首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
M Ikeguchi  S Sugai  M Fujino  T Sugawara  K Kuwajima 《Biochemistry》1992,31(50):12695-12700
The unfolding and refolding of a derivative of alpha-lactalbumin, in which the disulfide bond between Cys6 and Cys120 is selectively reduced and S-carboxymethylated, are investigated by equilibrium and kinetic circular dichroism measurements. The native conformation of this derivative is known to be essentially identical to that of intact alpha-lactalbumin. The equilibrium unfolding of the derivative involves a stable intermediate, which is also similar to the molten globule state of the disulfide intact protein. The results of stopped-flow circular dichroism experiments show that the same intermediate is formed rapidly as a transient intermediate in kinetic refolding. The conformational stabilities for the native and intermediate states have been estimated and compared with the stabilities for the corresponding states of intact alpha-lactalbumin. The stabilization of the native state by the disulfide has been interpreted in terms of a decrease in chain entropy in the unfolded state and elimination of the strain imposed on the disulfide bond in the native state. The molten globule state is also stabilized by the disulfide bond, although the degree of stabilization of the molten globule state is smaller than of the native state. The results suggest that, in the molten globule state, some ordered structures are present within the loop moiety formed by the 6-120 disulfide.  相似文献   

2.
The native state (1)H, (15)N resonance assignment of 123 of the 128 nonproline residues of canine milk lysozyme has enabled measurements of the amide hydrogen exchange of over 70 amide hydrogens in the molten globule state. To elucidate the mechanism of protein folding, the molten globule state has been studied as a model of the folding intermediate state. Lysozyme and alpha-lactalbumin are homologous to each other, but their equilibrium unfolding mechanisms differ. Generally, the folding mechanism of lysozyme obeys a two-state model, whereas that of alpha-lactalbumin follows a three-state model. Exceptions to this rule are equine and canine milk lysozymes, which exhibit a partially unfolded state during the equilibrium unfolding; this state resembles the molten globule state of alpha-lactalbumin but with extreme stability. Study of the molten globules of alpha-lactalbumin and equine milk lysozyme showed that the stabilities of their alpha-helices are similar, despite the differences in the thermodynamic stability of their molten globule states. On the other hand, our hydrogen exchange study of the molten globule of canine milk lysozyme showed that the alpha-helices are more stabilized than in alpha-lactalbumin or equine milk lysozyme and that this enhanced stability is caused by the strengthened cooperative interaction between secondary structure elements. Thus, our results underscore the importance of the cooperative interaction in the stability of the molten globule state.  相似文献   

3.
To monitor the fast compaction process during protein folding, we have used a stopped-flow small-angle X-ray scattering technique combined with a two-dimensional charge-coupled device-based X-ray detector that makes it possible to improve the signal-to-noise ratio of data dramatically, and measured the kinetic refolding reaction of alpha-lactalbumin. The results clearly show that the radius of gyration and the overall shape of the kinetic folding intermediate of alpha-lactalbumin are the same as those of the molten globule state observed at equilibrium. Thus, the identity between the kinetic folding intermediate and the equilibrium molten globule state is firmly established. The present results also suggest that the folding intermediate is more hydrated than the native state and that the hydrated water molecules are dehydrated when specific side-chain packing is formed during the change from the molten globule to the native state.  相似文献   

4.
The structure, stability, and unfolding-refolding kinetics of a chimeric protein, in which the amino acid sequence of the flexible loop region (residues 105-110) comes from equine lysozyme and the remainder of the sequence comes from bovine alpha-lactalbumin were studied by circular dichroism spectroscopy and stopped-flow measurements, and the results were compared with those of bovine alpha-lactalbumin. The substitution of the flexible loop in bovine alpha-lactalbumin with the helix D of equine lysozyme destabilizes the molten globule state, although the native state is significantly stabilized by substitution of the flexible loop region. The kinetic refolding and unfolding experiments showed that the chimeric protein refolds significantly faster and unfolds substantially slower than bovine alpha-lactalbumin. To characterize the transition state between the molten globule and the native states, we investigated the guanidine hydrochloride concentration dependence of the rate constants of refolding and unfolding. Despite the significant differences in the stabilities of both the molten globule and native states between the chimeric protein and bovine alpha-lactalbumin, the free energy level of the transition state is not affected by the amino acid substitution in the flexible loop region. Our results suggest that the destabilization in the molten globule state of the chimeric protein is caused by the disruption of the non-native interaction in the flexible loop region and that the disruption of the non-native interaction reduces the free energy barrier of refolding. We conclude that the non-native interaction in the molten globule state may act as a kinetic trap for the folding of alpha-lactalbumin.  相似文献   

