首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An acid proteinase from Aspergillus oryzae was isolated from a commercial powder by successive (NH4)2SO4 fractionation, acetone precipitation, and ion-exchange chromatography on phosphate- and DEAE-cellulose columns. The purified enzyme was found to be homogeneous by ultracentrifuge-sedimentation analysis (S20, W equal 3.63S), but electrofocusing in polyacrylamide gels and electrophoresis at pH 3.2 revealed that it consists of two very closely migrating bands. No difference in the amino acid composition and enzymic activities of the two partially separated bands could be detected, and it was concluded that the acid proteinase exists in two molecular forms. The enzyme activates bovine trypsinogen and chymotrypsinogen at pH 3.5 (the kappacat. and Km values at 35degrees C are 11.3S- minus 1, 0.10mM and 1.14S- minus 1, 0.18mM respectively). It hydrolyses the Phe-Phe bond of the synthetic pepsin substrates Z-His-Phe-Phe-OEt (kappacat. equal 1.65S- minus 1, Km equal 0.640mM at pH 3.5, 30degrees C) and Z-Ala-Ala-Phe-Phe-OPy4Pr (kappacat. equal 0.37S- minus 1, Km equal 0.037 mM at pH2.9, 39degrees C), where Z represents benzyloxycarbonyl and OPy4Pr represents 3-(4-pyridyl)-propyl 1-ester. Activation of bovine chymotrypsinogen results from the cleavage of the Arg(15)-Ile(16) bond in the zymogen. No other cleavages were observed. The use of A. oryzae proteinase provides a simple tool for the production of pi-chymotrypsin in good yield and purity.  相似文献   

2.
Alanine-neochymotrypsinogen was prepared by incubating 20 parts bovine pancreas chymotrypsinogen A with one part alpha-chymotrypsin in a solution containing 1 M (NH4)2SO4, 0.1 M sodium acetate, 0.05 M Tris buffer (pH 8.0) and 0.5 mg/ml soybean trypsin inhibitor. Optimal yields of NH2-terminal alanine were obtained after 60 h incubation at 4 degrees C. Ala-neochymotrypsinogen was isolated from the reaction mixture by affinity chromatography and ion-exchange chromatography on carboxymethyl-cellulose. As expected, the purified preparation was enzymatically inactive and, compared to chymotrypsinogen, had one additional NH2-terminal group identified as alanine. Ala-neochymotrypsinogen was activated by incubating with trypsin at a zymogen : trypsin ratio of 30 : 1 in 0.1 M phosphate buffer, pH 7.6 at 4 degrees C for 1 h. The fully active, stable species was identified as alpha-chymotrypsin.  相似文献   

3.
In a previous report [Largman, C., Brodrick, J.W., Geokas, M.C., Sischo, W.M., & Johnson, J.H. (1979) J. Biol. Chem. 254, 8516-8523] it was demonstrated that human proelastase 2 and alpha 1-protease inhibitor react slowly to form a complex that is stable to denaturation with sodium dodecyl sulfate and beta-mercaptoethanol and that the zymogen can be recovered from the isolated complex following dissociation by hydroxylamine. The present report demonstrates that bovine chymotrypsinogen A reacts with human alpha 1-protease inhibitor in a very similar manner. The rate of complex formation was measured by two methods. In the first, the reaction was followed by determining the loss of the inhibitory activity of alpha 1-protease inhibitor as a function of time. A second-order rate constant for complex formation formation (pH 7.6, 36 degrees C) of 12.9 +/- 2.4 M-1s-1 was obtained. In the second procedure, the reaction of fluorescein isothiocyanate labeled chymotrypsinogen A with alpha 1-protease inhibitor was measured by fluorescence polarization. A second-order rate constant (pH 7.6, 37 degrees C) of 13.9 +/- 2.1 M-1s-1 was obtained. The rate of complex formation is approximately 10(-5) of that measured for the reaction of bovine chymotrypsin with alpha 1-protease inhibitor. Dissociation of the complex was not observed after dilution or the addition of excess bovine alpha-chymotrypsin. As judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis experiments, human chymotrypsinogens I and II react with alpha 1-protease inhibitor at rates that are approximatley equivalent to that determined for bovine chymotrypsinogen A. In contrast, bovine trypsinogen reacts very slowly with alpha 1-protease inhibitor, at a rate that is at most 10(-2) of that of bovine chymotrypsinogen A. These results suggest that zymogens react with alpha 1-protease inhibitor by virtue of partially formed active sites and that the potential active-site specificity of the zymogen in part determines the rate of complex formation.  相似文献   

