首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
GEMDOCK: a generic evolutionary method for molecular docking   总被引:1,自引:0,他引:1  
Yang JM  Chen CC 《Proteins》2004,55(2):288-304
We have developed an evolutionary approach for flexible ligand docking. This approval, GEMDOCK, uses a Generic Evolutionary Method for molecular DOCKing and an empirical scoring function. The former combines both discrete and continuous global search strategies with local search strategies to speed up convergence, whereas the latter results in rapid recognition of potential ligands. GEMDOCK was tested on a diverse data set of 100 protein-ligand complexes from the Protein Data Bank. In 79% of these complexes, the docked lowest energy ligand structures had root-mean-square derivations (RMSDs) below 2.0 A with respect to the corresponding crystal structures. The success rate increased to 85% if the structure water molecules were retained. We evaluated GEMDOCK on two cross-docking experiments in which each ligand of a protein ensemble was docked into each protein of the ensemble. Seventy-six percent of the docked structures had RMSDs below 2.0 A when the ligands were docked into foreign structures. We analyzed and validated GEMDOCK with respect to various search spaces and scoring functions, and found that if the scoring function was perfect, then the predicted accuracy was also essentially perfect. This study suggests that GEMDOCK is a useful tool for molecular recognition and may be used to systematically evaluate and thus improve scoring functions.  相似文献   

2.
For structure-based drug design, where various ligand structures need to be docked to a target protein structure, a docking method that can handle conformational flexibility of not only the ligand, but also the protein, is indispensable. We have developed a simple and effective approach for dealing with the local induced-fit motion of the target protein, and implemented it in our docking tool, ADAM. Our approach efficiently combines the following two strategies: a vdW-offset grid in which the protein cavity is enlarged uniformly, and structure optimization allowing the motion of ligand and protein atoms. To examine the effectiveness of our approach, we performed docking validation studies, including redocking in 18 test cases and foreign-docking, in which various ligands from foreign crystal structures of complexes are docked into a target protein structure, in 22 cases (on five target proteins). With the original ADAM, the correct docking modes (RMSD < 2.0 A) were not present among the top 20 models in one case of redocking and four cases of foreign-docking. When the handling of induced-fit motion was implemented, the correct solutions were acquired in all 40 test cases. In foreign-docking on thymidine kinase, the correct docking modes were obtained as the top-ranked solutions for all 10 test ligands by our combinatorial approach, and this appears to be the best result ever reported with any docking tool. The results of docking validation have thus confirmed the effectiveness of our approach, which can provide reliable docking models even in the case of foreign-docking, where conformational change of the target protein cannot be ignored. We expect that this approach will contribute substantially to actual drug design, including virtual screening.  相似文献   

3.
A detailed study of the trypsin surface has been carried out to gain insight into its biological functions and interactions which helped to determine the binding specificity. Twenty-four cavity pockets were automatically identified on trypsin from PDB file entry 1AUJ using CASTp (Computed Atlas of Surface Topography of proteins). Molecular docking was exploited as an efficient in silico screening tool for studying protein-ligand interactions. A systematic docking study using Autodock 3.05 has been performed on the five largest binding pockets in trypsin. A set of ten putative chemical ligands was used to dock into selected binding pockets. Docking of ligands into the five largest pockets in trypsin showed that 1,10-phenanthroline and ethanolamine preferentially bound at pocket 24 and benzamidine at pocket 22. Thermodynamically, we also found that ethanol, propanol, propandiol and phosphoethanolamine preferentially bound at pocket 21 whereas p-aminobenzamidine, phenylacetic acid and phenylalanine interacted mainly at pocket 20 based on their lowest interaction free energy.  相似文献   

4.
A detailed study of the trypsin surface has been carried out to gain insight into its biological functions and interactions which helped to determine the binding specificity. Twenty-four cavity pockets were automatically identified on trypsin from PDB file entry 1AUJ using CASTp (Computed Atlas of Surface Topography of proteins). Molecular docking was exploited as an efficient in silico screening tool for studying protein–ligand interactions. A systematic docking study using Autodock 3.05 has been performed on the five largest binding pockets in trypsin. A set of ten putative chemical ligands was used to dock into selected binding pockets. Docking of ligands into the five largest pockets in trypsin showed that 1,10-phenanthroline and ethanolamine preferentially bound at pocket 24 and benzamidine at pocket 22. Thermodynamically, we also found that ethanol, propanol, propandiol and phosphoethanolamine preferentially bound at pocket 21 whereas p-aminobenzamidine, phenylacetic acid and phenylalanine interacted mainly at pocket 20 based on their lowest interaction free energy.  相似文献   

