首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The thioredoxin peptide Trp-Cys-Gly-Pro-Cys-Lys, which contains the redox active dithiol, was found to be reduced by lipoamide in a coupled reaction with lipoamide dehydrogenase and NADH. The reduced peptide in turn was shown to reduce insulin, oxidized lens protein and glyceraldehyde-3-phosphate dehydrogenase. While the peptide is not as effective a catalyst for utilizing pyridine nucleotides to reduce protein disulfides as thioredoxin, it offers a system which may be developed to provide more efficient disulfide reduction. This is particularly relevant since no thioredoxin peptides have been found to be active with thioredoxin reductase.  相似文献   

2.
A sensitive quantitative method has been developed to determine the number of disulfide bonds in peptides and proteins. The disulfide bonds of several peptides and proteins were cleaved quantitatively by excess sodium sulfite at pH 9.5 and room temperature. Guanidine thiocyanate (2 M) was added to the protein solutions in order to denature them and thereby make the disulfide bonds accessible. The reaction with sulfite leads to a thiosulfonate and a free sulfhydryl group; the concentration of the latter was determined by reaction with disodium 2-nitro-5-thiosulfobenzoate (NTSB) in the presence of excess sodium sulfite. The synthesis, purification, and characterization of NTSB are described. The assay is rapid, requiring 3-5 min for oligopeptides and 20 min for proteins, and is as sensitive and quantitative as the sulfhydryl group assay employing 5,5'-dithiobis(2-nitrobenzoic acid) (Ellman's reagent). It can be used for the analysis of as little as 10(8) mol of disulfide bonds, with an error of +/- 3%.  相似文献   

3.
4-trans-(N,N-dimethylamino)cinnamaldehyde (DACA) is a chromophoric and fluorogenic substrate of aldehyde dehydrogenase. Fluorescence of DACA is enhanced by binding to aldehyde dehydrogenase in the absence of catalysis both in the presence and absence of the coenzyme analogue 5'AMP. DACA binds to aldehyde dehydrogenase with a dissociation constant of 1-3 microM and stoichiometry of 2 mol mol(-1) enzyme. Incorporation of DACA during catalysis was also investigated and found to be 2 mol DACA mol(-1) enzyme. Effect of pH on the stoichiometry of DACA incorporation during catalysis has shown that DACA incorporation remained constant at 2 mol DACA mol(-1) enzyme, despite a 74-fold velocity enhancement between pH 5.0 and 9.0. Increase of pH increased decomposition of enzyme-acyl intermediate without affecting the rate-limiting step of the reaction. At pH 7.0 the pH stimulated velocity enhancement was 10-fold over that at pH 5.0; further velocity enhancement (11.5-fold that of pH 7.0) was achieved by 150 microM Mg(2+) ions. The velocity at pH 7.0 with Mg(2+) exceeded that of pH 9.0, and that at maximal pH stimulation at pH 9.5. It was observed that level of intermediate decreased to about 1 mol mol(-1) enzyme, indicating that Mg(2+) ions increased the rate of decomposition of the enzyme-acyl intermediate and shifted the rate-limiting step of the reaction to another step in the reaction sequence.  相似文献   

4.
1. The kinetics of the reaction of 2,4,6-trinitrobenzenesulphonic acid with various amino acids, peptides and proteins were studied by spectrophotometry. 2. The reaction of the α- and -amino groups in simple amino acids was found to be second-order, and the unprotonated amino group was shown to be the reactive species. 3. By allowing for the concentration of unreactive −NH3+ group, intrinsic reactivities for the free amino groups were derived and shown to be correlated with the basicities. 4. The SH group of N-acetylcysteine was found to be more reactive to 2,4,6-trinitrobenzenesulphonic acid than most amino groups. 5. The reactions of insulin, chymotrypsinogen and ribonuclease with 2,4,6-trinitrobenzenesulphonic acid were analysed in terms of three exponential rate curves, each referring to one or more amino groups of the proteins. 6. The reaction of lysozyme with 2,4,6-trinitrobenzenesulphonic acid was found to display an acceleration effect. 7. From the reaction of 2,4,6-trinitrobenzenesulphonic acid with glutamate dehydrogenase at several enzyme concentrations, it was possible to discern two sets of amino groups of different reactivity, and to show that the number of groups in each set was decreased by aggregation of the enzyme.  相似文献   