4.
The binding isotherms of native bovine serum albumin with cationic detergents, such as octyl, decyl, dodecyl and tetradecylpyridinium bromides were determined at pH 6.8 and 3.4 at 25 degrees C. The isotherms for dodecyl and tetradecylpyridinium bromides were also determined at 3 degrees C. The average number of detergent cations bound increased with increasing hydrocarbon chain length. At low detergent concentration the binding of all alkylpyridinium bromides was smaller at pH 3.4 than at pH 6.8. Dodecylpyridinium bromide was bound to native beta-lactoglobulin, aldolase, ovalbumin, haemoglobin, myoglobin, lysozyme, trypsin and ribonuclease at pH 6.8. No binding occurred to alpha-chymotrypsin and chymotrypsinogen. The free enthalpy change, --delta G degrees, calculated from intrinsic association constants K was determined.  相似文献   

5.
A crude extract of the proventriculus of the Japanese quail gave at least five bands of peptic activity at pH 2.2 on polyacrylamide gel electrophoresis. The main component, constituting about 40% of the total acid protease activity, was purified to homogeneity by hydroxyapatite and DEAE-Sepharose column chromatographies. At below pH 4.0, the pepsinogen was converted to a pepsin, which had the same electrophoretic mobility as one of the five bands of peptic activity present in the crude extract. The molecular weights of the pepsinogen and the pepsin were 40 000 and 36 000, respectively. Quail pepsin was stable in alkali up to pH 8.5. The optimal pH of the pepsin on hemoglobin was pH 3.0. The pepsin had about half the milk-clotting activity of purified porcine pepsin, but the pepsinogen itself had no activity. The hydrolytic activity of quail pepsin on N-acetyl-L-phenylalanyl-3,5-diiodo-L-tyrosine was about 1% of that of porcine pepsin. Among the various protease inhibitors tested, only pepstatin inhibited the proteolytic activity of the pepsin. The amino acid composition of quail pepsinogen was found to be rather similar to that of chick pepsinogen C, and these two pepsinogens possessed common antigenicity.  相似文献   

6.
Prostaglandin F2alpha was specifically bound by a particulate fraction from bovine corpora lutea. The rate constants for the association (7.5 X 10(3) M-1 S-1) and dissociation (2.1 X 10-4 S-1) reactions gave a dissociation constant of 2.8 X 10(-8) M which is similar to that determined from a Scatchard plot of binding data at equilibrium (5 X 10(-8) M). The receptor was stable for several hours at 23 degrees C but was rapidly destroyed at 37 degrees C. The pH optimum for the binding reaction was 6.3. The receptor had high specificity for prostaglandin F2alpha and had much lower affinities for other prostaglandins. Luteinizing and follicle-stimulating hormones had no effect on the prostaglandin F2alpha-receptor interaction.  相似文献   

