首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
从天山山地3个区段(巴里坤-伊吾、乌鲁木齐-阿克苏、昭苏-特克斯)采集土壤样品,测定了其中(类)重金属Pb、Ni、Cd、Co、Hg、Cu、Mn、Zn、Cr和As的含量.运用经典统计学与多元统计方法分析了这些(类)重金属的来源;同时采用污染指数法与潜在生态风险指数法,并结合天山及新疆土壤背景值、国家土壤质量标准开展了区域土壤微量(类)重金属生态风险的评价.结果表明: 所测10种(类)重金属的平均含量均高于天山或新疆土壤背景值.从变异系数来看,均为中等变异.总体上看,天山山地土壤中10种(类)重金属的含量均较低;主成分分析显示,10种元素可以辨识出 2 个主成分,主成分1(PC1,包括Cd、Pb、Hg、Mn和Zn)为人为源因子,主成分2(PC2,包括Cu、Ni、Cr、Co和As)为自然源因子.Mn 和As在PC1和PC2上均有较大载荷,主要受人为源和自然地质背景的共同控制;污染评价表明, 重金属Hg、Cd在天山中部的乌鲁木齐-阿克苏区段、As在天山西部的昭苏-特克斯区段的单因子污染指数(Pi)属于警戒等级,其他均属于安全等级和清洁水平.从综合污染(Pz)指数来看,天山中部乌鲁木齐 阿克苏区段土壤中10种(类)重金属元素的综合污染程度均属于轻度污染,其他两个区段均属于清洁水平;生态风险评估表明,重金属Hg、Cd在天山中部乌鲁木齐 阿克苏区段,As在天山西部昭苏 特克斯区段的潜在生态风险系数(Eir)和生态危害指数(RI)相对较高.  相似文献   

2.
It was assumed in the study that heavy metals occurring in soils and the air accumulate in grasses constituting the main species used in the turfing of soil in road verges and embankments along traffic routes and in other parts of urbanized areas. The aim of the present study was to assess the bioaccumulation of Cu, Pb, and Zn in three selected lawn cultivars of five grass species and in the soil of the roadside green belt in terms of soil properties and heavy metal uptake by plants in the aspect of determining their usefulness in protecting the soils from contamination caused by motor vehicle traffic. Samples of the plant material and soil were collected for chemical analysis in the autumn of 2018 (October) on the embankment along National Road No. 17 between Piaski and ?opiennik (Poland), where 15 lawn cultivars of five grass species had been sown 2 years earlier. During the study, Cu, Pb, and Zn levels were determined in the aboveground biomass of the grasses under study and in the soil beneath these grasses (the 0–20 cm layer). All the grass species under study can thus be regarded as accumulators of Cu and Zn because the levels of these elements in the aboveground biomass of the grasses were higher than in the soil beneath these grasses. The present study demonstrates that the grasses can accumulate a large amount of Cu and Zn from soils and transfer it to the aboveground biomass. Tested species of grasses are not a higher bioaccumulators for Pb. The best grass species for the sowing of roadsides embankment, with the highest BCF values for the studied metals, is Lolium perenne (Taya variety).  相似文献   

3.
朱立安  曾清苹  柳勇  柯欢  程炯  张会化  李俊杰 《生态学报》2020,40(13):4659-4669
富集重金属的枯落物分解可能提高重金属暴露率,增加人体接触健康风险。为了解南方城市土壤重金属在森林生态系统中的分布及流转情况,通过调查研究了佛山市8个典型森林群落土壤及枯落物重金属含量,分析了各森林群落枯落物对不同重金属的富集效应及重金属随枯落物回归土壤流通量。结果表明:1)城市森林各土壤重金属含量在不同典型群落间差异显著(P<0.05),差异最大为Pb、Cr、Zn,As、Cu、Ni次之,Hg、Cd最小;土层深度(0-20,20-40,40-60 cm)对重金属含量影响显著(P<0.05),差异最大为Cd、Hg,其次为As、Cu,最小为Zn、Ni、Pb、Cr。整体上,Cd、Hg、As、Pb、Zn在0-20 cm最高,表层富集特征明显,Cr和Ni在40-60 cm最高。2)8个森林群落中阴香-白楸-醉香含笑群落(CMMC)枯落物对8种重金属的综合富集系数(TBCF,66.76)最高,其中以Cd的富集效果最突出,富集系数为44.45,且对Pb、Cu、Zn也相对富集;最低的为黧蒴锥-香椿-樟树群落(CTCC),综合富集系数(TBCF)为8.09,仅对Cd、Cr、Cu相对富集,对其余重金属富集效应不明显。3)相关分析显示,群落重金属枯落物流通量与0-60 cm土壤重金属平均含量(Cr和Ni除外)无显著相关性。本研究对城市森林建设管理及筛选重金属富集植物及群落具有较强理论及实践意义。  相似文献   