5.
Group 3 late embryogenesis abundant (G3LEA) proteins have amino acid sequences with characteristic 11-mer motifs and are known to reduce aggregation of proteins during dehydration. Previously, we clarified the structural and thermodynamic properties of the 11-mer repeating units in G3LEA proteins using synthetic peptides composed of two or four tandem repeats originating from an insect (Polypedilum vanderplanki), nematodes and plants. The purpose of the present study is to test the utility of such 22-mer peptides as protective reagents for aggregation-prone proteins. For lysozyme, desiccation-induced aggregation was abrogated by low molar ratios of a 22-mer peptide, PvLEA-22, derived from a P. vanderplanki G3LEA protein sequence. However, an unexpected behavior was noted for the milk protein, α-casein. On drying, the resultant aggregation was significantly suppressed in the presence of PvLEA-22 with its molar ratios>25 relative to α-casein. However, when the molar ratio was <10, aggregation occurred on addition of PvLEA-22 to aqueous solutions of α-casein. Other peptides derived from nematode, plant and randomized G3LEA protein sequences gave similar results. Such an anomalous solubility change in α-casein was shown to be due to a pH shift to ca. 4, a value nearly equal to the isoelectric point (pI) of α-casein, when any of the 22-mer peptides was mixed. These results demonstrate that synthetic peptides derived from G3LEA protein sequences can reduce protein aggregation caused both by desiccation and, at high molar ratios, also by pH effects, and therefore have potential as stabilization reagents.  相似文献   

6.
The reaction of imido esters with horse liver alcohol dehydrogenase (LADH) and other proteins is widely considered to involve direct conversion of amino groups to amidine functions. We have shown that the 14-fold activated form of LADH which is produced when the modification is carried out near pH 8 contains primarily N-alkyl imidate, rather than amidine, moieties. Fully acetamidinated LADH, which is formed directly at pH 10, or by multiple modification at pH 8, is 6-fold activated. The observed mechanism of amidine formation suggests a re-evaluation of various conclusions drawn from studies of protein amidination.  相似文献   

7.
We have synthesized and characterized 5'-bromoacetamido-5'-deoxyadenosine (5'-BADA), a new reagent for labeling adenine nucleotide binding sites in enzymatic and regulatory proteins. 5'-BADA possessed exceptionally high solubility and stability in aqueous buffers between pH 5.0 and 8.6 at 25 degrees C. A Dixon plot of data from enzyme kinetic measurements showed that 5'-BADA is a competitive inhibitor of NADH oxidation by 3 alpha,20 beta-hydroxysteroid dehydrogenase with a Ki value of 11.8 mM. This compares with a Ki value of 10 mM for adenosine under similar experimental conditions. Incubating 5'-BADA with a 3 alpha,20 beta-hydroxysteroid dehydrogenase at pH 7.0 and 25 degrees C caused simultaneous loss of both 3 alpha and 20 beta activity. The enzyme inactivation reaction proceeded by a first order kinetic process. The rates of enzyme inactivation as a function of 5'-BADA concentration obeyed saturation kinetics. 2-Bromoacetamide, at ten times the maximum concentration of 5'-BADA, had no measurable effect on enzyme activity during 25 h of incubation. NADH and AMP protected 3 alpha,20 beta-hydroxysteroid dehydrogenase against inactivation by 5'-BADA. The results suggest that 5'-BADA inactivates the enzyme by irreversibly binding to the adenine domain of the NADH cofactor binding region at the catalytic site of 3 alpha,20 beta-hydroxysteroid dehydrogenase. Irreversible binding follows from an alkylation reaction between the bromoacetamido side chain of 5'-BADA and an amino acid at or near the enzyme catalytic site. 5'-BADA is presented as a new reagent for selectively labeling amino acid residues at the adenine nucleotide binding sites of enzymatic and regulatory proteins.  相似文献   