5.
Binding of the hydrophobic fluorescent probe, 1-anilino-naphthalene-8-sulfonate (ANS), to synthetic polypeptides and proteins with a different structural organization has been studied. It has been shown that ANS has a much stronger affinity to the protein "molten globule" state, with a pronounced secondary structure and compactness, but without a tightly packed tertiary structure as compared with its affinity to the native and coil-like proteins, or to coil-like, alpha-helical, or beta-structural hydrophilic homopolypeptides. The possibility of using ANS for the study of equilibrium and kinetic molten globule intermediates is demonstrated, with carbonic anhydrase, beta-lactamase, and alpha-lactalbumin as examples.  相似文献   

6.
The denatured states of alpha-lactalbumin, which have features of a molten globule state, have been studied to elucidate the energetics of the molten globule state and its contribution to the stability of the native conformation. Analysis of calorimetric and CD data shows that the heat capacity increment of alpha-lactalbumin denaturation highly correlates with the degree of disorder of the residual structure of the state. As a result, the denaturational transition of alpha-lactalbumin from the native to a highly ordered compact denatured state, and from the native to the disordered unfolded state are described by different thermodynamic functions. The enthalpy and entropy of the denaturation of alpha-lactalbumin to compact denatured state are always greater than the enthalpy and entropy of its unfolding. This difference represents the unfolding of the molten globule state. Calorimetric measurements of the heat effect associated with the unfolding of the molten globule state reveal that it is negative in sign over the temperature range of molten globule stability. This observation demonstrates the energetic specificity of the molten globule state, which, in contrast to a protein with unique tertiary structure, is stabilized by the dominance of negative entropy and enthalpy of hydration over the positive conformational entropy and enthalpy of internal interactions. It is concluded that at physiological temperatures the entropy of dehydration is the dominant factor providing stability for the compact intermediate state on the folding pathway, while for the stability of the native state, the conformational enthalpy is the dominant factor.  相似文献   

7.
Chaudhuri TK  Arai M  Terada TP  Ikura T  Kuwajima K 《Biochemistry》2000,39(50):15643-15651
The equilibrium and kinetics of the unfolding and refolding of authentic and recombinant human alpha-lactalbumin, the latter of which had an extra methionine residue at the N-terminus, were studied by circular dichroism spectroscopy, and the results were compared with the results for bovine and goat alpha-lactalbumins obtained in our previous studies. As observed in the bovine and goat proteins, the presence of the extra methionine residue in the recombinant protein remarkably destabilized the native state, and the destabilization was entirely ascribed to an increase in the rate of unfolding. The thermodynamic stability of the native state against the unfolded state was lower, and the thermodynamic stability of the molten globule state against the unfolded state was higher for the human protein than for the other alpha-lactalbumins previously studied. Thus, the population of the molten globule intermediate was higher during the equilibrium unfolding of human alpha-lactalbumin by guanidine hydrochloride. Unlike the molten globule states of the bovine and goat proteins, the human alpha-lactalbumin molten globule showed remarkably more intense circular dichroism ellipticity than the native state in the far-ultraviolet region below 225 nm. During refolding from the unfolded state, human alpha-lactalbumin thus exhibited overshoot kinetics, in which the alpha-helical peptide ellipticity exceeded the native value when the molten globule folding intermediate was formed in the burst phase. The subsequent folding involved reorganization of nonnative secondary structures. It should be noted that the rate constant of the major refolding phase was approximately the same among the three types of alpha-lactalbumin and that the rate constant of unfolding was accelerated 18-600 times in the human protein, and these results interpreted the lower thermodynamic stability of this protein.  相似文献   

