首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Optical‐resolution photoacoustic microscopy (OR‐PAM) has proven useful for anatomical and functional imaging with high spatial resolutions. However, the coherent signal generation and the desired reflection‐mode detection in OR‐PAM can result in a limited detectability of features aligned with the acoustic axis (ie, vertical structures). Here, we investigated the limited‐view phenomenon in OR‐PAM by simulating the generation and propagation of the acoustic pressure waves and determined the key optical parameters affecting the visibility of vertical structures. Proof‐of‐concept numerical experiments were performed with different illumination angles, optical foci and numerical apertures (NA) of the objective lens. The results collectively show that an NA of 0.3 can readily improve the visibility of vertical structures in a typical reflection‐mode OR‐PAM system. This conclusion was confirmed by numerical simulations on the cortical blood vessels in a mouse brain and by experiments in a suture‐cross phantom and in a mouse brain in vivo.   相似文献   

2.
We have developed a reflection‐mode switchable subwavelength Bessel‐beam (BB) and Gaussian‐beam (GB) photoacoustic microscopy (PAM) system. To achieve both reflection‐mode and high resolution, we tightly attached a very small ultrasound transducer to an optical objective lens with numerical aperture of 1.0 and working distance of 2.5 mm. We used axicon and an achromatic doublet in our system to obtain the extended depth of field (DOF) of the BB. To compare the DOF performance achieved with our BB‐PAM system against GB‐PAM system, we designed our system so that the GB can be easily generated by simply removing the lenses. Using a 532 nm pulse laser, we achieved the lateral resolutions of 300 and 270 nm for BB‐PAM and GB‐PAM, respectively. The measured DOF of BB‐PAM was approximately 229 μm, which was about 7× better than that of GB‐PAM. We imaged the vasculature of a mouse ear using BB‐PAM and GB‐PAM and confirmed that the DOF of BB‐PAM is much better than the DOF of GB‐PAM. Thus, we believe that the high resolution achieved at the extended DOF by our system is very practical for wide range of biomedical research including red blood cell (RBC) migration in blood vessels at various depths and observation of cell migration or cell culture.   相似文献   

3.
Two‐photon nonlinear microscopy with the aid of plasmonic contrast agents is an attractive bioimaging technique capable of generating high‐resolution images in 3 dimensions and facilitating targeted imaging with deep tissue penetration. In this work, physically synthesized gold nanoparticles containing multiple nanopores are used as 2‐photon contrast agents and are reported to emit a 20‐fold brighter 2‐photon luminescence as compared to typical contrast agents, that is, gold nanorods. A successful application of our porous gold nanoparticles is experimentally demonstrated by in vitro nonlinear optical imaging of adipocytes at subcellular level.   相似文献   

4.
Fast functional and molecular photoacoustic microscopy requires pulsed laser excitations at multiple wavelengths with enough pulse energy and short wavelength‐switching time. Recent development of stimulated Raman scattering in optical fiber offers a low‐cost laser source for multiwavelength photoacoustic imaging. In this approach, long fibers temporally separate different wavelengths via optical delay. The time delay between adjacent wavelengths may eventually limits the highest A‐line rate. In addition, a long‐time delay in fiber may limit the highest pulse energy, leading to poor image quality. In order to achieve high pulse energy and ultrafast dual‐wavelength excitation, we present optical‐resolution photoacoustic microscopy with ultrafast dual‐wavelength excitation and a signal separation method. The signal separation method is validated in numerical simulation and phantom experiments. We show that when two photoacoustic signals are partially overlapped with a 50‐ns delay, they can be recovered with 98% accuracy. We apply this ultrafast dual‐wavelength excitation technique to in vivo OR‐PAM. Results demonstrate that A‐lines at two wavelengths can be successfully separated, and sO2 values can be reliably computed from the separated data. The ultrafast dual‐wavelength excitation enables fast functional photoacoustic microscopy with negligible misalignment among different wavelengths and high pulse energy, which is important for in vivo imaging of microvascular dynamics.  相似文献   