8.
《MABS-AUSTIN》2013,5(1):24-44
Assays for identification and quantification of host-cell proteins (HCPs) in biotherapeutic proteins over 5 orders of magnitude in concentration are presented. The HCP assays consist of two types: HCP identification using comprehensive online two-dimensional liquid chromatography coupled with high resolution mass spectrometry (2D-LC/MS), followed by high-throughput HCP quantification by liquid chromatography, multiple reaction monitoring (LC-MRM). The former is described as a “discovery” assay, the latter as a “monitoring” assay. Purified biotherapeutic proteins (e.g., monoclonal antibodies) were digested with trypsin after reduction and alkylation, and the digests were fractionated using reversed-phase (RP) chromatography at high pH (pH 10) by a step gradient in the first dimension, followed by a high-resolution separation at low pH (pH 2.5) in the second dimension. As peptides eluted from the second dimension, a quadrupole time-of-flight mass spectrometer was used to detect the peptides and their fragments simultaneously by alternating the collision cell energy between a low and an elevated energy (MSE methodology). The MSE data was used to identify and quantify the proteins in the mixture using a proven label-free quantification technique (“Hi3” method). The same data set was mined to subsequently develop target peptides and transitions for monitoring the concentration of selected HCPs on a triple quadrupole mass spectrometer in a high-throughput manner (20 min LC-MRM analysis). This analytical methodology was applied to the identification and quantification of low-abundance HCPs in six samples of PTG1, a recombinant chimeric anti-phosphotyrosine monoclonal antibody (mAb). Thirty three HCPs were identified in total from the PTG1 samples among which 21 HCP isoforms were selected for MRM monitoring. The absolute quantification of three selected HCPs was undertaken on two different LC-MRM platforms after spiking isotopically labeled peptides in the samples. Finally, the MRM quantitation results were compared with TOF-based quantification based on the Hi3 peptides, and the TOF and MRM data sets correlated reasonably well. The results show that the assays provide detailed valuable information to understand the relative contributions of purification schemes to the nature and concentrations of HCP impurities in biopharmaceutical samples, and the assays can be used as generic methods for HCP analysis in the biopharmaceutical industry.  相似文献   

9.
SDS-polyacrylamide gel electrophoresis of anti-glucose-6-phosphate dehydrogenase immunoprecipitates from radiolabeled uterine tissue extracts previously revealed three proteins: A, B and C, which were tentatively identified as a 60-64 kDa precursor form, a 57 kDa predominant form, and a 40-42 kDa nascent peptide form of the enzyme, respectively. A peptide-mapping technique was used to examine structural homologies among A, B and C. Following the labeling of uterine proteins with [35S]methionine, labeled proteins A, B and C were isolated by immunoprecipitation and electrophoresis. Each protein was individually co-digested with authentic, [3H]methionine-labeled glucose-6-phosphate dehydrogenase using papain, the resulting peptides were resolved by isoelectric focusing and the peptides from the two sources on each gel were compared using double-label counting methods. Proteins A, B and C had at least eight peptides in common, both proteins A and C had two additional peptides in common that were not present in protein B, and B protein had two peptides that were either absent or present in reduced amounts in digests of proteins A and C. The extensive structural homology and immunoreactivity of these proteins indicated that proteins A, B and C were all related to glucose-6-phosphate dehydrogenase. The presence of two extra peptides in proteins A and C suggested that these peptides may be derived from a common NH2-terminal leader sequence which was present in both the precursor and nascent peptide chains. The presence of two peptides that were present in protein B and absent from proteins A and C is easiest to explain if they are derived from the two ends of the molecule, with the corresponding peptides in proteins A and C containing additional peptide sequences that are 'normally' removed by endogenous proteolytic processing enzymes. Based on the relative time-course of synthesis of the three glucose-6-phosphate dehydrogenase-related proteins in control and estrogen-treated uteri, it appears that estradiol promotes an increase in the relative rate of transfer of label from protein A into B by stimulating the rate of processing of the precursor to the predominant form of the enzyme and enhances the rate of translational conversion of protein C into higher molecular weight forms.  相似文献   