8.
Kundu A  Kishore N 《Biopolymers》2004,73(4):405-420
The thermal denaturation of alpha-lactalbumin was studied at pH 7.0 and 9.0 in aqueous 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) by high-sensitivity differential scanning calorimetry. The conformation of the protein was analyzed by a combination of fluorescence and circular dichroism measurements. The most obvious effect of HFIP was lowering of the transition temperature with an increase in the concentration of the alcohol up to 0.30M, beyond which no calorimetric transition was observed. Up to 0.30M HFIP the calorimetric and van't Hoff enthalpy remained the same, indicating the validity of the two-state approximation for the thermal unfolding of alpha-lactalbumin. The quantitative thermodynamic parameters accompanying the thermal transitions have been evaluated. Spectroscopic observations confirm that alpha-lactalbumin is in the molten globule state in the presence of 0.50M HFIP at pH 7.0 and 0.75M HFIP at pH 9.0. The results also demonstrate that alpha-lactalbumin in the molten globule state undergoes a noncooperative thermal transition to the denatured state. It is observed that two of four tryptophans are exposed to the solvent in the HFIP induced molten globule state of alpha-lactalbumin compared to four in the 8.5M urea induced denatured state of the protein. It is also observed that the HFIP induced molten globule states at the two pH values are different from the acid induced molten globule state (A state) of alpha-lactalbumin.  相似文献   

9.
About 30% of proteins require cofactors for their proper folding. The effects of cofactors on the folding reaction have been investigated with alpha-lactalbumin as a model protein and metal ions as cofactors. Metal ions accelerate the refolding of alpha-lactalbumin by lessening the energy barrier between the molten globule state and the transition state, mainly by decreasing the difference of entropy between the two states. These effects are linked to metal ion binding to the protein in the native state. Hence, relationships between the metal affinities for the intermediate states and those for the native state are observed. Some residual specificity for the calcium ion is still observed in the molten globule state, this specificity getting closer in the transition state to that of the native state. The comparison between kinetic and steady-state data in association with the Phi value method indicates the binding of the metal ions on the unfolded state of alpha-lactalbumin. Altogether, these results provide insight into cofactor effects on protein folding. They also suggest new possibilities to investigate the presence of residual native structures in the unfolded state of protein and the effects of such structures on the protein folding reaction and on protein stability.  相似文献   

10.
The equilibrium and kinetics of canine milk lysozyme folding/unfolding were studied by peptide and aromatic circular dichroism and tryptophan fluorescence spectroscopy. The Ca2+-free apo form of the protein exhibited a three-state equilibrium unfolding, in which the molten globule state is well populated as an unfolding intermediate. A rigorous analysis of holo protein unfolding, including the data from the kinetic refolding experiments, revealed that the holo protein also underwent three-state unfolding with the same molten globule intermediate. Although the observed kinetic refolding curves of both forms were single-exponential, a burst-phase change in the peptide ellipticity was observed in both forms, and the burst-phase intermediates of both forms were identical to each other with respect to their stability, indicating that the intermediate does not bind Ca2+. This intermediate was also shown to be identical to the molten globule state observed at equilibrium. The phi-value analysis, based on the effect of Ca2+ on the folding and unfolding rate constants, showed that the Ca2+-binding site was not yet organized in the transition state of folding. A comparison of the result with that previously reported for alpha-lactalbumin indicated that the folding initiation site is different between canine milk lysozyme and alpha-lactalbumin, and hence, the folding pathways must be different between the two proteins. These results thus provide an example of the phenomenon wherein proteins that are very homologous to each other take different folding pathways. It is also shown that the native state of the apo form is composed of at least two species that interconvert.  相似文献   