5.
Optical‐resolution photoacoustic microscopy (OR‐PAM) has been shown to be an excellent imaging modality for monitoring and study of tumor microvasculature. However, previous studies focused mainly on the normal tissues and did not quantify the tumor microvasculature. In this study, we present an in vivo OR‐PAM imaging of the melanomas and hepatoma implanted in the mouse ear. We quantify the vessel growth by extracting the skeletons of both dense and thin branches of the tumor microvasculature obtained by Hessian matrix enhancement followed by improved two‐step multistencils fast marching method. Compared with the previous methods of using OR‐PAM for normal tissues, our method was more effective in extracting the binary vascular network in the tumor images and in obtaining the complete and continuous microvascular skeleton maps. Our demonstration of using OR‐PAM in improving microvasculature of tumors and quantification of tumor growth would push deep this technology for the early diagnosis and treatment of cancers.   相似文献   

6.
Pressure ulcer formation is a common problem among patients confined to bed or restricted to wheelchairs. The ulcer forms when the affected skin and underlying tissues go through repeated cycles of ischemia and reperfusion, leading to inflammation. This theory is evident by intravital imaging studies performed in immune cell–specific, fluorescent reporter mouse skin with induced ischemia‐reperfusion (I‐R) injuries. However, traditional confocal or multiphoton microscopy cannot accurately monitor the progression of vascular reperfusion by contrast agents, which leaks into the interstitium under inflammatory conditions. Here, we develop a dual‐wavelength micro electro mechanical system (MEMS) scanning–based optical resolution photoacoustic microscopy (OR‐PAM) system for continuous label‐free functional imaging of vascular reperfusion in an IR mouse model. This MEMS‐OR‐PAM system provides fast scanning speed for concurrent dual‐wavelength imaging, which enables continuous monitoring of the reperfusion process. During reperfusion, the revascularization of blood vessels and the oxygen saturation (sO2) changes in both arteries and veins are recorded, from which the local oxygen extraction ratios of the ischemic tissue and the unaffected tissue can be quantified. Our MEMS‐OR‐PAM system provides novel perspectives to understand the I‐R injuries. It solves the problem of dynamic label‐free functional monitoring of the vascular reperfusion at high spatial resolution.   相似文献   

7.
One of the main challenges for laser‐scanning microscopy of biological tissues with refractive heterogeneities is the degradation in spatial resolution that occurs as a result of beam steering and distortion. This challenge is particularly significant for dual‐axis confocal (DAC) microscopy, which achieves improved spatial‐filtering and optical‐sectioning performance over traditional confocal microscopy through off‐axis illumination and collection of light with low‐numerical aperture (NA) beams that must intersect precisely at their foci within tissues. DAC microscope image quality is sensitive to positional changes and distortions of these illumination‐ and collection‐beam foci. Previous studies have shown that Bessel beams display improved positional stability and beam quality than Gaussian beams when propagating through tissues with refractive heterogeneities, which suggests that Bessel‐beam illumination may enhance DAC microscopy of such tissues. Here, we utilize both Gaussian and Bessel illumination in a point‐scanned DAC microscope and quantify the resultant degradation in resolution when imaging within heterogeneous optical phantoms and fresh tissues. Results indicate that DAC microscopy with Bessel illumination exhibits reduced resolution degradation from microscopic tissue heterogeneities compared to DAC microscopy with conventional Gaussian illumination.

