首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glutathione (GSH) concentration increases in bovine oocytes during in vitro maturation (IVM). The constitutive amino acids involved in GSH synthesis are glycine (Gly), glutamate (Glu) and cysteine (Cys). The present study was conducted to investigate the effect of the availability of glucose, Cys, Gly and Glu on GSH synthesis during IVM. The effect of the amino acid serine (Ser) on intracellular reduced/oxidized glutathione (GSH/GSSG) content in both oocytes and cumulus cells was also studied. Cumulus-oocyte complexes (COC) of cattle obtained from ovaries collected from an abattoir were matured in synthetic oviduct fluid (SOF) medium containing 8 mg/ml bovine serum albumin-fatty acid-free (BSA-FAF), 10 microg/ml LH, 1 microg/ml porcine FSH (pFSH) and 1 microg/ml 17 beta-estradiol (17beta-E2). GSH/GSSG content was measured using a double-beam spectrophotometer. The COC were cultured in SOF supplemented with 1.5mM or 5.6mM glucose (Exp. 1); with or without Cys+Glu+Gly (Exp. 2); with the omission of one constitutive GSH amino acid (Exp. 3); with 0.6mM Cys or Cys+Ser (Exp. 4). The developmental capacity of oocytes matured in IVM medium supplemented with Cys and the cell number per blastocyst were determined (Exp. 5). The results reported here indicate (1) no differences in the intracellular GSH/GSSG content at any glucose concentrations. Also, cumulus cell number per COC did not differ either before or after IVM (Exp. 1). (2) Glutathione content in oocytes matured in SOF alone were significantly different from oocytes incubated with SOF supplemented with Cys+Glu+Gly (Exp. 2). (3) Addition of Cys to maturation medium, either with or without Gly and Glu supplementation resulted in an increase of GSH/GSSG content. However, when Cys was omitted from the IVM medium intracellular GSH in oocytes or cumulus cells was less but not significantly altered compared to SOF alone (Exp. 3). (4) Glutathione content in both oocytes and cumulus cells was significantly reduced by incubation with 5mM Ser (Exp.4). (5) There was a significant increase in cleavage and blastocyst rates when Cys was added to maturation medium. In contrast, the cleavage, morula and blastocyst rates were significantly different when 5mM Ser was added to maturation media. There was also a significant difference in mean cell number per blastocyst, obtained from oocytes matured with 5mM Ser (Exp. 5). This study provides evidence that optimal embryo development in vitro is partially dependent on the presence of precursor amino acids for intracellular GSH production. Moreover, the availability of Cys might be a critical factor for GSH synthesis during IVM in cattle oocytes. Greater Ser concentration in IVM medium altered "normal" intracellular GSH in both oocytes and cumulus cells with negative consequences for subsequent developmental capacity.  相似文献   

2.
Nitric oxide (NO) is a highly reactive free radical involved in intra- and intercellular signaling in various stages of reproduction. The objective of the present study was to evaluate the effect of the addition of sodium nitroprusside (SNP), a NO donor, on nuclear and cytoplasmic in vitro maturation of bovine oocytes. Analysis of variance was conducted and the means were compared by t test at a level of 5%. Low (10(-7) and 10(-9)M) and intermediate (10(-5)M) concentrations of SNP had no significant effect on nuclear maturation, however, when a greater concentration of SNP (10(-3)M) was added, oocytes remained in metaphase I (MI) after 24 h culture (P<0.05) and did not show cumulus expansion. To evaluate if this effect was reversible and if a retardation or inhibition had occurred in the progression from MI to MII, oocytes were cultured in presence of 10(-3)M of SNP for 24 h followed by culture for an additional 24 h in medium with or without SNP. After 48 h, the oocytes remained in MI even when the medium was changed at 24 h with or without SNP. The kinetics of nuclear maturation was assessed to evaluate if there had been or not a retardation in the progression of meiosis with the concentration of 10(-3)M SNP. This concentration delayed germinal vesicle breakdown (VGBD) at 8 h of culture (P<0.05), and at 12 h there was no significant difference between the control and the treated group. The concentrations that did not induce alterations in nuclear maturation were evaluated for cytoplasmic maturation. The concentration of 10(-5)M improved the percentage of peripheral cortical granules (P<0.05), and significantly increased the percentage of blastocysts. These results demonstrate that SNP at greater concentrations (10(-3)M) has a cytotoxic effect, but at intermediate (10(-5)M) concentrations it increases blastocyst rates. NO exhibits a dual effect on bovine oocytes, inhibits (10(-3)M of SNP) nuclear and cytoplasmic maturation or stimulates (10(-5)M of SNP) cytoplasmic maturation, depending on concentration in the culture medium.  相似文献   