11.
The trifluoroethanol (TFE)-induced structural changes of two proteins widely used in folding experiments, bovine alpha-lactalbumin, and bovine pancreatic ribonuclease A, have been investigated. The experiments were performed using circular dichroism spectroscopy in the far- and near-UV region to monitor changes in the secondary and tertiary structures, respectively, and dynamic light scattering to measure the hydrodynamic dimensions and the intermolecular interactions of the proteins in different conformational states. Both proteins behave rather differently under the influence of TFE: alpha-lactalbumin exhibits a molten globule state at low TFE concentrations before it reaches the so-called TFE state, whereas ribonuclease A is directly transformed into the TFE state at TFE concentrations above 40% (v/v). The properties of the TFE-induced states are compared with those of equilibrium and kinetic intermediate states known from previous work to rationalize the use of TFE in yielding information about the folding of proteins. Additionally, we report on the properties of TFE/water and TFE/buffer mixtures derived from dynamic light scattering investigations under conditions used in our experiments.  相似文献   

12.
A compact denatured state is often observed under a mild denaturation condition for various proteins. A typical example is the alpha-lactalbumin molten globule. Although the molecular compactness and shape are the essential properties for defining the molten globule, there have been ambiguities of these properties for the molten globule of alpha-lactalbumin. Using solution X-ray scattering, we have examined the structural properties of two types of molten globule of alpha-lactalbumin, the apo-protein at neutral pH and the acid molten globule. The radius of gyration for the native holo-protein was 15.7 A, but the two different molten globules both had a radius of gyration of 17.2 A. The maximum dimension of the molecule was also increased from 50 A for the native state to 60 A for the molten globule. These values clearly indicate that the molten globule is not as compact as the native state. The increment in the radius of gyration was less than 10% for the alpha-lactalbumin molten globule, compared with up to 30% for the molten globules of other globular proteins. Intramolecular disulfide bonds restrict the molecular expansion of the molten globule. The distance distribution function of the alpha-lactalbumin molten globule is composed of a single peak suggesting a globular shape, which is simply swollen from the native state. The scattering profile in the high Q region of the molten globule indicates the presence of a significant amount of tertiary fold. Based on the structural properties obtained by solution X-ray scattering, general and conceptual structural images for the molten globules of various proteins are described and compared with the individual, detailed structural model obtained by nuclear magnetic resonance.  相似文献   

13.
We have investigated the thermal unfolding of bovine alpha-lactalbumin by means of circular dichroism spectroscopy in the far- and near-ultraviolet regions, and shown that the native alpha-lactalbumin undergoes heat and cold denaturation. The guanidine hydrochloride-induced unfolding of alpha-lactalbumin was also investigated by circular dichroism spectroscopy at various temperatures from 261 to 318 K. It is shown that the population of the molten globule state is strongly dependent on temperature and that the molten globule state does not accumulate during the guanidine hydrochloride-induced unfolding transition at 261 K. Our results indicate that the molten globule state of alpha-lactalbumin undergoes cold denaturation as the native alpha-lactalbumin does, and that the heat capacity change of unfolding from the molten globule to the unfolded state is positive and significant. The present results further support the idea that the molten globule and the unfolded states do not belong to the same thermodynamic state, and that the native, molten globule and unfolded states are sufficient for interpreting the guanidine hydrochloride-induced unfolding behavior of alpha-lactalbumin.  相似文献   