10.
pH‐shifts are a serious challenge in cofactor dependent biocatalytic oxidoreductions. Therefore, a pH control strategy was developed for reaction systems, where the pH value is not directly measurable. Such a reaction system is the biphasic aqueous‐organic reaction system, where the oxidoreduction of hydrophobic substrates in organic solvents is catalysed by hydrogel‐immobilized enzymes, and enzyme‐coupled cofactor regeneration is accomplished via formate dehydrogenase, leading to a pH‐shift. Dual lifetime referencing (DLR), a fluorescence spectroscopic method, was applied for online‐monitoring of the pH‐value within the immobilizates during the reaction, allowing for a controlled dosage of formic acid. It could be shown that by applying trisodium 8‐hydroxypyrene‐1, 3, 6‐trisulfonate as pH indicator and Ru(II) tris(4, 7‐diphenyl‐1, 10‐phenantroline) (Ru[dpp]) as a reference luminophore the control of the pH‐value in a macroscopic gel‐bead‐stabilized aqueous/organic two phase system in a range of pH 6.5 to 8.0 is possible. An experimental proof of concept could maintain a stable pH of 7.5 ± 0.15 during the reaction for at least 105 h. With these results, it could be shown that DLR is a powerful tool for pH‐control within reaction systems with no direct access for conventional pH‐measurement.  相似文献   

11.
A lecithinase-lipase-negative Clostridium sp. 25.11.c., not fitting in any of the species of Clostridia described so far as judged by morphological, physiological, and biochemical data, was shown to contain NADP-dependent 3 beta-, 7 alpha- and 7 beta-hydroxysteroid dehydrogenases. The three hydroxysteroid dehydrogenases could be demonstrated in the supernatant and in the membrane fraction after solubilization with Triton X-100, suggesting enzymes which were originally membrane bound. The 3 beta-hydroxysteroid dehydrogenase was synthesized constitutively, and the specific enzyme activity was significantly reduced by growth medium supplementation with 3-keto bile acids and trisubstituted bile acids. A pH optimum of 7.5 and a molecular weight of approx. 104,000 were estimated by molecular sieve chromatography. The enzyme reduced the 3-keto group of bile acids; an oxidation of a 3 beta-hydroxyl function could not be demonstrated. The lowest Km values were found for disubstituted bile acids, trisubstituted and conjugated bile acids having higher Km values. 7 alpha-Hydroxysteroid dehydrogenase, but not 7 beta-hydroxysteroid dehydrogenase, was already present in uninduced cells. The specific activities, however, were greatly enhanced when cells were grown in the presence of chenodeoxycholic acid or 3 alpha-hydroxy-7-keto-5 beta-cholanoic acid. Ursodeoxycholic acid with its 7 beta-hydroxyl group was ineffective as an inducer. Molecular weights of approx. 82,000 and 115,000 were found for the 7 alpha-hydroxysteroid dehydrogenase and the 7 beta-hydroxysteroid dehydrogenase, respectively. In contrast to the in vivo situation, the reaction could only be demonstrated in the reductive direction in vitro. Here, the pH optimum for the overall reaction was 8.5-8.7. 3 beta-, 7 alpha- and 7 beta-hydroxysteroid dehydrogenase activities were readily demonstrated for at least 48 h when preparations were stored at 4 degrees C, but were found to be heat-sensitive.  相似文献   

12.
Branched-chain oxo acid dehydrogenase was purified from Pseudomonas aeruginosa strain PAO with the objective of resolving the complex into its subunits. The purified complex consisted of four proteins, of Mr 36,000, 42,000, 49,000 and 50,000. The complex was resolved by heat treatment into the 49,000 and 50,000-Mr proteins, which were separated by chromatography on DEAE-Sepharose. The 49,000-Mr protein was identified as the E2 subunit by its ability to catalyse transacylation with a variety of substrates, with dihydrolipoamide as the acceptor. P. aeruginosa, like P. putida, produces two lipoamide dehydrogenases. One, the 50,000-Mr protein, was identified as the specific E3 subunit of branched-chain oxo acid dehydrogenase and had many properties in common with the lipoamide dehydrogenase LPD-val of P. putida. The second lipoamide dehydrogenase had Mr 54,000 and corresponded to the lipoamide dehydrogenase LPD-glc of P. putida. Fragments of C-terminal CNBr peptides of LPD-val from P. putida and P. aeruginosa corresponded closely, with only two amino acid differences over 31 amino acids. A corresponding fragment at the C-terminal end of lipoamide dehydrogenase from Escherichia coli also showed extensive homology. All three peptides had a common segment of eight amino acids, with the sequence TIHAHPTL. This homology was not evident in any other flavoproteins in the Dayhoff data base which suggests that this sequence might be characteristic of lipoamide dehydrogenase.  相似文献   