  相似文献   


8.
Photoacoustic microscopy (PAM) can be classified as optical resolution (OR)‐PAM and acoustic resolution (AR)‐PAM depending on the type of resolution achieved. Using microelectromechanical systems (MEMS) scanner, high‐speed OR‐PAM system was developed earlier. Depth of imaging limits the use of OR‐PAM technology for many preclinical and clinical imaging applications. Here, we demonstrate the use of a high‐speed MEMS scanner for AR‐PAM imaging. Lateral resolution of 84 μm and an axial resolution of 27 μm with ~2.7 mm imaging depth was achieved using a 50 MHz transducer‐based AR‐PAM system. Use of a higher frequency transducer at 75 MHz has further improved the resolution characteristics of the system with a reduction in imaging depth and a lateral resolution of 53 μm and an axial resolution of 18 μm with ~1.8 mm imaging depth was achieved. Using the two‐axis MEMS scanner a 2 × 2 .5 mm2 area was imaged in 3 seconds. The capability of achieving acoustic resolution images using the MEMS scanner makes it beneficial for the development of high‐speed miniaturized systems for deeper tissue imaging.   相似文献   

9.
In acoustic‐resolution photoacoustic microscopy (AR‐PAM) systems, the lateral resolution in the focal zone of the ultrasound (US) transducer is determined by the numerical aperture (NA) of the transducer. To have a high lateral resolution, a large NA is used. However, the larger the NA, the smaller the depth of focus [DOF]. As a result, the lateral resolution is deteriorated at depths out of the focal region. The synthetic aperture focusing technique (SAFT) along with a beamformer can be used to improve the resolution outside the focal region. In this work, for image formation in AR‐PAM, we propose the double‐stage delay‐multiply‐and‐sum (DS_DMAS) algorithm to be combined with SAFT. The proposed method is evaluated experimentally using hair targets and in vivo vasculature imaging. It is shown that DS_DMAS provides a higher resolution and contrast compared to other methods. For the B‐mode images obtained using the hair phantom, the proposed method reduces the average noise level for all the depths by about 134%, 57% and 23%, compared to the original low‐ resolution, SAFT+DAS and SAFT+DMAS methods, respectively. All the results indicate that the proposed method can be an appropriate algorithm for image formation in AR‐PAM systems.   相似文献   

10.
A compact high‐speed full‐field optical coherence microscope has been developed for high‐resolution in vivo imaging of biological tissues. The interferometer, in the Linnik configuration, has a size of 11 × 11 × 5 cm3 and a weight of 210 g. Full‐field illumination with low‐coherence light is achieved with a high‐brightness broadband light‐emitting diode. High‐speed full‐field detection is achieved by using part of the image sensor of a high‐dynamic range CMOS camera. En face tomographic images are acquired at a rate of 50 Hz, with an integration time of 0.9 ms. The image spatial resolution is 0.9 μm × 1.2 μm (axial × transverse), over a field of view of 245 × 245 μm2. Images of human skin, revealing in‐depth cellular‐level structures, were obtained in vivo and in real‐time without the need for stabilization of the subject. The system can image larger fields, up to 1 × 1 mm2, but at a reduced depth.   相似文献   

11.
A plasmon waveguide resonance (PWR) sensor is proposed for studying the interaction between gold nanoparticles and proteins. The ability of the PWR sensor to operate in both TM and TE Polarizations, i.e. its polarization diversity, facilitates the simultaneous spectroscopy of the nanoparticles surface reactions using both polarizations. The response of each polarization to streptavidin‐biotin binding at the surface of gold nanoparticles is investigated in real time. Finally, using the principles of multimode spectroscopy, the nanoparticle's surface reactions are decoupled from the bulk solution refractive index variations.