14.
The molten globule state of alpha-lactalbumin has ordered secondary structure in the alpha-domain, which comprises residues 1 to 34 and 86 to 123. In order to investigate which part of a polypeptide is important for stabilizing the molten globule state of alpha-lactalbumin, we have produced and studied three chimeric proteins of bovine and human alpha-lactalbumin. The stability of the molten globule state formed by domain-exchanged alpha-lactalbumin, in which the amino acid sequence in the alpha-domain comes from human alpha-lactalbumin and that in the beta-domain comes from bovine alpha-lactalbumin, is the same as that of human alpha-lactalbumin and is substantially greater than that of bovine alpha-lactalbumin. Therefore, our results show that the stability of the molten globule state of alpha-lactalbumin is determined by the alpha-domain and the beta-domain is not important for stabilizing the molten globule state. The substitution of residues 1 to 34 of bovine alpha-lactalbumin with those of human alpha-lactalbumin substantially increases the stability of the molten globule state, while the substitution of residues 86 to 123 of bovine alpha-lactalbumin with those of human alpha-lactalbumin decreases the stability of the molten globule state. Therefore, residues 1 to 34 in human alpha-lactalbumin is more important for the stability of the human alpha-lactalbumin molten globule state than residues 86 to 123. The stabilization of the molten globule state due to substitution of both residues 1 to 34 and 86 to 123 is not identical with the sum of the two individual substitutions, demonstrating the non-additivity of the stabilization of the molten globule state. This result indicates that there is a long-range interaction between residues 1 to 34 and 86 to 123 in the molten globule state of human alpha-lactalbumin. The differences in the stabilities of the molten globule states are well correlated with the averaged helical propensity values in the alpha-domain when the long-range interactions are negligible, suggesting that the local interaction is the dominant term for determining the stability of the molten globule state. Our results also indicate that the apparent cooperativity is closely linked to the stability of the molten globule state, even if the molten globule state is weakly cooperative.  相似文献   

15.
Horng JC  Demarest SJ  Raleigh DP 《Proteins》2003,52(2):193-202
Many proteins are capable of populating partially folded states known as molten globule states. Alpha-lactalbumin forms a molten globule under a range of conditions including low pH (the A-state) and at neutral pH in the absence of Ca(2+) with modest amounts of denaturant. The A-state is the most thoroughly characterized and thought to mimic a kinetic intermediate populated during refolding at neutral pH. We demonstrate that the properties and interactions that stabilize the A-state and the pH 7 molten globule of human alpha-lactalbumin differ. The unfolding of the wild-type protein is compared to the unfolding of a variant that lacks the 6 - 120 disulfide bond and to an autonomously folded peptide construct that we have previously shown represents the minimum core structure of the A-state of human alpha-lactalbumin. Studies conducted at pH 2 and 7 show that the disulfide makes little contribution to the stability of the molten globule at pH 7 but is important at pH 2. In contrast, the beta-subdomain of the protein is less important at pH 2 than at pH 7. The role of helix propensity in stabilizing the different forms of the molten globule state is examined and it is shown that it cannot account for the differences. The strikingly different behavior observed at pH 2 and 7 indicates that the A-state may not be a rigorous mimic of the folding intermediate populated at pH 7.  相似文献   

16.
The direct energy transfer technique was modified and applied to probe the relative localization of apomyoglobin A-, G- and H-helixes, which are partly protected from deuterium exchange in the equilibrium molten globule state and in the molten globule-like kinetic intermediate. The non-radiative transfer of tryptophan electronic energy to 3-nitrotyrosine was studied in different conformational states of apomyoglobin (native, molten globule, unfolded) and interpreted in terms of average distances between groups of the protein chain. The experimental data show that the distance between the middle of A-helix and the N-terminus of G-helix as well as the distance between the middle of the A-helix and the C-terminus of the H-helix in the molten globule state are close to those in the native state. This is a strong argument in favor of similarity of the overall architecture of the molten globule and native states.  相似文献   

17.
The denaturant-induced equilibrium unfolding transition of equine beta-lactoglobulin was investigated by ultraviolet absorption, fluorescence, and circular dichroism (CD) spectra. An equilibrium intermediate populates at moderate denaturant concentrations, and its CD spectrum is similar to that of the molten globule state previously observed for this protein at acid pH [Ikeguchi, M., Kato, S., Shimizu, A., and Sugai, S. (1997) Proteins: Struct., Funct., Genet. 27, 567-575]. The unfolding and refolding kinetics were also investigated by the stopped-flow CD and fluorescence. A significant change in the CD intensity was observed within the dead time of measurements (25 ms) when the refolding reaction was initiated by diluting the urea-unfolded protein solution, indicating the transient accumulation of the folding intermediate. The CD spectrum of this burst-phase intermediate agrees well with that of the molten globule state at acid pH. The stability of the burst-phase intermediate was also estimated from the urea-concentration dependence of the burst-phase amplitude, and it shows a fair agreement with that of the equilibrium intermediate. These results indicate that the molten globule state of equine beta-lactoglobulin populates at moderate urea concentration as well as at acid pH and it is equivalent with the kinetic folding intermediate.  相似文献   