13.
4-trans-(N,N-dimethylamino)cinnamaldehyde (DACA) is a chromophoric and fluorogenic substrate of aldehyde dehydrogenase. Fluorescence of DACA is enhanced by binding to aldehyde dehydrogenase in the absence of catalysis both in the presence and absence of the coenzyme analogue 5′AMP. DACA binds to aldehyde dehydrogenase with a dissociation constant of 1–3 μM and stoichiometry of 2 mol mol−1 enzyme. Incorporation of DACA during catalysis was also investigated and found to be 2 mol DACA mol−1 enzyme. Effect of pH on the stoichiometry of DACA incorporation during catalysis has shown that DACA incorporation remained constant at 2 mol DACA mol−1 enzyme, despite a 74-fold velocity enhancement between pH 5.0 and 9.0. Increase of pH increased decomposition of enzyme–acyl intermediate without affecting the rate-limiting step of the reaction. At pH 7.0 the pH stimulated velocity enhancement was 10-fold over that at pH 5.0; further velocity enhancement (11.5-fold that of pH 7.0) was achieved by 150 μM Mg2+ ions. The velocity at pH 7.0 with Mg2+ exceeded that of pH 9.0, and that at maximal pH stimulation at pH 9.5. It was observed that level of intermediate decreased to about 1 mol mol−1 enzyme, indicating that Mg2+ ions increased the rate of decomposition of the enzyme–acyl intermediate and shifted the rate-limiting step of the reaction to another step in the reaction sequence.  相似文献   

14.
New site-specific protein labeling (SSPL) reactions for targeting-specific, short peptides could be useful for the real-time detection of proteins inside of living cells. One SSPL approach matches bioorthogonal reagents with complementary peptides. Here, hydrazide reactive peptides were selected from phage-displayed libraries using reaction-based selections. Selection conditions included washes of varying pH and treatment with NaCNBH(3) in order to specifically select reactive carbonyl-containing peptides. Selected peptides were fused to T4 lysozyme or synthesized on filter paper for colorimetric assays of the peptide-hydrazide interaction. A peptide-lysozyme protein fusion demonstrated specific, covalent labeling by the hydrazide reactive (HyRe) peptides in crude bacterial cell lysates, sufficient for the specific detection of an overexpressed protein fusion. Chemical synthesis of a short HyRe tag variant and subsequent reaction with two structurally distinct hydrazide probes produced covalent adducts observable by MALDI-TOF MS and MS/MS. Rather than isolating reactive carbonyl-containing peptides, we observed reaction with the N-terminal His of HyRe tag 114, amino acid sequence HKSNHSSKNRE, which attacks the hydrazide carbonyl at neutral pH. However, at the pH used during selection wash steps (<6.0), an alternative imine-containing product is formed that can be reduced with sodium cyanoborohydride. MSMS further reveals that this low pH product forms an adduct on Ser6. Further optimization of the novel bimolecular reaction described here could provide a useful tool for in vivo protein labeling and bioconjugate synthesis. The reported selection and screening methods could be widely applicable to the identification of peptides capable of other site-specific protein labeling reactions with bioorthogonal reagents.  相似文献   

