首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Chemical modification or mutation of proteins may bring about significant changes in the net charge or surface hydrophobicity of a protein structure. Such events may be of major physiological significance and may provide important insights into the genetics of amyloid diseases. In the present study, fibrillation potential of native and chemically-modified forms of bovine carbonic anhydrase II (BCA II) were investigated. Initially, various denaturing conditions including low pH and high temperatures were tested to induce fibrillation. At a low pH of around 2.4, where the protein is totally dissociated, the apo form was found to take up a pre-molten globular (PMG) conformation with the capacity for fibril formation. Upon increasing the pH to around 3.6, a molten globular (MG) form became abundant, forming amorphous aggregates. Charge neutralization and enhancement of hydrophobicity by methylation, acetylation and propionylation of lysine residues appeared very effective in promoting fibrillation of both the apo and holo forms under native conditions, the rates and extents of which were directly proportional to surface hydrophobicity, and influenced by salt concentration and temperature. These modified structures underwent more pronounced fibrillation under native conditions, than the PMG intermediate form, observed under denaturing conditions. The nature of the fibrillation products obtained from intermediate and modified structures were characterized and compared and their possible cytotoxicity determined. Results are discussed in terms of the importance of surface net charge and hydrophobicity in controlling protein aggregation. A discussion on the physiological significance of the observations is also presented.  相似文献   

2.
We have shown that the ability of a protein to be in globular or in natively unfolded state (under native conditions) may be determined (besides low overall hydrophobicity and a large net charge) by such a property as the average environment density, the average number of residues enclosed at the given distance. A statistical scale of the average number of residues enclosed at the given distance for 20 types of amino acid residues in globular state has been created on the basis of 6626 protein structures. Using this scale for separation of 80 globular and 90 natively unfolded proteins we fail only in 11% of proteins (compared with 17% of errors which are observed if to use hydrophobicity scale). The present scale may be used both for prediction of form (folded or unfolded) of the native state of protein and for prediction of natively unfolded regions in protein chains. The results of comparison of our method of predicting natively unfolded regions with the other known methods show that our method has the highest fraction of correctly predicted natively unfolded regions (that is 87% and 77% if to make averaging over residues and over proteins correspondingly).  相似文献   

3.
Uversky VN  Gillespie JR  Fink AL 《Proteins》2000,41(3):415-427
"Natively unfolded" proteins occupy a unique niche within the protein kingdom in that they lack ordered structure under conditions of neutral pH in vitro. Analysis of amino acid sequences, based on the normalized net charge and mean hydrophobicity, has been applied to two sets of proteins: small globular folded proteins and "natively unfolded" ones. The results show that "natively unfolded" proteins are specifically localized within a unique region of charge-hydrophobicity phase space and indicate that a combination of low overall hydrophobicity and large net charge represent a unique structural feature of "natively unfolded" proteins.  相似文献   

4.
Studies on the aggregation of mutant proteins have provided new insights into the genetics of amyloid diseases and the role of the net charge of the protein on the rate, extent, and type of aggregate formation. In the present work, hen egg white lysozyme (HEWL) was employed as the model protein. Acetylation and (separately) citraconylation were employed to neutralize the charge on lysine residues. Acetylation of the lysine residues promoted amyloid formation, resulting in more pronounced fibrils and a dramatic decline in the nucleation time. In contrast, citraconylation produced the opposite effect. In both cases, native secondary and tertiary structures appeared to be retained. Studies on the effect of pH on aggregation suggested greater possibilities for amorphous aggregate formation rather than fibrillation at pH values closer to neutrality, in which the protein is known to take up a conformation more similar to its native form. This is in accord with reports in the literature suggesting that formation of amorphous aggregates is more favored under relatively more native conditions. pH 5 provided a critical environment in which a mixture of amorphous and fibrillar structures were observed. Use of Tango and Aggrescan software which describe aggregation tendencies of different parts of a protein structure suggested critical importance of some of the lysine residues in the aggregation process. Results are discussed in terms of the importance of the net charge in control of protein–protein interactions leading to aggregate formation and possible specific roles of lysine residues 96 and 97.  相似文献   