3.
Oocyte nutritional metabolism changes during maturation in order to increase the energy available to support metabolic requirements. The aim of this work was to study pyruvate and lactate utilization as oxidative substrates on IVM and lactate dehydrogenase (LDH) activity and localization of their isoenzymes in bovine oocytes. Immature cumulus-oocyte complexes (COCs) were recovered by aspiration of antral follicles in ovaries obtained from slaughtered cows. The COCs and denuded oocytes were separately cultured in TCM-199 with steer serum (controls) and were supplemented with pyruvate, lactate or lactate plus NAD for 24 h at 39 degrees C in 5% CO2:95% humidified air. No significant differences were found in IVM rates of COCs matured according to the various treatments (P>0.05). The IVM rate in denuded oocytes without supplementation was 47.8%. The presence of pyruvate in the culture medium resulted in an increased number of matured denuded oocytes (59.4%; P<0.05), but the addition of lactate failed to improve the IVM rate of matured denuded oocytes (47.6%, P>0.05). When the medium was supplemented with lactate plus NAD, the IVM rate of denuded oocytes likewise failed to differ from that obtained with the addition of pyruvate (59.9%, P>0.05). The LDH activity in immature and matured COCs and denuded oocytes was (3.1+/-1.6) 10(-3), (3.3+/-1.6) 10(-3) U/COC, (5.2+/-2.0) 10(-5), (5.4+/-3.5) 10(-5) U/oocyte with pyruvate as substrate, and (1.2+/-0.5) 10(-3), (1.0+/-0.5) 10(-3) U/COC, (2.2+/-0.1) 10(-5), (2.5+/-1.4) 10(-5) U/oocyte respectively, with lactate; no significant differences due to maturation status were observed (P>0.05; n = 9 for each LDH activity). Electrophoresis disclosed that the principal band corresponded to the LDH-1 isoenzyme in oocytes, while there was no predominance of any isoenzyme in cumulus cells. Due to the fact that LDH-1 is the main oocyte isoenzyme, the pyruvate used during oocyte maturation could be partly produced from lactate when the NAD supply is adequate. Cumulus cells would be responsible for providing pyruvate and/or lactate as oxidative substrates to be used by the bovine oocyte and this supply would be regulated by the LDH activity in these cells.  相似文献   