7.
J L Markley  I B Iba?ez 《Biochemistry》1978,17(22):4627-4640
Reversible unfolding of bovine chymotrypsinogen A in 2H2O either by heating at low pH or by exposure to 6 M guanidinium chloride results in the exchange of virtually all the nitrogen-bound hydrogens that give rise to low-field 1H NMR peaks, without significant exchange of the histidyl ring Cepsilon1 hydrogens. These preexchange procedures have enabled the resolution of two peaks, using 250-MHz correlation 1H NMR spectroscopy, that are attributed to the two histidyl residues of chymotrypsinogen A. Assignments of the Cepsilon1 hydrogen peaks to histidine-40 and -57 were based on comparison of the NMR titration curves of the native zymogen with those of the diisopropylphosphoryl derivative. Two histidyl Cepsilon1 H peaks were also resolved with solutions of preexchanged chymotrypsin Aalpha. The histidyl peaks of chymotrypsin Aalpha were assigned by comparison of NMR titration curves of the free enzyme with those of its complex with bovine pancreatic trypsin inhibitor (Kunitz). The NMR titration curves of histidine-57 in the zymogen and enzyme and histidine-40 in the zymogen exhibit two inflections; the additional inflections were assigned to interactions with neighboring carboxyl groups: aspartate-102 in the case of histidine-57 and aspartate-194 in the case of histidine-40 of the zymogen. In bovine chymotrypsinogen A in 2H2O at 31 degrees C, histidine-57 has a pK' of 7.3 and aspartate-102 a pK' of 1.4, and the histidine-40-aspartate-194 system exhibits inflections at pH 4.6 and 2.3. In bovine chymotrypsin Aalpha under the same conditions, the histidine-57-aspartate-102 system has pK' values of 6.1 and 2.8, and histidine-40 has a pK' of 7.2. The results suggest that the pK' of histidine-57 is higher than the pK' of aspartate-102 in both zymogen and enzyme. A significant difference exists in the structure and properties of the catalytic center between the zymogen and activated enzyme. In addition to the difference in pK' values, the chemical shift of histidine-57, which is highly abnormal in the zymogen (deshielded by 0.6 ppm), becomes normalized upon activation. These changes may explain part of the increase in the catalytic activity upon activation. The 1H NMR chemical shift of the Cepsilon1 H of histidine-57 in the chymotrypsin Aalpha-pancreatic trypsin inhibitor (Kunitz) complex is constant between pH 3 and 9 at a value similar to that of histidine-57 in the porcine trypsin-pancreatic trypsin inhibitor complex [Markley, J.L., and Porubcan, M. A. (1976), J. Mol. Biol. 102, 487--509], suggesting that the mechanisms of interaction are similar in the two complexes.  相似文献   

8.
A protease of a molecular mass of approximately 30 kDa was isolated and purified from the haloalkaliphilic archaeon Natronomonas (formerly Natronobacterium) pharaonis. The enzyme hydrolyzed synthetic peptides, preferentially at the carboxyl terminus of phenylalanine or leucine, as well as large proteins. Hydrolysis occurred over the range of pH from 6 to 12, with an optimum at pH 10. The temperature optimum was 61°C. The enzyme was nearly equally active over the range of salt concentration from 0.5 to 4 M (NaCl or KCl). A strong cross-reaction with a polyclonal antiserum against human chymotrypsin was observed. Enzymatic activity was inhibited by typical serine protease inhibitors. There was significant homology between N-terminal and internal sequences from autolytic fragments and the sequence of bovine chymotrypsinogen B; the overall amino acid composition was similar to that of vertebrate chymotrypsinogens. Evidence for a zymogen-like processing of the protease was obtained. Cell extracts from other halobacteria exhibited similar proteolytic activity and immunoreactivity. The data suggested a widespread distribution of a chymotrypsinogen B-like protease among halo- and haloalkaliphilic Archaea. Received: September 12, 1998 / Accepted: December 15, 1998  相似文献   

9.
The enthalpy change accompanying the reversible acid-induced transition from the native (N) to the molten-globule (MG) state of bovine cytochrome c was directly evaluated by isothermal acid-titration calorimetry (IATC), a new method for evaluating the pH dependence of protein enthalpy. The enthalpy change was 30 kJ/mol at 30 degrees C, pH 3.54, with 500 mM KCl. The results of the global analysis of the temperature dependence of the excess enthalpy from 20 to 35 degrees C demonstrated that the N to MG transition is a two-state transition with a small heat capacity change of 1.1 kJ K(-1) mol(-1). The present findings were also indicative of the pH dependence of the enthalpy and the heat capacity of the MG state, -13 kJ mol(-1) pH(-1) and -1.0 kJ K(-1) mol(-1) pH(-1), respectively, at 30 degrees C within a pH range from 2 to 3.  相似文献   