5.
Intermediate states are key to understanding the molecular mechanisms governing protein misfolding. The human prion protein (PrP) can follow various misfolding pathways, and forms a soluble beta-sheet-rich oligomer under acidic, mildly denaturing, high salt conditions. Here we describe a fast conformational switch from the native alpha-monomer to monomeric intermediate states under oligomer-forming conditions, followed by a slower oligomerization process. We observe a pH dependence of the secondary structure of these intermediate forms, with almost native-like alpha-helical secondary structure at pH 4.1 and predominantly beta-sheet characteristics at pH 3.6. NMR spectroscopy differentiates these intermediate states from the native protein and indicates dynamic rearrangements of secondary structure elements characteristic of a molten globule. The alpha-helical intermediate formed at pH 4.1 can convert to the beta-sheet conformation at pH 3.6 but not vice versa, and neither state can be reconverted to an alpha-monomer. The presence of methionine rather than valine at codon 129 accelerates the rate of oligomer formation from the intermediate state.  相似文献   

6.
To develop a simple method for probing the physical state of surface adsorbed proteins, we adopted the force curve mode of an atomic force microscope (AFM) to extract information on the mechanical properties of surface immobilized bovine carbonic anhydrase II under native conditions and in the course of guanidinium chloride-induced denaturation. A progressive increase in the population of individually softened molecules was probed under mildly to fully denaturing conditions. The use of the approach regime of force curves gave information regarding the height and rigidity of the molecule under compressive stress, whereas use of the retracting regime of the curves gave information about the tensile characteristics of the protein. The results showed that protein molecules at the beginning of the transition region possessed slightly more flattened and significantly more softened conformations compared with that of native molecules, but were still not fully denatured, in agreement with results based on solution studies. Thus the force curve mode of an AFM was shown to be sensitive enough to provide information concerning the different physical states of single molecules of globular proteins.  相似文献   

7.
Uversky VN 《FEBS letters》2002,514(2-3):181-183
Many, but not all, globular proteins have been shown to have compact intermediate state(s) under equilibrium conditions in vitro, giving rise to the question: why do some proteins adopt partially folded conformations, whereas other do not? Here we show that charge to hydrophobicity ratio of a polypeptide chain may represent a key determinant in this respect, as proteins known to form equilibrium partially folded intermediates are specifically localized within a unique region of charge-hydrophobicity space. Thus, the competence of a protein to form equilibrium intermediate(s) may be determined by the bulk content of hydrophobic and charged amino acid residues rather than by the positioning of amino acids within the sequence.  相似文献   

8.
The reversible folding-unfolding transition of mature and precursor forms of Bacillus subtilis levansucrase were compared under physiological conditions of pH and temperature. The time constant of the folding reaction was not modified by the presence of the signal sequence and the precursor in the native form was slightly more resistant to the denaturing action of urea. However, the folding pathway could be different for each protein since a domain of the mature levansucrase underwent an independent transition which is not observed during the renaturation process of prelevansucrase.  相似文献   

9.
Recent studies of globular protein solutions have uniformly adopted a colloidal view of proteins as particles, a perspective that neglects the polymeric primary structure of these biological macromolecules, their intrinsic flexibility, and their ability to sample a large configurational space. While the colloidal perspective often serves as a useful idealization in many cases, the macromolecular identity of proteins must reveal itself under thermodynamic conditions in which the native state is no longer stable, such as denaturing solvents and high protein concentrations where macromolecules tend to have screened excluded volume, charge, and hydrodynamic interactions. Under extreme pH conditions, charge repulsion interactions within the protein chain can overcome the attractive hydrogen-bonding interactions, holding it in its native globular state. Conformational changes can therefore be expected to have great significance on the shear viscosity and other rheological properties of protein solutions. These changes are not envisioned in conventional colloidal protein models and we have initiated an investigation of the scattering and rheological properties of model proteins. We initiate this effort by considering bovine serum albumin because it is a globular protein whose solution properties have also been extensively investigated as a function of pH, temperature, ionic strength, and concentration. As we anticipated, near-ultraviolet circular dichroism measurements and intrinsic viscosity measurements clearly indicate that the bovine serum albumin tertiary structure changes as protein concentration and pH are varied. Our findings point to limited validity of the colloidal protein model and to the need for further consideration and quantification of the effects of conformational changes on protein solution viscosity, protein association, and the phase behavior. Small-angle Neutron Scattering measurements have allowed us to assess how these conformational changes influence protein size, shape, and interprotein interaction strength.  相似文献   