5.
The protein docking problem has two major aspects: sampling conformations and orientations, and scoring them for fit. To investigate the extent to which the protein docking problem may be attributed to the sampling of ligand side‐chain conformations, multiple conformations of multiple residues were calculated for the uncomplexed (unbound) structures of protein ligands. These ligand conformations were docked into both the complexed (bound) and unbound conformations of the cognate receptors, and their energies were evaluated using an atomistic potential function. The following questions were considered: (1) does the ensemble of precalculated ligand conformations contain a structure similar to the bound form of the ligand? (2) Can the large number of conformations that are calculated be efficiently docked into the receptors? (3) Can near‐native complexes be distinguished from non‐native complexes? Results from seven test systems suggest that the precalculated ensembles do include side‐chain conformations similar to those adopted in the experimental complexes. By assuming additivity among the side chains, the ensemble can be docked in less than 12 h on a desktop computer. These multiconformer dockings produce near‐native complexes and also non‐native complexes. When docked against the bound conformations of the receptors, the near‐native complexes of the unbound ligand were always distinguishable from the non‐native complexes. When docked against the unbound conformations of the receptors, the near‐native dockings could usually, but not always, be distinguished from the non‐native complexes. In every case, docking the unbound ligands with flexible side chains led to better energies and a better distinction between near‐native and non‐native fits. An extension of this algorithm allowed for docking multiple residue substitutions (mutants) in addition to multiple conformations. The rankings of the docked mutant proteins correlated with experimental binding affinities. These results suggest that sampling multiple residue conformations and residue substitutions of the unbound ligand contributes to, but does not fully provide, a solution to the protein docking problem. Conformational sampling allows a classical atomistic scoring function to be used; such a function may contribute to better selectivity between near‐native and non‐native complexes. Allowing for receptor flexibility may further extend these results.  相似文献   

6.
7.
Virtual drug screening using protein-ligand docking techniques is a time-consuming process, which requires high computational power for binding affinity calculation. There are millions of chemical compounds available for docking. Eliminating compounds that are unlikely to exhibit high binding affinity from the screening set should speed-up the virtual drug screening procedure. We performed docking of 6353 ligands against twenty-one protein X-ray crystal structures. The docked ligands were ranked according to their calculated binding affinities, from which the top five hundred and the bottom five hundred were selected. We found that the volume and number of rotatable bonds of the top five hundred docked ligands are similar to those found in the crystal structures and corresponded with the volume of the binding sites. In contrast, the bottom five hundred set contains ligands that are either too large to enter the binding site, or too small to bind with high specificity and affinity to the binding site. A pre-docking filter that takes into account shapes and volumes of the binding sites as well as ligand volumes and flexibilities can filter out low binding affinity ligands from the screening sets. Thus, the virtual drug screening procedure speed is increased.  相似文献   

8.
Simple molecular docking calculations on quercetin, kojic acid and diethylcarbamatodithoic acid using the software package MOE are shown to be close to the geometries reported in the X-ray crystal structures of the protein co-crystallized with the respective ligands. Furthermore, DFT optimization of the docked conformations is shown to reproduce the essential features of previous studies on quercetin, showing that docking can be used to provide good starting structures for mechanistic study. The flavone ligand, lacking the hydroxyl group of the quercetin is shown by docking to be unable to approach closely the copper atom, indicating the necessity of the presence of the hydroxyl group and providing a prediction of the likely binding environment of this ligand.  相似文献   

9.
Sampling receptor flexibility is challenging for database docking. We consider a method that treats multiple flexible regions of the binding site independently, recombining them to generate different discrete conformations. This algorithm scales linearly rather than exponentially with the receptor's degrees of freedom. The method was first evaluated for its ability to identify known ligands of a hydrophobic cavity mutant of T4 lysozyme (L99A). Some 200000 molecules of the Available Chemical Directory (ACD) were docked against an ensemble of cavity conformations. Surprisingly, the enrichment of known ligands from among a much larger number of decoys in the ACD was worse than simply docking to the apo conformation alone. Large decoys, accommodated in the larger cavity conformations sampled in the ensemble, were ranked better than known small ligands. The calculation was redone with an energy correction term that considered the cost of forming the larger cavity conformations. Enrichment improved, as did the balance between high-ranking large and small ligands. In a second retrospective test, the ACD was docked against a conformational ensemble of thymidylate synthase. Compared to docking against individual enzyme conformations, the flexible receptor docking approach improved enrichment of known ligands. Including a receptor conformational energy weighting term improved enrichment further. To test the method prospectively, the ACD database was docked against another cavity mutant of lysozyme (L99A/M102Q). A total of 18 new compounds predicted to bind this polar cavity and to change its conformation were tested experimentally; 14 were found to bind. The bound structures for seven ligands were determined by X-ray crystallography. The predicted geometries of these ligands all corresponded to the observed geometries to within 0.7A RMSD or better. Significant conformational changes of the cavity were observed in all seven complexes. In five structures, part of the observed accommodations were correctly predicted; in two structures, the receptor conformational changes were unanticipated and thus never sampled. These results suggest that although sampling receptor flexibility can lead to novel ligands that would have been missed when docking a rigid structure, it is also important to consider receptor conformational energy.  相似文献   