4.
Dietary exposure to heavy metals (viz., Ni, As, Fe, Cr, Mn, Co, Mo, Cu, Zn, Se, Cd, and Pb) has been recognized as a potential hazard to human health. This study investigates the level of contamination at two different sites in Pakistan, one irrigated with canal water (Site-I) and the other with urban wastewater (Site-II). At Site-II, irrigation with wastewater resulted in a significant increase in heavy metals and metalloids in soil and a subsequent build-up in two vegetables selected for study (Solanum tuberosum [potato] and Pisum sativum [pea]). Results showed that mean concentrations of heavy metals and metalloids in soil at Site-I were lower than those of Site-II. Mean concentrations of As and Cd in soil at both sites and for both vegetables were found above maximum permissible levels, while for both vegetables As at both sites and Cd, Mo, and Pb exceeded the suggested maximum levels for vegetables. High levels of some metals in the soils and vegetables could be due to unnecessary use of fertilizers and disposable water for irrigating the soils and the environmental cues prevalent in the areas, such as presence of ions that may bind the metals, often play an important role in uptake.  相似文献   

5.
The study focused on the phytoattenuation effects of monocropping and intercropping of maize (Zea mays) and/or legumes on Cu, Zn, Pb, and Cd in weakly alkaline soils. Nine growth stages of monocropping maize were chosen to study the dynamic process of extraction of heavy metals. The total content of heavy metals extracted by the aerial part of monocropped maize increased in a sigmoidal pattern over the effective accumulative temperature. The biggest biomass, highest extraction content, and lowest heavy metals bioaccumulation level occurred at physiological maturity. Among the different planting patterns, including monocropping and intercropping of maize and/or soybean (Glycine max), pea (Pisum sativum), and alfalfa (Medicago sativa), the extraction efficiency of Cu, Zn, Pb, and Cd varied greatly. Only intercropping of maize and soybean yielded relatively higher extraction efficiency for the four metals with no significant difference in the total biomass. Moreover, the heavy metals concentrations in dry biomass from all the planting patterns in the present study were within China's national legal thresholds for fodder use. Therefore, slightly polluted alkaline soils can be safely used through monocropping and intercropping of maize and/or legumes for a range of purposes. In particular, this study indicated that intercropping improves soil ecosystems polluted by heavy metals compared with monocropping.  相似文献   

6.
Rapid urbanization has no doubt provided prosperity to inhabitants but on the other hand, it has caused severe environmental problems, particularly soil and water pollution. This research was done to determine the magnitude of metal and metalloid contamination at two sites in soil and a potential vegetable crop, sponge gourd (Luffa cylindrica L.) irrigated with wastewater in the region of Sargodha, Pakistan. The results demonstrated that the metal and metalloid levels in the soil samples were relatively below the respective maximum permissible limits of various metals analyzed. Transfer factor for metal contents was greater at site-II than that observed at site-I. Health risk was also worked out due to the inhabitants' intake of L. cylindrica irrigated with municipal wastewater. At both sites, the health risk index was greater than 1 due to Mn, Mo, Pb, Cd, Cu and As, and Ni at site-1 and Zn at site-II, whereas less than 1 due to Fe, Se, and Co. It was concluded that the dietary intake of L. cylindrica was not free of risk for inhabitants around the sampling sites. To reduce the health risk effects, it is suggested to treat the industrial wastes properly and phyto-extract the overload of heavy metals and metalloids from polluted sites. But with increase in vegetable consumption by the community the situation could worsen in the future.  相似文献   