10.
This review describes different ways to achieve and monitor reproducible aggregation of α-synuclein, a key protein in the development of Parkinson's disease. For most globular proteins, aggregation is promoted by partially denaturing conditions which compromise the native state without destabilizing the intermolecular contacts required for accumulation of regular amyloid structure. As a natively disordered protein, α-synuclein can fibrillate under physiological conditions and this process is actually stimulated by conditions that promote structure formation, such as low pH, ions, polyamines, anionic surfactants, fluorinated alcohols and agitation. Reproducibility is a critical issue since α-synuclein shows erratic fibrillation behavior on its own. Agitation in combination with glass beads significantly reduces the variability of aggregation time curves, but the most reproducible aggregation is achieved by sub-micellar concentrations of SDS, which promote the rapid formation of small clusters of α-synuclein around shared micelles. Although the fibrils produced this way have a different appearance and secondary structure, they are rich in cross-β structure and are amenable to high-throughput screening assays. Although such assays at best provide a very simplistic recapitulation of physiological conditions, they allow the investigator to focus on well-defined molecular events and may provide the opportunity to identify, e.g. small molecule inhibitors of aggregation that affect these steps. Subsequent experiments in more complex cellular and whole-organism environments can then validate whether there is any relation between these molecular interactions and the broader biological context.  相似文献   

11.
During folding of globular proteins, the molten globule state was observed as an equilibrium intermediate under mildly denaturing conditions as well as a transient intermediate in kinetic refolding experiments. While the high compactness of the equilibrium intermediate of alpha-lactalbumin has been verified, direct measurements of the compactness of the kinetic intermediate have not been reported until now. Our dynamic light scattering measurements provide a complete set of the hydrodynamic dimensions of bovine alpha-lactalbumin in different conformational states, particularly in the kinetic molten globule state. The Stokes radii for the native, kinetic molten globule, equilibrium molten globule, and unfolded states are 1.91, 1.99, 2.08, and 2.46 nm, respectively. Therefore, the kinetic intermediate appears to be even more compact than its equilibrium counterpart. Remarkable differences in the concentration dependence of the Stokes radius exist revealing strong attractive but repulsive intermolecular interactions in the kinetic and equilibrium molten globule states, respectively. This underlines the importance of extrapolation to zero protein concentration in measurements of the molecular compactness.  相似文献   

12.
Natively unfolded or intrinsically unstructured proteins constitute a unique group of the protein kingdom. The evolutionary persistence of such proteins represents strong evidence in the favor of their importance and raises intriguing questions about the role of protein disorders in biological processes. Additionally, natively unfolded proteins, with their lack of ordered structure, represent attractive targets for the biophysical studies of the unfolded polypeptide chain under physiological conditions in vitro. The goal of this study was to summarize the structural information on natively unfolded proteins in order to evaluate their major conformational characteristics. It appeared that natively unfolded proteins are characterized by low overall hydrophobicity and large net charge. They possess hydrodynamic properties typical of random coils in poor solvent, or premolten globule conformation. These proteins show a low level of ordered secondary structure and no tightly packed core. They are very flexible, but may adopt relatively rigid conformations in the presence of natural ligands. Finally, in comparison with the globular proteins, natively unfolded polypeptides possess 'turn out' responses to changes in the environment, as their structural complexities increase at high temperature or at extreme pH.  相似文献   

13.
Folding mechanisms of a variant of green fluorescent protein (F99S/M153T/V163A) were investigated by a wide variety of spectroscopic techniques. Equilibrium measurements on acid-induced denaturation of the protein monitored by chromophore and tryptophan fluorescence and small-angle X-ray scattering revealed that this protein accumulates at least two equilibrium intermediates, a native-like intermediate and an unfolding intermediate, the latter of which exhibits the characteristics of the molten globule state under moderately denaturing conditions at pH 4. To elucidate the role of the equilibrium unfolding intermediate in folding, a series of kinetic refolding experiments with various combinations of initial and final pH values, including pH 7.5 (the native condition), pH 4.0 (the moderately denaturing condition where the unfolding intermediate is accumulated), and pH 2.0 (the acid-denaturing condition) were carried out by monitoring chromophore and tryptophan fluorescence. Kinetic on-pathway intermediates were accumulated during the folding on the refolding reaction from pH 2.0 to 7.5. However, the signal change corresponding to the conversion from the acid-denatured to the kinetic intermediate states was significantly reduced on the refolding reaction from pH 4.0 to pH 7.5, whereas only the signal change corresponding to the above conversion was observed on the refolding reaction from pH 2.0 to pH 4.0. These results indicate that the equilibrium unfolding intermediate is composed of an ensemble of the folding intermediate species accumulated during the folding reaction, and thus support a hierarchical model of protein folding.  相似文献   