Schematic diagram of the NP‐modified PWR sensor  相似文献   


12.
Structured illumination microscopy (SIM) is a well‐established method for optical sectioning and super‐resolution. The core of structured illumination is using a periodic pattern to excite image signals. This work reports a method for estimating minor pattern distortions from the raw image data and correcting these distortions during SIM image processing. The method was tested with both simulated and experimental image data from two‐photon Bessel light‐sheet SIM. The results proves the method is effective in challenging situations, where strong scattering background exists, signal‐to‐noise ratio (SNR) is low and the sample structure is sparse. Experimental results demonstrate restoring synaptic structures in deep brain tissue, despite the presence of strong light scattering and tissue‐induced SIM pattern distortion.  相似文献   

13.
Photoacoustic microscopy (PAM) provides a fundamentally new tool for a broad range of studies of biological structures and functions. However, the use of PAM has been largely limited to small vertebrates due to the large size/weight and the inconvenience of the equipment. Here, we describe a portable optical‐resolution photoacoustic microscopy (pORPAM) system for 3‐dimensional (3D) imaging of small‐to‐large rodents and humans with a high spatiotemporal resolution and a large field of view. We show extensive applications of pORPAM to multiscale animals including mice and rabbits. In addition, we image the 3D vascular networks of human lips, and demonstrate the feasibility of pORPAM to observe the recovery process of oral ulcer and cancer‐associated capillary loops in human oral cavities. This technology is promising for broad biomedical studies from fundamental biology to clinical diseases.   相似文献   

14.
Either modulated illumination or temporal fluctuation analysis can assist super‐resolution techniques in overcoming the diffraction limit of conventional optical microscopy. As they are not contradictory to each other, an effective combination of spatial and temporal super‐resolution mechanisms would further improve the resolution of fluorescent images. Here, a super‐resolution imaging method called fluctuation‐enhanced Airyscan technology (FEAST) is proposed, which achieves ~40 nm lateral imaging resolution and is useful for a range of fluorescent proteins and organic dyes. It was demonstrated not only to obtain different subcellular super‐resolution images, but also to improve the accuracy of counting the average human epidermal growth factor receptor 2 (HER2) copy number for diagnosis in breast cancer. Furthermore, the combination of FEAST and sample expansion microscopy (Ex‐FEAST) improves the lateral resolution to ~26 nm.  相似文献   

15.
Wide‐field optical coherence tomography angiography (OCTA) is gaining interest in clinical imaging applications. In this pursuit, it is challenging to maintain the imaging resolution and sensitivity throughout the wide field of view (FoV). Here, we propose a novel method/system of dual‐beam arrangement and Fourier‐domain multiplexing to achieve wide‐field OCTA when imaging the uneven surface samples. The proposed system provides 2 separate FoVs, with flexibility that the imaging area, focus of the imaging beam and imaging depth range can be individually adjusted for each FoV, leading to either (1) increased system imaging FoV or (2) capability of targeting 2 regions of interests that locate at depths with large difference between each other. We demonstrate this novel method by employing 100 kHz laser source in a swept source OCTA to achieve an effective 200 kHz sweeping rate, covering a 22 × 22 mm FoV. The results are verified by a SS‐OCTA system employing a 200 kHz laser source, together with the experimental demonstrations when imaging whole brain vasculature in rodent models and skin blood perfusion in human fingers, show‐casing the capability of proposed system to image live large samples with complex surface topography.   相似文献   

16.
Temporally low‐coherent optical diffraction tomography (ODT) is proposed and demonstrated based on angle‐scanning Mach‐Zehnder interferometry. Using a digital micromirror device based on diffractive tilting, the full‐field interference of incoherent light is successfully maintained during every angle‐scanning sequences. Further, current ODT reconstruction principles for temporally incoherent illuminations are thoroughly reviewed and developed. Several limitations of incoherent illumination are also discussed, such as the nondispersive assumption, optical sectioning capacity and illumination angle limitation. Using the proposed setup and reconstruction algorithms, low‐coherent ODT imaging of plastic microspheres, human red blood cells and rat pheochromocytoma cells is experimentally demonstrated.   相似文献   

