption isotherms were constructed for three calcereous soils which varied in carbonate contents, texture, and past history of phosphate fertilization. The equilibrium conditions were 25°C, 0.01 M CaCl2 and 6 days.Higher phosphate fertilization of the soils reduced Zn adsorption. The effect of P was more in the soil with lower carbonate content which suggested that soil carbonates played a dominant role in the Zn adsorption characteristics of the soils.The adsorption data conformed to the Langmuir equation. Constants (k and b) calculated from the Langmuir isotherm showed that bonding energies (k) were inversely related to extractable P; i.e. higher Zn adsorption was associated with lower bonding energy. The Zn adsorption maxima (b) were higher for the soils with higher calcium carbonate equivalent.Adsorbed Zn was extracted with a single extraction of 0.005 M DTPA. The recovery was 91 percent for the Tandojam soil, 82 percent for the Tarnab soil, and 63 percent for the Kala shah Kaku soil, indicating that most of the adsorbed Zn is not irreversibly fixed by the soils and can be utilized by plant during growth.The results suggest that P-induced Zn deficiency could not be ascribed to precipitation of Zn as insoluble Zn-P compounds in soils. The increased Zn solubility with P fertilization is the evidence that P-Zn interaction does not reside in the growing medium external to plant.The work is part of Ph.D. thesis submitted to the University of Hawaii, Honolulu, U.S.A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号