7.
The objective of this study was to explore potential plant candidates to act as phytoremediators around the Xikuangshan mine, Hunan Province, China. Native plants including Imperata cylindrical (L), Rumex patientia L., Fagopyrum dibotrys (D.Don), Fagopyrum dibotrys (D.Don), Phytolacca americana L., Dryopteris erytbrosora, Pteriduum aquilinum var. latiusculum (Desv), Nephrolepiscordifolia (L) Presl, Oplismenus undulatifolius (A) Bea, Erigeron annuus (L) Pers, and soils samples were collected. As, Sb, Hg, Cd, Cr, Pb, and Zn levels were measured in soil and plant samples. The concentrations of As, Sb, Hg, and Cd in soils were above the corresponding background values for Hunan province. R. Patienti, P. aquilinum, and P. americana had large bioconcentration factors (BAFs) and high translocation factors (TFs) for Sb; and the same showed in D. erytbrosora for Hg, P. vittata for Cd, I. cylindrical for Cr, and D. erytbrosora for Pb and Zn. In general, perennial plants showed high heavy metal contents in roots, and TFs greater than 1 were only observed for Sb in E. annuus and Cr in O. undulatifolius. These results demonstrate that several native plants growing around Xikuangshan are potential phytoremediators for metal and metalloid contaminated soils.  相似文献   

8.

Aims and methods

Concentrations of heavy metals such as Cd, As, Hg, Pb, Cr, Cu, Zn and Ni in different tissues (seeds, roots and shoots) of the mature canola (Brassica napus L.) plants and in the associated rhizosphere soils from Yangtze River Delta (YRD) region of China, were determined to evaluate the heavy metals’ pollution in the soils and the canola seeds, and to discuss their accumulation and translocation characteristics in canola plants. At the same time, the phytoextraction potential of the canola plant for the above heavy metals was theoretically calculated and discussed on the basis of above measured data.

Results

The results showed that the concentration ranges of Cd, As, Hg, Pb, Cr, Cu, Zn and Ni in the rhizosphere soils were 0.115–0.481, 3.40–20.5, 0.069–0.682, 9.92–27.4, 46.8–86.6, 17.7–253.3, 65.2–511.7 and 16.0–37.8?mg?kg?1, respectively. The concentrations of Cu, Zn and Hg at some sampling sites exceeded the 2nd grade threshods of Chinese national environmental quality standard for soils. The potential ecological risk of heavy metals in the canola rhizosphere soils decreased in the order of Zhejiang > Shanghai > Jiangsu provinces. The concentration ranges of above heavy metals in the canola seeds were 0.032–0.067, 0.002–0.005, 0.001–0.005, 0.053–0.165, 0.191–0.855, 3.01–13.20, 34.82–96.95 and 0.343–2.86?mg?kg?1, respectively, with Cu and Zn at some sampling sites exceeding the permissible concentrations in foods of China. Heavy metals’ concentrations in canola seeds didn’t increase with their increasing concentrations in the rhizosphere soils. The bioconcentration factors (BCFs) of most heavy metals in the canola seeds decreased with their increasing concentrations in the associated rhizosphere soils. The average BCFs of heavy metals decreased in the order of Zn (0.488)>Cd (0.241)>Cu (0.145)>Ni (0.038)>Hg (0.021)>Pb (0.005)=Cr (0.005)>As (0.000) in the canola seeds, Cd (1.550)>Cu (0.595)>Zn (0.422)>Hg (0.138)>Ni (0.085)>Pb (0.080)>As (0.035)>Cr (0.031) in the roots, and Cd (0.846)>Zn (0.242)>Cu (0.205)>Hg (0.159)>Ni (0.031)>Pb (0.025)>As (0.012)>Cr (0.007) in the shoots, respectively. The accumulation capacity for most of the above heavy metals in the mature canola tissues was root > shoot > seed, with the exceptions of seed > root > shoot for Zn and shoot > root > seed for Hg. Except Hg from root to shoot and Zn from root to seed, translocation factors (TFs) of above heavy metals were lower than 1.0.