10.
1. Maleic anhydride was shown to react rapidly and specifically with amino groups of proteins and peptides. Complete substitution of chymotrypsinogen was achieved under mild conditions and the extent of reaction could be readily determined from the spectrum of the maleyl-protein. 2. Maleyl-proteins are generally soluble and disaggregated at neutral pH. Trypsin splits the blocked proteins only at arginine residues and there is frequently selectivity in this cleavage, e.g. in yeast alcohol dehydrogenase and pig glyceraldehyde 3-phosphate dehydrogenase. 3. The group is removed by intramolecular catalysis at acid pH. The half-time was 11-12hr. at 37 degrees at pH3.5 in in-maleyl-lysine or in maleyl-chymotrypsinogen. 4. The unblocking reaction can be used as the basis for a ;diagonal'-electrophoretic separation of lysine peptides and N-terminal peptides, as shown by studies with beta-melanocyte-stimulating hormone.  相似文献   

11.
Bovine trypsinogen and chymotrypsinogen were successfully refolded as the mixed disulfide of glutathione using cysteine as the disulfide interchange catalyst. The native structures were regenerated with yields of 40%-50% at pH 8.6 and 4 degrees C, and the half-time for the refolding was approximately 60-75 min. We then refolded threonine-neochymotrypsinogen, which is a two-chain structure held together by disulfide bonds and produced on cleavage of Tyr 146-Thr 147 in native chymotrypsinogen [Duda CT, Light A, J Biol Chem 257 9866-9871, 1982]. Neochymotrypsinogen was denatured and fully reduced, and the thiols were converted to the mixed disulfide of glutathione. The two polypeptide fragments, representing the amino- and carboxyl-terminal domains, were separated on Sephadex G-75. Mixtures of the polypeptide fragments varying in the ratio of their concentration from 1:5 to 5:1 were refolded with yields of 21-28%. The lack of dependence on the concentration of either fragment and the relatively high yields suggest independent folding of the amino- and carboxyl-terminal domains. When the globular structures of the domains formed, they then interacted with one another and produced the native intermolecular disulfide bridge and the proper geometry of the active site.  相似文献   

12.
Ultraviolet difference absorption spectra produced by ethylene glycol were measured for hen lysozyme [EC 3.2.1.17] and bovine chymotrypsinogen. N-Acetyl-L-tryptophanamide and N-acetyl-L-tyrosinamide were employed as model compounds for tryptophyl and tyrosyl residues, respectively, and their ultraviolet difference spectra were also measured as a function of ethylene glycol concentration. By comparison of the slopes of plots of molar difference extinction coefficients (delta epsilon) versus ethylene glycol concentration for the proteins with those of the model compounds at peak positions (291-293 and 284-287 nm) in the difference spectra, the average number of tyrosyl as well as tryptophyl residues in exposed states could be estimated. The results gave 2.7 tryptophyl and 1.9 tyrosyl residues exposed for lysozyme at pH 2.1 and 2.6 tryptophyl and 3.4 tyrosyl residues exposed for chymotrypsinogen at pH 5.4. The somewhat higher tyrosyl exposure of chymotrypsinogen, compared with the findings from spectrophotometric titration and chemical modification, was not unexpected, because delta epsilon285 was larger than delta epsilon292, and the situation is discussed with reference to preferential interaction of ethylene glycol with the tyrosyl residues and/or side chains in the vicinity of the chromophore in the protein. The procedure employed in the present work seems to be suitable for estimation of the average number of exposed tryptophyl and tyrosyl residues in tryptophan-rich proteins. The effects of ethylene glycol on the circular dichroism spectra of lysozyme at pH 2.1 and chymotrypsinogen at pH 5.4 were also investigated. At high ethylene glycol concentrations, both proteins were found to undergo conformational changes in the direction of more ordered structures, presumably more helical for lysozyme and more beta-structured for chymotrypsinogen.  相似文献   