4.
Follicular fluid from 2 to 4 and 5 to 8 mm diameter non-atretic follicles (SFF and LFF, respectively) of sows was added during IVM of cumulus oocytes complexes (COCs) to study its effects on cumulus expansion, nuclear maturation, and subsequent fertilization and embryo development in presence or absence of recombinant human FSH. COCs aspirated from 2 to 5 mm follicles of sow ovaries, were cultured for the first 22 h in TCM-199 and 100 microM cysteamine, with or without 10% pFF and/or 0.05 IU/ml recombinant hFSH. For the next 22 h, the COCs were cultured in the same medium, but without pFF and FSH. After culture, cumulus cells were removed and the oocytes were either fixed and stained to evaluate nuclear stages or co-incubated with fresh sperm. Twenty-four hours after fertilization, presumptive zygotes were fixed to examine fertilization or cultured for 6 days to allow blastocyst formation. Subsequently, embryos were evaluated and the blastocysts were fixed and stained to determine cell numbers. When LFF was added to maturation medium, cumulus expansion and percentage of nuclear maturation (277 +/- 61 microm and 72%, respectively) of COCs were significantly higher (P < 0.05) than those in SFF (238 +/- 33 microm and 55%, respectively). However, in the presence of FSH both FF stimulated cumulus expansion and nuclear maturation to a similar degree. No differences were observed with regards to sperm penetration, male pronucleus formation, and to polyspermia between fertilized oocytes matured either in SFF or LFF. Fertilized oocytes matured in the presence of LFF without or with FSH showed a higher cleavage (45 +/- 7% and 51 +/- 7%, respectively) and blastocyst (14 +/- 4% and 22 +/- 6%, respectively) formation rate compared to SFF (cleavage, 35 +/- 8% and 41 +/- 4%, blastocyst: 8 +/- 3 and 13 +/-3, respectively; P < 0.05). The mean number of cells per blastocyst did not differ significantly between treatments. These findings indicate that factor(s) within follicles at later stages of development play an important role during oocyte maturation and thereby enhance developmental competence to occur.  相似文献   

5.
As an important biological messenger, nitric oxide (NO) exhibits a wide range of effects during physiological and pathophysiological processes, including mammalian oocyte meiotic maturation. The present study investigated whether NO derived from two nitric oxide synthase (NOS) isoforms, inducible NOS (iNOS) or endothelial NOS (eNOS), is involved in the meiotic maturation of porcine oocytes. Meanwhile, the cumulus cells' function in meiotic maturation and their interaction with oocyte development and degeneration were also investigated using cumulus-enclosed oocytes (CEOs) and denuded oocytes (DOs). Different inhibitors for NOS were supplemented to the medium. Cumulus expansion, cumulus cell DNA fragmentation and oocyte meiotic resumption were evaluated 48 h after incubation. Aminoguanidine (AG), a selective inhibitor for iNOS, suppressed cumulus expansion and inhibited CEOs to resume meiosis (p < 0.05), but did not inhibit cumulus cell DNA fragmentation. Both Nomega-nitro-L-arginine (L-NNA) and Nomega-nitro-L-arginine methyl ester (L-NAME), inhibitors for both iNOS and eNOS, delayed cumulus expansion, inhibited cumulus cell DNA fragmentation and inhibited CEOs to resume meiosis. Such effects were not seen in DOs. These results indicate that iNOS-derived NO is necessary for cumulus expansion and meiotic maturation by mediating the function of the surrounding cumulus cells, and eNOS-derived NO is also involved in porcine meiotic maturation.  相似文献   

6.
The effects of cumulus cell removal and centrifugation of maturing bovine oocytes on nuclear maturation and subsequent embryo development after parthenogenetic activation and nuclear transfer were examined. Removal of cumulus cells at 4, 8, and 15 hr after in vitro maturation (IVM) or the centrifugation of denuded oocytes had no effect on maturation rates. Oocytes treated at 0 hr of IVM had a lower expulsion rate (50%) of the first polar body (PB1). The removal of cumulus cells and centrifugation affected the pattern of spindle microtubule distribution and division of chromosomes. There were almost no spindle microtubules allocated to PB1 and the spindles were swollen in anaphase I and telophase I oocytes. Approximately 20% of PB1 oocytes contained tripolar or multipolar spindles. After activation, oocytes denuded with or without centrifugation at 8 hr of IVM resulted in the lowest rate of development (3.0%). Denuded oocytes at 4, 15, and 24 hr of IVM with centrifugation or not resulted in similar blastocyst development rates (9.6%-13.2%). However, centrifugation of oocytes denuded at the beginning of IVM resulted in lower blastocyst development rate (8.1%, P < 0.05) than the noncentrifuged oocytes (17.3%). After nuclear transfer, the blastocyst development rates of oocytes denuded and centrifuged at 0, 4, and 8 hr of IVM were not different when compared to the same patch of noncentrifuged oocytes. However, oocytes denuded and centrifuged at 15 hr of IVM resulted in lower (P < 0.05) blastocyst development rates than the noncentrifuged oocytes. The results of this study suggest that removal of cumulus cells and centrifugation of denuded oocytes affect the spindle pattern. Embryo development of denuded and centrifuged oocytes may differ depending on the time of removal of cumulus cells.  相似文献   