Conclusions

The concentrations, BCFs and TFs of above heavy metals in the canola tissues indicated that the investigated canola plants did not meet the criteria of hyperaccumulators for the above heavy metals. The phytoextracton potential of the studied canola plants for the above heavy metals from the polluted soils was very limited. It would take 920, 3,170 and 3,762?years (assuming two crops per year) to reduce the initial soil Zn, Cu and Hg concentrations, respectively, from the most polluted soil concentrations to the 2nd grade thresholds of Chinese national environmental quality standard for soils.  相似文献   

9.
贵州兴仁煤矿区农田土壤重金属化学形态及风险评估   总被引:2,自引:0,他引:2  
为了解煤矿区周边农田土壤重金属污染状况,采集了贵州省兴仁县某典型煤矿区农田土壤样品64份,测定了土样中重金属(As、Cr、Pb、Zn、Cd、Hg、Cu、Ni)总量及各形态含量,采用单因子指数法、潜在生态风险指数法(Hkanson法)和风险评估编码法(RAC)对研究区主要土壤利用类型(水稻土、薏米地、植烟土和菜园土)中重金属进行潜在生态风险评估和环境风险评价.结果表明: 不同利用类型土壤中重金属含量除Zn外,其他元素均明显超过贵州省背景值.单因子指数法评价结果表明,As、Pb、Hg和Cu污染较为严重,均属重度污染.形态分析表明,土壤中重金属形态构成差异明显,酸可提取态As、酸可提取态Cd所占比例较高;Cr、Zn、Cu、Ni主要以残渣态为主;Pb主要以可还原态和残渣态为主;而Hg的酸可提取态、可还原态、可氧化态均占有相当比例,三者之和大于55%.重金属可利用度大小顺序为:As(63.6%)>Hg(57.3%)>Cd(56.4%)>Pb(52.5%)>Cu(45.7%)>Zn(32.8%)>Ni(26.2%)>Cr(13.2%).潜在生态风险指数表明,各类型土壤潜在生态风险(RI)〖JP2〗为:菜园土(505.19)>薏米地(486.06)>植烟土(475.33)>水稻土(446.86),均处于较高风险.风险评估编码法结果显示,As在水稻土、薏米地及植烟土中均处于高风险,在菜园土中处于中等风险;Cd、Hg均处于中等风险,Cr、Pb、Zn、Cu和Ni均处于低风险.因此,对该区域农田土壤进行管控时应重点考虑As、Cd和Hg污染.  相似文献   

10.
The heavy metals Cd, Cr, Cu, Pb, Hg, Ag, and Zn, and the metalloid As were measured in surface sediments at permanent stations located in the Calcasieu River/Lake Complex. The relationships among metal concentrations in different areas of the system were investigated to determine sources, source strength, and transport. The point-source inputs of heavy metals were assumed to be industrial outfalls (Bayou d'Inde) and sewage outfalls (Bayou d'Inde and Contraband Bayou). Although these inputs have not seriously affected the entire river/lake system, stressed regions exist within each bayou.The background levels of arsenic and heavy metals were: 0.60 (As), 0.3 to 1.4 (Cd), 25 (Cr), 10 (Cu), 15 (Pb), < 0.05 (Hg), 0.07 (Ag), and 40 mg kg–1 (Zn). Stations near sewage outfalls and industrial outfalls had increased metal concentrations above these background levels, but the increases were restricted to the regions near the outfalls. The metals discharged into the bayous were not being transported to the remainder of the river/lake complex.  相似文献   

11.
为探讨金毛狗[Cibotium barometz(L.) J. Sm.]对重金属的富集能力,在广东省选取6个样点(南岭、南昆山、白云山、大岭山、梧桐山、西樵山)采集金毛狗的叶片、根状茎和根际土壤,采用ICP-MS测定9种重金属元素(Cr、Mn、Ni、Cu、Zn、As、Cd、Hg、Pb)的含量。结果表明,样地土壤已受到不同程度的重金属污染,土壤中Cd和Hg含量均高于广东省土壤背景值,分别为背景值的1.61~4.82倍和4.74~11.79倍。西樵山土壤中Cd含量最大,南岭土壤中Hg含量最大。在9种元素中,金毛狗对Hg的转运系数最高,达4.8,对Cd的富集系数最高,达2.2,Cu和Cd元素的转运系数和富集系数均大于1。这说明金毛狗对重金属元素的富集能力较弱而转运能力较强。  相似文献   