17.
We report a flexible light‐sheet fluorescence microscope (LSFM) designed for studying dynamic events in cardiac tissue at high speed in 3D and the correlation of these events to cell microstructure. The system employs two illumination‐detection modes: the first uses angle‐dithering of a Gaussian light sheet combined with remote refocusing of the detection plane for video‐rate volumetric imaging; the second combines digitally‐scanned light‐sheet illumination with an axially‐swept light‐sheet waist and stage‐scanned acquisition for improved axial resolution compared to the first mode. We present a characterisation of the spatial resolution of the system in both modes. The first illumination‐detection mode achieves dual spectral‐channel imaging at 25 volumes per second with 1024 × 200 × 50 voxel volumes and is demonstrated by time‐lapse imaging of calcium dynamics in a live cardiomyocyte. The second illumination‐detection mode is demonstrated through the acquisition of a higher spatial resolution structural map of the t‐tubule network in a fixed cardiomyocyte cell.  相似文献   

18.
Moderate heating of collagenous tissues such as cartilage and cornea by infrared laser irradiation can produce biologically nondestructive structural rearrangements and relaxation of internal stresses resulting in the tissue reshaping. The reshaping results and eventual changes in optical and biological properties of the tissue strongly depend on the laser‐irradiation regime. Here, a speckle‐contrast technique based on monochromatic illumination of the tissue in combination with strain mapping by means of optical coherence elastography (OCE) is applied to reveal the interplay between the temperature and thermal stress fields producing tissue modifications. The speckle‐based technique ensured en face visualization of cross correlation and contrast of speckle images, with evolving proportions between contributions of temperature increase and thermal‐stresses determined by temperature gradients. The speckle‐technique findings are corroborated by quantitative OCE‐based depth‐resolved imaging of irradiation‐induced strain‐evolution. The revealed relationships can be used for real‐time control of the reshaping procedures (e.g., for laser shaping of cartilaginous implants in otolaryngology and maxillofacial surgery) and optimization of the laser‐irradiation regimes to ensure the desired reshaping using lower and biologically safer temperatures. The figure of waterfall OCE‐image demonstrates how the strain‐rate maximum arising in the heating‐beam center gradually splits and drifts towards the zones of maximal thermal stresses located at the temperature‐profile slopes.  相似文献   

19.
Endoscopic optical coherence tomography (OCT) is a noninvasive technology allowing for imaging of tissue microanatomies of luminal organs in real time. Conventional endoscopic OCT operates at 1300 nm wavelength region with a suboptimal axial resolution limited to 8‐20 μm. In this paper, we present the first ultrahigh‐resolution tethered OCT capsule operating at 800 nm and offering about 3‐ to 4‐fold improvement of axial resolution (plus enhanced imaging contrast). The capsule uses diffractive optics to manage chromatic aberration over a full ~200 nm spectral bandwidth centering around 830 nm, enabling to achieve super‐achromaticity and an axial resolution of ~2.6 μm in air. The performance of the OCT capsule is demonstrated by volumetric imaging of swine esophagus ex vivo and sheep esophagus in vivo, where fine anatomic structures including the sub‐epithelial layers are clearly identified. The ultrahigh resolution and excellent imaging contrast at 800 nm of the tethered capsule suggest the potential of the technology as an enabling tool for surveillance of early esophageal diseases on awake patients without the need for sedation.   相似文献   

20.
In this study, a novel photoacoustic microscopy (PAM) probe integrating white‐light microscopy (WLM) modality that provides guidance for PAM imaging and complementary information is implemented. One single core of an imaging fiber bundle is employed to deliver a pulsed laser for photoacoustic excitation for PAM mode, which provides high resolution with deep penetration. Meanwhile, for WLM mode, the imaging fiber bundle is used to transmit two‐dimensional superficial images. Lateral resolution of 7.2 μm for PAM is achieved. Since miniature components are used, the probe diameter is only 1.7 mm. Imaging of phantom and animals in vivo is conducted to show the imaging capability of the probe. The probe has several advantages by introducing the WLM mode, such as being able to conveniently identify regions of interest and align the focus for PAM mode. The prototype of an endoscope shows potential to facilitate clinical photoacoustic endoscopic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号