15.
16.
Tissue transglutaminase (TG2) can modify proteins by transamidation or deamidation of specific glutamine residues. TG2 has a major role in the pathogenesis of celiac disease as it is both the target of disease-specific autoantibodies and generates deamidated gliadin peptides that are recognized by CD4(+), DQ2-restricted T cells from the celiac lesions. Capillary electrophoresis with fluorescence-labeled gliadin peptides was used to separate and quantify deamidated and transamidated products. In a competition assay, the affinity of TG2 to a set of overlapping gamma-gliadin peptides was measured and compared with their recognition by celiac lesion T cells. Peptides differed considerably in their competition efficiency. Those peptides recognized by intestinal T cell lines showed marked competition indicating them as excellent substrates for TG2. The enzyme fine specificity of TG2 was characterized by synthetic peptide libraries and mass spectrometry. Residues in positions -1, +1, +2, and +3 relative to the targeted glutamine residue influenced the enzyme activity, and proline in position +2 had a particularly positive effect. The characterized sequence specificity of TG2 explained the variation between peptides as TG2 substrates indicating that the enzyme is involved in the selection of gluten T cell epitopes. The enzyme is mainly localized extracellularly in the small intestine where primary amines as substrates for the competing transamidation reaction are present. The deamidation could possibly take place in this compartment as an excess of primary amines did not completely inhibit deamidation of gluten peptides at pH 7.3. However, lowering of the pH decreased the reaction rate of the TG2-catalyzed transamidation, whereas the rate of the deamidation reaction was considerably increased. This suggests that the deamidation of gluten peptides by TG2 more likely takes place in slightly acidic environments.  相似文献   

17.
The catalytic mechanism of the phosphoglycerate dehydrogenase reaction in both directions was investigated by studying: (a) pre-steady state transients in reduced coenzyme appearance or disappearance or disappearance and in protein fluorescence; (b) deuterium isotope effects on the transients and on the steady state reactions; and (c) the partial reaction between the enzyme-NADH complex and hydroxypyruvate-P. These studies led to the scheme below for the ternary complex interconversion. E1-NADH-hydroxypyruvate-P(1)equilibriumE2-NADH-hydroxypyruvate-P(2)equilibriumE3-NADH-hydroxypyruvate-P + H+(3)equilibriumE3-NAD+-3-phosphoglycerate(4)equilibriumE4-NAD+-3-phosphoglycerate Steps 1,2, and 4 are ternary complex isomerizations. Step 3 is the hydride transfer. Under steady state conditions isomerization 2 is the rate-determining step in the direction of hydroxypyruvate-P reduction at higher pH values. At lower pH values, the hydride transfer step is also partially rate-determining. The rate-determining step in the direction of 3-phosphoglycerate oxidation occurs subsequent to the hydride transfer step at higher pH values. At lower pH values the rate is determined by both isomerization 4 and the hydride transfer step. Isomerizations 1, 2, and 4 were inhibited by serine, an allosteric inhibitor, indicating that the inactive conformation of the enzyme is incapable of performing any of the steps of the ternary complex interconversion. Phosphoglycerate dehydrogenase corresponds to a V-type allosteric enzyme. When the enzyme-NADH complex was mixed with hydroxypyruvate-P at pH 8.5, a rapid quenching of enzymebound NADH fluorescence occurred. This process was studied under pseudo-first order conditions and shown to be the result of hydroxypyruvate-P binding.  相似文献   

18.
15-Hydroxyprostaglandin dehydrogenase was isolated from human term placenta up to a final purification of 380-fold. A spec. act. of 2000 mU/mg of protein was reached. The preparation was not homogeneous as judged by analytical disc electrophoresis. The enzyme could be stored in the presence of 50% glycerol and 10mM 2-mercaptoethanol without any loss of activity for at least one year. A distinct single protein band stained after discontinuous polyacrylamide gel electrophoresis was shown by enzymatic activity staining to correspond to 15-hydroxyprostaglandin dehydrogenase activity. Thus no evidence for the exitstence of isoenzymes was obtained. The protein in the final preparation steps showed neither alcohol dehydrogenase, NAD reductase, nor NADH oxidase activity, nor enzymatic conversion of prostaglandin or 15-oxoprostaglandin in the absence of NAD and NADH. No spontaneous reactions between NAD and prostaglandin or NADH and 15-oxoprostaglandin were detectable in the absence of the enzyme. Ethanol and glycerol slightly inhibited the reaction. Various buffers (Tris/HC1, potassium phosphate, HEPES, and triethanolamine) and salts (ammonium chloride, ammonium sulfate, potassium chloride, and sodium chloride) had different effects on the reaction rate. The pH profile of the reaction shows a plateau between pH 7.0 and 7.8 and a steep maximum at pH 9.5. A linear Arrhenius plot was obtained for the temperature dependence of the reaction from 20 to 37 degrees C. The molar activation enthalpy of the reaction was calculated to be 13.1 kcal/mole. The molecular weight of 15-hydroxyprostaglandin dehydrogenase was estimated to be 32000 -/+ 3000 by gel filtration on Sephadex G-150 in the presence of 10mM mercaptoethanol.  相似文献   