12.
The objective of this research was to compare the potential of native plants for the phytoaccumulation of heavy metals (HM). Thirteen predominant plant species (including trees, bushes and grasses) namely Ricinus communis, Ipomoea carnea, Cannabis sativa, Parthenium hysterophorus, Acacia nilotica, Dalbergia sissoo, Acacia modesta, Solanum nigrum, Xanthium stromarium, Chenopodium album, Cynodon dactylon, Eleusine indica, and Dactyloctenium aegyptium were collected from the wastewater originated from Hattar industrial estate of Pakistan, Plants shoots and roots were analyzed for heavy metals / metalloid: Pb, Cr, Cd, Zn, Fe, Ni, and As. Among plant species, the accumulation potential for HM varied depending on the type of element. Regardless of the plant species, HM concentrations varied in the order of Fe > Zn > Cr > Pb > Ni > Cd > As. Tree species of R. communis, A. nilotica, A. modesta, and D. sissoo exhibited an enhanced concentrations of metals. Accumulation pattern of Fe, Pb, Cd, and As in plants could be related to the HM composition of soil and wastewater. Most of the species exhibited higher HM composition in the root as compared to shoot. The species that found with greater ability to absorb HM in the root, got higher HM concentrations in its shoot. Shoot tissue concentrations of HM were attained by the species as D. sissoo > A. modesta > A. nilotica > R. communis > I. carnea > C. album > E. indica > P. hysterophorus > S. nigrum > C. sativa > D. aegyptium > X. strumarium > C. dactylon. Based on results, tree plants were noticed as higher accumulators of HM in polluted soils.  相似文献   

13.
Two experiments were conducted to investigate the effects of organic and inorganic amendments on metal stabilization and the potential of three forage grasses, i.e., Pennisetum americanum × Pennisetum, Euchlaena mexicana, and Sorghum dochna, for phytostabilization of acidic heavy metal-contaminated soils. The three grasses died 5 days after transplanting into the contaminated soils. Organic fertilizer (pig slurry and plant ash) only or combined with lime, NPK fertilizer, and sewage sludge resulted in adequate grass growth in the contaminated soils through a significant increase in the soil pH, N, P, K, and organic matter contents, and a decrease in the metal concentrations. The shoot biomass of P. americanum×P. purpureum and S. dochna was 1.92 and 2.00 times higher than that of E. Mexicana. The solubility of Cd, Pb, and Zn strongly depends on organic matter, while the solubility of Cu strongly depends on both soil organic matter and pH. The concentrations of Cd, Pb, and Zn in plant shoots growing in soil with a mixed amendment were significantly lower than plants growing in soil amended with an organic fertilizer only, whereas the Cu concentrations in plant shoots exhibited the opposite trend. The results indicated that 5% organic fertilizer only or combined with 5% sewage sludge were appropriate amendments and S. dochna and P. americanum × Pennisetum are suitable plants for phytostabilization of acidic heavy metal-polluted soils.  相似文献   

14.
Risk element (As, Cd, Cu, Pb, and Zn) contamination in soils and in two edible vegetables (Solanum melongena L. and Capsicum annum L.) was investigated in the vicinity of Guixi Smelter, South China. Soil As concentrations averaged 23.9 mg/kg. Sites near the smelter tailings recorded the highest levels of As and heavy metals in soils. The concentration order of heavy metals in soils was Cd < Pb < Zn < Cu. Cu and Cd in soils were abundant in the exchangeable and bound to carbonate fraction, while Pb and Zn were in the residual fraction, limiting their potential toxicity as pollutants. The proportions of the metals in the mobile fraction followed the order Pb < Zn < Cu < Cd. In Solanum melongena L. and Capsicum annum L., Zn concentration was the highest, followed by Cu, Cd, and Pb, different from that in soils and in the mobile fraction. Concentrations of heavy metals in the labile fractions in soils and in vegetables presented significant correlation (p < 0.05). Both of the two vegetables are not the Cu and Zn accumulators. As for Cd and As, Capsicum annum L. poses a higher risk to animal and human health than Solanum melongena L., with soil-plant transfer coefficients more than three. Root-stem is the main barrier for most of the heavy metals and As in the two vegetables, resulting in higher metal concentrations in roots relative to other plant tissues. The low stem-fruit transfer coefficients for Zn in Solanum melongena L. and for Pb in Capsicum annum L. suggested that very few of them could reach the fruits.  相似文献   