18.
We present a detailed investigation of unfolded and partially folded states of a mutant apomyoglobin (apoMb) where the distal histidine has been replaced by phenylalanine (H64F). Previous studies have shown that substitution of His64, located in the E helix of the native protein, stabilizes the equilibrium molten globule and native states and leads to an increase in folding rate and a change in the folding pathway. Analysis of changes in chemical shift and in backbone flexibility, detected via [1H]-15N heteronuclear nuclear Overhauser effect measurements, indicates that the phenylalanine substitution has only minor effects on the conformational ensemble in the acid- and urea-unfolded states, but has a substantial effect on the structure, dynamics, and stability of the equilibrium molten globule intermediate formed near pH 4. In H64F apomyoglobin, additional regions of the polypeptide chain are recruited into the compact core of the molten globule. Since the phenylalanine substitution has negligible effect on the unfolded ensemble, its influence on folding rate and stability comes entirely from interactions within the compact folded or partly folded states. Replacement of His64 with Phe leads to favorable hydrophobic packing between the helix E region and the molten globule core and leads to stabilization of helix E secondary structure and overall thermodynamic stabilization of the molten globule. The secondary structure of the equilibrium molten globule parallels that of the burst phase kinetic intermediate; both intermediates contain significant helical structure in regions of the polypeptide that comprise the A, B, E, G, and H helices of the fully folded protein.  相似文献   

19.
The molten globule state of equine lysozyme is more stable than that of alpha-lactalbumin and is stabilized by non-specific hydrophobic interactions and native-like hydrophobic interactions. We constructed a chimeric protein which is produced by replacing the flexible loop (residues 105-110) in human alpha-lactalbumin with the helix D (residues 109-114) in equine lysozyme to investigate the possible role of the helix D for the high stability and native-like packing interaction in the molten globule state of equine lysozyme. The stability of the molten globule state formed by the chimeric protein to guanidine hydrochloride-induced unfolding is the same as that of equine lysozyme and is substantially greater than that of human alpha-lactalbumin, although only six residues come from equine lysozyme. Our results also suggest that the non-native interaction in the molten globule state of alpha-lactalbumin changes to the native-like packing interaction due to helix substitution. The solvent-accessibility of the Trp residues in the molten globule state of the chimeric protein is similar to that in the molten globule state of equine lysozyme in which packing interaction around the Trp residues in the native state is partially preserved. Therefore, the helix D in equine lysozyme is one of the contributing factors to the high stability and native-like packing interaction in the molten globule state of equine lysozyme. Our results indicate that the native-like packing interaction can stabilize the rudimentary intermediate which is stabilized by the non-specific hydrophobic interactions.  相似文献   

20.
A mutant of the dimeric rabbit muscle creatine kinase (MM-CK) in which tryptophan 210 was replaced has been studied to assess the role of this residue in dimer cohesion and the importance of the dimeric state for the native enzyme stability. Wild-type protein equilibrium unfolding induced by guanidine hydrochloride occurs through intermediate states with formation of a molten globule and a premolten globule. Unlike the wild-type enzyme, the mutant inactivates at lower denaturant concentration and the loss of enzymatic activity is accompanied by the dissociation of the dimer into two apparently compact monomers. However, the Stokes radius of the monomer increases with denaturant concentration as determined by size exclusion chromatography, indicating that, upon monomerization, the protein structure is destabilized. Binding of 8-anilinonaphthalene-1-sulfonate shows that the dissociated monomer exposes hydrophobic patches at its surface, suggesting that it could be a molten globule. At higher denaturant concentrations, both wild-type and mutant follow similar denaturation pathways with formation of a premolten globule around 1.5-M guanidine, indicating that tryptophan 210 does not contribute to a large extent to the monomer conformational stability, which may be ensured in the dimeric state through quaternary interactions. Proteins 32:43–51, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号