10.
随机聚点搜索算法是一种普遍的全局极小化方法,在目标函数自变量数目不很大时,计算效率较高。将该算法应用于分子对接,首先要通过模型分子对接,反复调整算法各控制参数使效率最高。对于HIV-1蛋白酶与苯甲醚配体的刚性对接,算法成功的找到了相互作用能量全局极小,与晶体结构的均方根偏差(RMSD)仅0.2?。这表明,该算法可高效率找到分子对接的能量最适构型。  相似文献   

11.
12.
A new approach, MOBILE, is presented that models protein binding-sites including bound ligand molecules as restraints. Initially generated, homology models of the target protein are refined iteratively by including information about bioactive ligands as spatial restraints and optimising the mutual interactions between the ligands and the binding-sites. Thus optimised models can be used for structure-based drug design and virtual screening. In a first step, ligands are docked into an averaged ensemble of crude homology models of the target protein. In the next step, improved homology models are generated, considering explicitly the previously placed ligands by defining restraints between protein and ligand atoms. These restraints are expressed in terms of knowledge-based distance-dependent pair potentials, which were compiled from crystallographically determined protein-ligand complexes. Subsequently, the most favourable models are selected by ranking the interactions between the ligands and the generated pockets using these potentials. Final models are obtained by selecting the best-ranked side-chain conformers from various models, followed by an energy optimisation of the entire complex using a common force-field. Application of the knowledge-based pair potentials proved efficient to restrain the homology modelling process and to score and optimise the modelled protein-ligand complexes. For a test set of 46 protein-ligand complexes, taken from the Protein Data Bank (PDB), the success rate of producing near-native binding-site geometries (rmsd<2.0A) with MODELLER is 70% when the ligand restrains the homology modelling process in its native orientation. Scoring these complexes with the knowledge-based potentials, in 66% of the cases a pose with rmsd <2.0A is found on rank 1. Finally, MOBILE has been applied to two case studies modelling factor Xa based on trypsin and aldose reductase based on aldehyde reductase.  相似文献   

13.
Popov VM  Yee WA  Anderson AC 《Proteins》2007,66(2):375-387
Accurately ranking protein/ligand interactions and distinguishing subtle differences between homologous compounds in a virtual focused library in silico is essential in a structure-based drug discovery program. In order to establish a predictive model to design novel inhibitors of dihydrofolate reductase (DHFR) from the parasitic protozoa, Cryptosporidium hominis, we docked a series of 30 DHFR inhibitors with measured inhibition constants against the crystal structure of the protein. By including protein flexibility and averaging the energies of the 25 lowest protein/ligand conformers we obtained more accurate total nonbonded energies from which we calculated a predicted biological activity. The calculated and measured biological activities showed reliable correlations of 72.9%. Additionally, visual analysis of the ensemble of protein/ligand conformations revealed alternative ligand binding pockets in the active site. Using the same principles we then created a homology model of DHFR from Toxoplasma gondii and docked 11 inhibitors. A correlation of 50.2% between docking score and activity validates both the method and the model. The correlations presented here are particularly compelling considering the high structural similarity of the ligands and the fact that we have used structures derived from crystallographic data and homology modeling. These docking principles may be useful in any lead optimization study where accurate ranking of similar compounds is desired.  相似文献   

14.
15.
16.
Seebeck B  Reulecke I  Kämper A  Rarey M 《Proteins》2008,71(3):1237-1254
The accurate modeling of metal coordination geometries plays an important role for structure-based drug design applied to metalloenzymes. For the development of a new metal interaction model, we perform a statistical analysis of metal interaction geometries that are relevant to protein-ligand complexes. A total of 43,061 metal sites of the Protein Data Bank (PDB), containing amongst others magnesium, calcium, zinc, iron, manganese, copper, cadmium, cobalt, and nickel, were evaluated according to their metal coordination geometry. Based on statistical analysis, we derived a model for the automatic calculation and definition of metal interaction geometries for the purpose of molecular docking analyses. It includes the identification of the metal-coordinating ligands, the calculation of the coordination geometry and the superposition of ideal polyhedra to identify the optimal positions for free coordination sites. The new interaction model was integrated in the docking software FlexX and evaluated on a data set of 103 metalloprotein-ligand complexes, which were extracted from the PDB. In a first step, the quality of the automatic calculation of the metal coordination geometry was analyzed. In 74% of the cases, the correct prediction of the coordination geometry could be determined on the basis of the protein structure alone. Secondly, the new metal interaction model was tested in terms of predicting protein-ligand complexes. In the majority of test cases, the new interaction model resulted in an improved docking accuracy of the top ranking placements.  相似文献   