14.
Possible effects of changes in net charge on protein hydrogen exchange rates were investigated by desalting hen egg-white lysozyme, which allowed its net charge to increase with decreasing pH in the acid region. Chloride ion-binding ratios, expressed as ratios of free to total Cl?, were measured with a chloride-specific electrode at pH 5 on a 2.4% solution of a five-time-desalted product. This ratio was used to show a 97% reduction of the 11% Cl? present in a commercial lysozyme preparation upon three passes of the enzyme through a column of ion-retardation resin. Net charges on the purified product were assigned from a combination of electrophoretic mobility and proton titration data gathered under minimal ionic strength conditions. The net charge on the desalted product increased by 1.64 units between pH 5.0 and 3.0. Hydrogendeuterium exchange studies on the purified lysozyme in D2O were obtained using the near-infrared region of a Cary 14R spectrophotometer. The rate-pD profile for k2, the rate constant for the intermediate class of exchanging hydrogens, showed a decrease in the apparent pD of minimum exchange rate of 0.3 units, when compared to that obtained earlier in 0.2 m added NaCl. However, the rate of exchange at pD minimum and the number of hydrogens in the class remained largely unaffected. A similar shift was observed for the rate-pD profile of the class 1 hydrogens. Thus, the effect of an increase in net positive charge is to shift the rate-pD profile to a lower pD. Moreover, the effect extended to the interior peptide hydrogens of this globular protein. Consequently, the exchange rates of all the observable hydrogens are altered by the net charge changes, and the effect appeared uniform. The shift can be accounted for quantitatively by applying electrostatic interaction terms to the acid and base catalytic constants characterizing the exchange process. The calculated electrostatic interaction factors in minimal salt and 0.2 m added NaCl were found to be 29 and 18% lower, respectively, than those obtained theoretically. Therefore, under conditions where changes in net charge may occur for a globular protein, the effect on hydrogen exchange rates can be estimated fairly well theoretically, especially at moderate ionic strengths.  相似文献   

15.
Sucrose gradient centrifugation of the monomeric form (A1) of porcine spleen beta-galactosidase showed a pH-dependent equilibrium between monomer at neutral pH (pH 7.0) and dimer at acidic pH (pH 5.4-3.0), independent of ionic strength. While the oligomeric form (Ao), which was hardly dissociated under physiological conditions, was dissociated only with some protein denaturing agents into similar catalytic subunit to the A1. Both the A1 and Ao were equally active and stable at acidic pH, in the physiological condition inside lysosome (around pH 4.6).  相似文献   

16.
We here compare thermal unfolding of the apo and holo forms of Desulfovibrio desulfuricans flavodoxin, which noncovalently binds a flavin mononucleotide (FMN) cofactor. In the case of the apo form, fluorescence and far-UV circular dichroism (CD) detected transitions are reversible but do not overlap (T(m) of 50 and 60 degrees C, respectively, pH 7). The thermal transitions for the holo form follow the same pattern but occur at higher temperatures (T(m) of 60 and 67 degrees C for fluorescence and CD transitions, respectively, pH 7). The holoprotein transitions are also reversible and exhibit no protein concentration dependence (above 10 microM), indicating that the FMN remains bound to the polypeptide throughout. Global analysis shows that the thermal reactions for both apo and holo forms proceed via an equilibrium intermediate that has approximately 90% nativelike secondary structure and significant enthalpic stabilization relative to the unfolded states. Incubation of unfolded holoflavodoxin at high temperatures results in FMN dissociation. Rebinding of FMN at these conditions is nominal, and therefore, cooling of holoprotein heated to 95 degrees C follows the refolding pathway of the apo form. However, FMN readily rebinds to the apoprotein at lower temperatures. We conclude that (1) a three-state thermal unfolding behavior appears to be conserved among long- and short-chain, as well as apo and holo forms of, flavodoxins and (2) flavodoxin's thermal stability (in both native and intermediate states) is augmented by the presence of the FMN cofactor.  相似文献   

17.
Devaraneni PK  Mishra N  Bhat R 《Biochimie》2012,94(4):947-952
Osmolytes produced under stress in animal and plant systems have been shown to increase thermal stability of the native state of a number of proteins as well as induce the formation of molten globule (MG) in acid denatured states and compact conformations in natively unfolded proteins. However, it is not clear whether these solutes stabilize native state relative to the MG state under partially denaturing conditions. Yeast hexokinase A exists as a MG state at pH 2.5 that does not show any cooperative transition upon heating. Does the presence of some of these osmolytes at pH 2.5 help in the retention of structure that is typical of native state? To answer this question, the effect of ethylene glycol (EG), glycerol, xylitol, sorbitol, trehalose and glucose at pH 2.5 on the structure and stability of yeast hexokinase A was investigated using spectroscopy and calorimetry. In presence of the above osmolytes, except EG, yeast hexokinase at pH 2.5 retains native secondary structure and hydrophobic core and unfolds with excessive heat absorption upon thermal denaturation. However, the cooperative structure binds to ANS suggesting that it is an intermediate between MG and the native state. Further, we show that at high concentration of polyols at pH 2.5, except EG, which populates a non-native ensemble, ΔHcalHvan approaches unity indicative of two-state unfolding. The results suggest that osmolytes stabilize cooperative protein structure relative to non-cooperative ensemble. These findings have implications toward the structure formation, folding and stability of proteins produced under stress in cellular systems.  相似文献   