15.
Soil nutrients are commonly heterogeneously distributed and earthworms are one of the most common soil organisms. While effects of both soil nutrient heterogeneity and earthworms have been well studied, their interactive effect on plant community productivity has rarely been tested. In a greenhouse experiment, we constructed experimental plant communities by sowing seed mixtures of four grasses, two legumes and two forbs in either a heterogeneous soil consisting of low and high nutrient soil patches or a homogeneous soil where the low and high nutrient soil patches were evenly mixed. The earthworm Eisenia fetida was either added to these soils or not. Aboveground biomass of the whole communities, grasses and legumes did not differ between the homogeneous and heterogeneous soils or between the soils with and without earthworms. However, soil nutrient heterogeneity reduced aboveground biomass of forbs, and such an effect did not interact with earthworms. In response to soil heterogeneity and earthworms, biomass ratio of the three functional groups showed similar patterns as that of their biomass. At the patch level, aboveground biomass of the whole community, grasses and legumes were greater in the high than in the low nutrient soil patches within the heterogeneous soil. A similar pattern was found for the forbs, but this was only true in the absence of earthworms. Our results suggest that soil nutrient heterogeneity and earthworms may not influence aboveground biomass of plant communities, despite the fact that they may modify the growth of certain plant functional groups within the community.  相似文献   

16.
In this study, a total of 69 topsoil samples and 10 Panax notoginseng samples from Yunnan Province were collected and the concentrations of As, Cd, Cu, Hg, Ni, Pb and Zn in all the samples were determined. The hazard index (HI), total carcinogenic risk (TCR) and estimated daily intake (EDI) of heavy metals were calculated to assess the health risk of P. notoginseng growers and consumers. The average concentrations of As, Cd, Cu, Hg, Ni, Pb and Zn in P. notoginseng planting soils are 43.6, 0.55, 50.8, 0.30, 73.4, 58.2, and 161 mg/kg, respectively. The average Nemerow integrated pollution index of heavy metals in soils is 1.8, indicating that the P. notoginseng planting soils are slightly polluted by those heavy metals. The average HI value is 1.29 and the TCR value of As is above the threshold value, suggesting that As pollution in soil has adverse impact on local growers' health. P. notoginseng is polluted by Cd, As and Pb. 39.1% of estimated daily intakes of As for P. notoginseng consumers through leaf consumption exceeding its permitted daily exposure dosages, suggesting that there is a potential health risk for P. notoginseng consumers to consume P. notoginseng leaves.  相似文献   

17.
Phytochelatins (PCs) are post-translationally synthesized thiol reactive peptides that play important roles in detoxification of heavy metal and metalloids in plants and other living organisms. The overall goal of this study is to develop transgenic plants with increased tolerance for and accumulation of heavy metals and metalloids from soil by expressing an Arabidopsis thaliana AtPCS1 gene, encoding phytochelatin synthase (PCS), in Indian mustard (Brassica juncea L.). A FLAG-tagged AtPCS1 gDNA, under its native promoter, is expressed in Indian mustard, and transgenic pcs lines have been compared with wild-type plants for tolerance to and accumulation of cadmium (Cd) and arsenic (As). Compared to wild type plants, transgenic plants exhibit significantly higher tolerance to Cd and As. Shoots of Cd-treated pcs plants have significantly higher concentrations of PCs and thiols than those of wild-type plants. Shoots of wild-type plants accumulated significantly more Cd than those of transgenic plants, while accumulation of As in transgenic plants was similar to that in wild type plants. Although phytochelatin synthase improves the ability of Indian mustard to tolerate higher levels of the heavy metal Cd and the metalloid As, it does not increase the accumulation potential of these metals in the above ground tissues of Indian mustard plants.  相似文献   