17.
Bolstad ES  Anderson AC 《Proteins》2008,73(3):566-580
Accurate ranking during in silico lead optimization is critical to drive the generation of new ligands with higher affinity, yet it is especially difficult because of the subtle changes between analogs. In order to assess the role of the structure of the receptor in delivering accurate lead ranking results, we docked a set of forty related inhibitors to structures of one species of dihydrofolate reductase (DHFR) derived from crystallographic, NMR solution data, and homology models. In this study, the crystal structures yielded the superior results: the compounds were placed in the active site in the conserved orientation and the docking scores for 80% percent of the compounds clustered into the same bins as the measured affinity. Single receptor structures derived from NMR data or homology models did not serve as accurate docking receptors. To our knowledge, these are the first experiments that assess ranking of homologous lead compounds using a variety of receptor structures. We then extended the study to investigate whether ensembles, either computationally or experimentally derived, of all of the single starting structures aid, hinder or have no effect on the performance of the starting template. Impressively, when ensembles of receptor structures derived from NMR data or homology models were employed, docking accuracy improved to a level equal to that of the high resolution crystal structures. The same experiments using a second species of DHFR and set of ligands confirm the results. A comparison of the structures of the individual ensemble members to the starting structures shows that the effect of the ensembles can be ascribed to protein flexibility in addition to absorption of computational error.  相似文献   

18.
This study aimed to identify the docking and molecular mechanics-generalized born surface area (MM-GBSA) re-scoring parameters which can correlate the binding affinity and selectivity of the ligands towards oestrogen receptor β (ERβ). Three different series of ERβ ligands were used as dataset and the compounds were docked against ERβ (protein data bank (PDB) ID: 1QKM) using Glide and ArgusLab. Glide docking showed superior results when compared with ArgusLab. Docked poses were then rescored using Prime-MM-GBSA to calculate free energy binding. Correlations were made between observed activities of ERβ ligands with computationally predicted values from docking, binding energy parameters. ERβ ligands experimental binding affinity/selectivity did not correlate well with Glide and ArgusLab score. Whereas calculated Glide energy (coulomb-van der Waal interaction energy) correlated significantly with binding affinity of ERβ ligands (r2?=?0.66). MM-GBSA re-scoring showed correlation of r2?=?0.74 with selectivity of ERβ ligands. These results will aid the discovery of novel ERβ ligands with isoform selectivity.  相似文献   

19.
Liang S  Liu S  Zhang C  Zhou Y 《Proteins》2007,69(2):244-253
Near-native selections from docking decoys have proved challenging especially when unbound proteins are used in the molecular docking. One reason is that significant atomic clashes in docking decoys lead to poor predictions of binding affinities of near native decoys. Atomic clashes can be removed by structural refinement through energy minimization. Such an energy minimization, however, will lead to an unrealistic bias toward docked structures with large interfaces. Here, we extend an empirical energy function developed for protein design to protein-protein docking selection by introducing a simple reference state that removes the unrealistic dependence of binding affinity of docking decoys on the buried solvent accessible surface area of interface. The energy function called EMPIRE (EMpirical Protein-InteRaction Energy), when coupled with a refinement strategy, is found to provide a significantly improved success rate in near native selections when applied to RosettaDock and refined ZDOCK docking decoys. Our work underlines the importance of removing nonspecific interactions from specific ones in near native selections from docking decoys.  相似文献   

20.
All docking methods employ some sort of heuristic to orient the ligand molecules into the binding site of the target structure. An automated method, MCSS2SPTS, for generating chemically labeled site points for docking is presented. MCSS2SPTS employs the program Multiple Copy Simultaneous Search (MCSS) to determine target-based theoretical pharmacophores. More specifically, chemically labeled site points are automatically extracted from selected low-energy functional-group minima and clustered together. These pharmacophoric site points can then be directly matched to the pharmacophoric features of database molecules with the use of either DOCK or PhDOCK to place the small molecules into the binding site. Several examples of the ability of MCSS2SPTS to reproduce the three-dimensional pharmacophoric features of ligands from known ligand-protein complex structures are discussed. In addition, a site-point set calculated for one human immunodeficiency virus 1 (HIV1) protease structure is used with PhDOCK to dock a set of HIV1 protease ligands; the docked poses are compared to the corresponding complex structures of the ligands. Finally, the use of an MCSS2SPTS-derived site-point set for acyl carrier protein synthase is compared to the use of atomic positions from a bound ligand as site points for a large-scale DOCK search. In general, MCSS2SPTS-generated site points focus the search on the more relevant areas and thereby allow for more effective sampling of the target site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号