13.
1) Two forms of acid beta-galactosidase [EC 3.1.23] with different molecular weights catalyzing the hydrolysis of GM1-ganglioside and p-nitrophenyl-beta-D-galactoside were separated and purified from porcine spleen. 2) The apparent molecular weights were 400,000-600,000 and 70,000-74,000 for the high (termed Am form) and low (termed A1 form) molecular weight forms, respectively. 3) On examination by sodium dodecyl sulfate (SDS)/polyacrylamide gel electrophoresis, both forms of the enzyme had a common protein band of molecular weight 63,000, and the Am form showed three additional protein bands with molecular weights of 31,000, 21,000, and 20,000. 4) Both forms of the enzyme had similar catalytic functions with regard to pH-optimum, Km, substrate specificity and sensitivity to substrate analogues and other substances such as detergents, bovine serum albumin (BSA) and NaCl. 5) Both forms of the enzyme were fairly stable upon preincubation at 45 degrees C at acidic pH (pH 4.5), but lost their activities at neutral pH (pH 7.0). 6) The A1 form was a monomer at neutral pH (pH 7.0) and formed a dimer at acidic pH (pH 4.5). However, most of the Am form could not be converted to a dimeric form on gel filtration at acidic pH.  相似文献   

14.
A highly stable and potent trypsin inhibitor was purified to homogeneity from the seeds of Putranjiva roxburghii belonging to Euphorbiaceae family by acid precipitation, cation-exchange and anion-exchange chromatography. SDS-PAGE analysis, under reducing condition, showed that protein consists of a single polypeptide chain with molecular mass of approximately 34 kDa. The purified inhibitor inhibited bovine trypsin in 1:1 molar ratio. Kinetic studies showed that the protein is a competitive inhibitor with an equilibrium dissociation constant of 1.4x10(-11) M. The inhibitor retained the inhibitory activity over a broad range of pH (pH 2-12), temperature (20-80 degrees C) and in DTT (up to100 mM). The complete loss of inhibitory activity was observed above 90 degrees C. CD studies, at increasing temperatures, demonstrated the structural stability of inhibitor at high temperatures. The polypeptide backbone folding was retained up to 80 degrees C. The CD spectra of inhibitor at room temperature exhibited an alpha, beta pattern. N-terminal amino acid sequence of 10 residues did not show any similarities to known serine proteinase inhibitors, however, two peptides obtained by internal partial sequencing showed significant resemblance to Kunitz-type inhibitors.  相似文献   

15.
Freezing denaturation of ovalbumin at acid pH   总被引:1,自引:0,他引:1  
The effects of rapid freezing and thawing at acid pH on the physiochemical properties of ovalbumin were examined. At low pH (around 2), UV difference spectra showed microenvironmental changes around the aromatic amino acid residues; elution curves by gel permeation chromatography showed decreasing numbers of monomers after neutralization. These changes depended on the incubation temperature (between -196 and -10 degrees C) and the protein concentration (0.5-10 mg/ml), and a low concentration of ovalbumin incubated at around -40 degrees C suffered the most damage to its conformation. With freezing and then incubation at -40 degrees C, three of the four sulfhydryl groups in the ovalbumin molecule reacted with 2,2'-dithiodipyridine. The CD spectra showed these changes in the secondary structure, but they were smaller than those when guanidine hydrochloride was used for denaturation. Supercooling at -15 degrees C or freezing at -196 degrees C had little or no effect on the conformation of the ovalbumin molecule. Thus, irreversible conformational changes of ovalbumin were caused under the critical freezing condition at an acid pH. These changes arose from partial denaturation and resembled those with thermal denaturation of ovalbumin at neutral pH.  相似文献   

16.
Quail fed ad libitum and 50% ad libitum were cold exposed for several weeks, during time control quail remained at 21 degrees C. The concentration of plasma glucose, FFA, and uric acid, tissue glycogen and carcass fat content was measured at the end of the cold exposure period. Quail fed ad libitum showed no significant change in the levels of plasma and tissue metabolites, or the carcass fat content, following cold exposure. The feed consumption by the cold exposed quail increased, and the mean body weight showed little variation from that of the controls. Feed restricted quail which were cold exposed lost significantly more weight, and had a lower ranked fat content than their controls. Whereas feed restriction caused a lowering of the liver glycogen concentration in both treatment groups, muscle glycogen levels were higher than in quail fed ad libitum. However, cold exposure was not accompanied by a change in muscle and liver glycogen levels in feed restricted quail. Feed restricted quail at 21 degrees C were hypoglycaemic and hyperlipaemic compared to quail fed ad libitum, but cold exposed feed restricted quail had a much higher plasma glucose concentration than the controls. The ranked carcass fat content was inversely related to plasma FFA level in both control and cold exposed feed restricted quail. It is suggested that both a glycolytic and lipid mobilizing response to cold is obtained in quail whose body reserves are not spared from catabolism by adequate dietary nutrient absorption, and the possibility of gluconeogenesis from precursors produced by proteolysis is indicated.  相似文献   