18.
新疆焉耆盆地辣椒地土壤重金属污染及生态风险预警   总被引:5,自引:0,他引:5  
从新疆加工辣椒主产地(焉耆盆地)采集105个辣椒地典型土壤样品,测定其中As、Cd、Cr、Cu、Mn、Ni、Pb和Zn等8种重金属元素的含量。采用污染负荷指数(Pollution load index,PLI)、潜在生态风险指数(Potential ecological risk index,RI)和生态风险预警指数(Ecological risk warning index,I_(ER))对辣椒地土壤重金属污染及生态风险进行评价。结果表明:(1)焉耆盆地辣椒地土壤Cd、Cr、Ni、Pb和Zn含量的平均值分别超出新疆灌耕土背景值的1.65、1.40、1.32、3.21、6.42倍。辣椒地土壤Pb和Zn呈现重度污染,Cd、Cr和Ni轻度污染,As、Mn和Cu无污染。(2)土壤PLI平均值为1.40,呈现轻度污染。各重金属元素单项生态风险指数从大到小依次为:Cd、Ni、As、Cu、Pb、Cr、Zn。土壤RI平均值为18.40,属于轻微生态风险态势,IER平均值为-4.78,属于无警态势;博湖县辣椒地污染水平、潜在生态风险程度与生态风险预警等级最高,焉耆县污染水平、潜在生态风险程度与生态风险预警等级最低。(3)辣椒地土壤As、Cd、Pb与Zn主要受到人类活动的影响,Cr、Cu、Mn和Ni主要受到土壤地球化学作用的控制。Cd是焉耆盆地辣椒地生态风险等级最高的重金属元素,研究区农业生产过程中要防范Cd的污染风险。  相似文献   

19.
The Olifants River, a major tributary of the Limpopo River, is one of the most polluted rivers in South Africa. Consequently, concerns regarding the human health impact of long-term consumption of fish from the Olifants River have been raised in recent studies. Nevertheless, Lake Flag Boshielo situated on the main stem of the Olifants River has been proposed as a site for an inland fishery. Planktivorous silver carp Hypophthalmichthys molitrix (Valenciennes, 1844) is among the potential target species for such a fishery. Therefore, a desk-top human health risk assessment was conducted for silver carp from Lake Flag Boshielo. From January to November 2013, muscle samples from 50 specimens were collected and analysed for metals and metalloids. The hazard quotient based on a weekly meal of 150 g exceeded the acceptable level for As, Cd, Cr, Co, Pb, Hg, Se, V and Zn. Compared with previous studies from Lake Flag Boshielo, muscle tissue concentrations of As, Cr, Pb, Hg, Se, V and Zn for H. molitrix were higher. Based on the metal and metalloid concentrations reported in this study, long-term consumption of silver carp from Lake Flag Boshielo might pose a health risk to impoverished rural communities.  相似文献   

20.
Dissolved organic matter in poultry litter could contribute organic ligands to form complexes with heavy metals in soil. The soluble complexes with heavy metals can be transported downward and possibly deteriorate groundwater quality. To better understand metal mobilization by soluble organic ligands in poultry litter, soil columns were employed to investigate the movement of zinc (Zn), cadmium (Cd), and lead (Pb). Uncontaminated soil was amended with Zn, Cd, and Pb at rates of 400, 8, and 200 mg kg ? 1 soil, respectively. Glass tubes, 4.9-cm-diameter and 40-cm-long, were packed with either natural or metal-amended soil. The resulting 20-cm-long column of soils had bulk density of about 1.58 g cm ? 3 . Columns repacked with natural or amended soil were leached with distilled water, 0.01 M EDTA, 0.01 M CaCl 2 , or poultry litter extract (PLE) solutions. Low amounts of Zn, Cd, and Pb were leached from natural soil with the solutions. Leaching of Zn, Cd, or Pb was negligible with distilled water. In the metal-amended soil, EDTA solubilized more Zn, Cd, and Pb than CaCl 2 and PLE. The breakthrough curves of Zn and Pb in the PLE and CaCl 2 were similar, indicating they have similar ability to displace Zn and Pb from soils. Compared with Zn and Cd the PLE had a small ability to solubilize Pb from metal-amended soil. Thus, the application of poultry litter on metal-contaminated soils might enhance the mobility of Zn and Cd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号