18.
Maltose binding protein (MBP) is a large, monomeric two domain protein containing 370 amino acids. In the absence of denaturant at neutral pH, the protein is in the native state, while at pH 3.0 it forms a molten globule. The molten globule lacks a tertiary circular dichroism signal but has secondary structure similar to that of the native state. The molten globule binds 8-anilino-1-naphthalene sulfonate (ANS). The unfolding thermodynamics of MBP at both pHs were measured by carrying out a series of isothermal urea melts at temperatures ranging from 274-329 K. At 298 K, values of deltaGdegrees , deltaCp, and Cm were 3.1+/-0.2 kcal mol(-1), 5.9+/-0.8 kcal mol(-1) K(-1) (15.9 cal (mol-residue)(-1) K(-1)), and 0.8 M, respectively, at pH 3.0 and 14.5+/-0.4 kcal mol(-1), 8.3+/-0.7 kcal mol(-1) K(-1) (22.4 kcal (mol-residue)(-1) K(-1)), and 3.3 M, respectively, at pH 7.1. Guanidine hydrochloride denaturation at pH 7.1 gave values of deltaGdegrees and deltaCp similar to those obtained with urea. The m values for denaturation are strongly temperature dependent, in contrast to what has been previously observed for small globular proteins. The value of deltaCp per mol-residue for the molten globule is comparable to corresponding values of deltaCp for the unfolding of typical globular proteins and suggests that it is a highly ordered structure, unlike molten globules of many small proteins. The value of deltaCp per mol-residue for the unfolding of the native state is among the highest currently known for any protein.  相似文献   

19.
Different folding states of the small, globular milk protein bovine alpha-lactalbumin (BLA) induced by the anionic surfactant sodium dodecylsulphate (SDS) have been examined by fluorescence spectroscopy, CD and NMR. The solution structure of the protein in the absence of SDS was also determined, indicating fluidity even under native conditions. BLA is partly denatured to a molten globule (MG)-like state by micromolar concentrations of SDS, and the transitions from native to MG-like state are dependent on pH, the protein being more sensitive to the surfactant at pH 6.5. As indicated by measurements of the intrinsic emission fluorescence, the tertiary structure disappears at lower concentrations of SDS than most of the secondary structure, as estimated from CD data. The MG-like state induced by low concentrations of SDS is not observable by NMR, and is probably fluctuating and/or aggregating. At higher concentrations of SDS above the critic concentration of micelles, an NMR-observable state reappears. This micelle-associated conformer was partially assigned, and found to bear strong resemblance to the acid-tri-fluoroethanol state, retaining weakened versions of the A and C helix of native BLA. We discuss the results in terms of the inherent flexibility of the protein, and its ability to form multiple folding states and to bind to membranes. Also, we propose that proteins with stable MG-like conformers can have these states stabilized by low levels of compounds with surfactant properties in vivo.  相似文献   

20.
Thiobacillus ferroxidans is an obligate acidophile that respires aerobically on pyrite, elemental sulfur, or soluble ferrous ions. The electrophoretic mobility of the bacterium was determined by laser Doppler velocimetry under physiological conditions. When grown on pyrite or ferrous ions, washed cells were negatively charged at pH 2.0. The density of the negative charge depended on whether the conjugate base was sulfate, perchlorate, chloride, or nitrate. The addition of ferric ions shifted the net charge on the surface asymptotically to a positive value. When grown on elemental sulfur, washed cells were close to their isoelectric point at pH 2.0. Both pyrite and colloidal sulfur were negatively charged under the same conditions. The electrical double layer around the bacterial cells under physiological conditions exerted minimal electrostatic repulsion in possible interactions between the cell and either of its charged insoluble substrates. When Thiobacillus ferrooxidans was mixed with either pyrite or colloidal sulfur at pH 2.0, the mobility spectra of the free components disappeared with time to be replaced with a new colloidal particle whose electrophoretic properties were intermediate between those of the starting components. This new particle had the charge and size properties anticipated for a complex between the bacterium and its insoluble substrates. The utility of such measurements for the study of the interactions of chemolithotrophic bacteria with their insoluble substrates is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号