19.
Seven multiforms of indanol dehydrogenase were isolated in a highly purified state from male rabbit liver cytosol. The enzymes were monomeric proteins with similar molecular weights of 30,000-37,000 but with distinct electrophoretic mobilities. All the enzymes oxidized alicyclic alcohols including benzene dihydrodiol and hydroxysteroids at different optimal pH, but showed clear differences in cofactor specificity, steroid specificity, and reversibility of the reaction. Two NADP+-dependent enzymes exhibited both 17 beta-hydroxysteroid dehydrogenase activity for 5 alpha-androstanes and 3 alpha-hydroxysteroid dehydrogenase activity for 5 beta-androstan-3 alpha-ol-17-one. Three of the other enzymes with dual cofactor specificity catalyzed predominantly 5 beta-androstane-3 alpha,17 beta-diol dehydrogenation. The reverse reaction rates of these five enzymes were low, whereas the other two enzymes, which had 3 alpha-hydroxysteroid dehydrogenase activity for 5 alpha-androstanes or 3(17)beta-hydroxysteroid dehydrogenase activity for 5 alpha-androstanes, highly reduced 3-ketosteroids and nonsteroidal aromatic carbonyl compounds with NADPH as a cofactor. All the enzymes exhibited Km values lower for the hydroxysteroids than for the alicyclic alcohols. The results of kinetic analyses with a mixture of 1-indanol and hydroxysteroids, pH and heat stability, and inhibitor sensitivity suggested strongly that, in the seven enzymes, both alicyclic alcohol dehydrogenase and hydroxysteroid dehydrogenase activities reside on a single enzyme protein. On the basis of these data, we suggest that indanol dehydrogenase exists in multiple forms in rabbit liver cytosol and may function in in vivo androgen metabolism.  相似文献   

20.
Assays for identification and quantification of host-cell proteins (HCPs) in biotherapeutic proteins over 5 orders of magnitude in concentration are presented. The HCP assays consist of two types: HCP identification using comprehensive online two-dimensional liquid chromatography coupled with high resolution mass spectrometry (2D-LC/MS), followed by high-throughput HCP quantification by liquid chromatography, multiple reaction monitoring (LC-MRM). The former is described as a “discovery” assay, the latter as a “monitoring” assay. Purified biotherapeutic proteins (e.g., monoclonal antibodies) were digested with trypsin after reduction and alkylation, and the digests were fractionated using reversed-phase (RP) chromatography at high pH (pH 10) by a step gradient in the first dimension, followed by a high-resolution separation at low pH (pH 2.5) in the second dimension. As peptides eluted from the second dimension, a quadrupole time-of-flight mass spectrometer was used to detect the peptides and their fragments simultaneously by alternating the collision cell energy between a low and an elevated energy (MSE methodology). The MSE data was used to identify and quantify the proteins in the mixture using a proven label-free quantification technique (“Hi3” method). The same data set was mined to subsequently develop target peptides and transitions for monitoring the concentration of selected HCPs on a triple quadrupole mass spectrometer in a high-throughput manner (20 min LC-MRM analysis). This analytical methodology was applied to the identification and quantification of low-abundance HCPs in six samples of PTG1, a recombinant chimeric anti-phosphotyrosine monoclonal antibody (mAb). Thirty three HCPs were identified in total from the PTG1 samples among which 21 HCP isoforms were selected for MRM monitoring. The absolute quantification of three selected HCPs was undertaken on two different LC-MRM platforms after spiking isotopically labeled peptides in the samples. Finally, the MRM quantitation results were compared with TOF-based quantification based on the Hi3 peptides, and the TOF and MRM data sets correlated reasonably well. The results show that the assays provide detailed valuable information to understand the relative contributions of purification schemes to the nature and concentrations of HCP impurities in biopharmaceutical samples, and the assays can be used as generic methods for HCP analysis in the biopharmaceutical industry.Key words: host cell proteins, protein quantification, biotherapeutic proteins, mAbs, HCP  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号