17.
The effect of pH and temperature on the apparent association equilibrium constant (Ka) for the binding of the bovine basic pancreatic trypsin inhibitor (BPTI, Kunitz inhibitor) to human and bovine factor Xa (Stuart-Prower factor; EC 3.4.21.6) has been investigated. Under all the experimental conditions, values of Ka for BPTI binding to human and bovine factor Xa are identical. On lowering the pH from 9.5 to 4.5, values of Ka (at 21.0 degrees C) for BPTI binding to human and bovine factor Xa decrease, thus reflecting the acidic pK shift of the His57 catalytic residue from 7.1, in the free enzyme, to 5.2, in the proteinase-inhibitor complex. At pH 8.0, values of the apparent thermodynamic parameters for BPTI binding to human and bovine factor Xa are: Ka = 2.1 x 10(5)M-1 (at 21.0 degrees C), delta G degree = -29.7 kJ/mol (at 21.0 degrees C), delta S degree = +161 entropy units (at 21.0 degrees C), and delta H degree = +17.6 kJ/mol (temperature-independent over the explored range, from 5.0 degrees C to 45.0 degrees C). Thermodynamics of BPTI binding to human and bovine factor Xa have been analysed in parallel with those of related serine (pro)enzyme/Kazal- and /Kunitz-type inhibitor systems. Considering the known molecular models, the observed binding behaviour of BPTI to human and bovine factor Xa was related to the inferred stereochemistry of the proteinase/inhibitor contact region.  相似文献   

18.
The study was undertaken to evaluate the effect of pH and temperature control on the generation of soluble fermentation products from primary sludge. The effect was tested by running parallel experiments under pH and temperature controlled and uncontrolled conditions. In fermentation experiments conducted at 20 degrees C without pH control, the average soluble COD release was 14 mg per liter of wastewater treated, representing a potential increase of 5% in the biodegradable COD content of the primary sedimentation effluent. The corresponding average VFA generation was 9.2mg COD l(-1). The nutrient release was practically negligible and stayed at 0.4 mg l(-1) for nitrogen and 0.1mg l(-1) for phosphorus. Acetic acid accounted more than 45% of the generated VFA in all experimental runs. The acetic acid content of the VFA decreased with increasing initial VSS concentrations and higher pH levels. VFA generation by fermentation was significantly affected with temperature and pH control. Temperature change between 10 and 24 degrees C induced a five-fold increase in VFA generation, from 610 mg l(-1) at 10 degrees C to 2950 mg l(-1) at 24 degrees C.  相似文献   

19.
The mixed disulfide derivative of fully reduced neochymotrypsinogen was refolded at pH 9.2 and 4 degrees C with 4 mM cysteine as the disulfide interchange catalyst. The yield of regenerated neochymotrypsinogen was 25%; the corresponding yield of refolded chymotrypsinogen was 50%. The refolded neochymotrypsinogen exhibited the characteristics of the native molecule as determined from polyacrylamide gel electrophoresis and the enzymatic properties of the activated zymogen. The rate of refolding of neochymotrypsinogen was approximately the same as that found for chymotrypsinogen. These studies show that two separate fully reduced polypeptide chains were capable of refolding, associating with one another, and regenerating a native structure with full biological activity.  相似文献   

20.
The proteolytic activity and thermal stability of the enzyme complex of cell suspension from pig and bovine pancreas glands was compared with those of pancreatin. The enzyme complex displayed the highest thermal stability and activity at 50 degrees C. The kinetic constants, energies of activation and inactivation of the enzyme complex, and pH optimum (7.0 +/- 0.1) at which this complex had the maximum proteolytic activity were determined. Pancreatin had a pH optimum of 8.0 +/- 0.1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号