7.
8.
Nitric oxide (NO) is a molecule involved in many reproductive processes. Its importance during oocyte in vitro maturation (IVM) has been demonstrated in various species although sometimes with contradictory results. The objective of this study was to determine the effect of NO during IVM of cumulus oocyte complexes and its subsequent impact on gamete interaction in porcine species. For this purpose, IVM media were supplemented with three NOS inhibitors: NG-nitro-L-arginine methyl ester (L-NAME), NG-monomethyl-L-arginine (L-NMMA) and aminoguanidine (AG). A NO donor, S-nitrosoglutathione (GSNO), was also used. The effects on the cumulus cell expansion, meiotic resumption, zona pellucida digestion time (ZPdt) and, finally, on in vitro fertilization (IVF) parameters were evaluated. The oocyte S-nitrosoproteins were also studied by in situ nitrosylation. The results showed that after 42 h of IVM, AG, L-NAME and L-NMMA had an inhibitory effect on cumulus cell expansion. Meiotic resumption was suppressed only when AG was added, with 78.7% of the oocytes arrested at the germinal vesicle state (P<0.05). Supplementation of the IVM medium with NOS inhibitors or NO donor did not enhance the efficiency of IVF, but revealed the importance of NO in maturation and subsequent fertilization. Furthermore, protein S-nitrosylation is reported for the first time as a pathway through which NO exerts its effect on porcine IVM; therefore, it would be important to determine which proteins are nitrosylated in the oocyte and their functions, in order to throw light on the mechanism of action of NO in oocyte maturation and subsequent fertilization.  相似文献   

9.
Yuan Y  Hao ZD  Liu J  Wu Y  Yang L  Liu GS  Tian JH  Zhu SE  Zeng SM 《Theriogenology》2008,70(2):168-178
The objectives were to determine the effects of cumulus cells (CC) on porcine oocyte maturation in vitro (IVM) after heat shock (HS). Treated oocytes were cultured at 39 degrees C for 20h, followed by HS treatment (42 degrees C for 1h), and then matured in vitro for 23h. The CC were removed before maturation (H1), after HS (H2), or after maturation (H3). Control oocytes were continuously cultured under the same conditions and CC were similarly removed before maturation (C1), after 21h of IVM (C2), and after maturation (C3). Maturation rates were affected by HS (P<0.01) and by an interaction between HS and CC (P<0.01). A significant decrease in maturation rate only occurred when CC were not removed from cumulus oocyte complexes during IVM after HS (H3, 39.2+/-5.7% versus C3, 78.2+/-8.2%, P<0.01). Mature oocytes in all treatment groups were electrically activated and cultured for 8 d in NCSU23. Blastocyst rates in group H1 (7.2+/-3.5%) and C1 (6.3+/-3.1%) were lower than in other groups (H2, 21.4+/-4.4%, C2, 20.5+/-7.0%, H3, 23.1+/-2.0%, C3, 24.3+/-3.1%, P<0.05). Damaged DNA was detected in CC by a comet assay at 0h after HS (60.8+/-12.5% compared with 9.2+/-2.2% in control, P<0.05); in HS groups, both DNA damage (comet assay, 74.9+/-6.3% compared with 10.0+/-2.1% in control) and apoptosis (TUNEL assay, 21.6+/-1.6% compared with 5.6+/-0.6% in control) in CC were increased (P<0.05) at 44h of maturation. In conclusion, heat shock (42 degrees C for 1h) during IVM induced DNA damage and apoptosis of porcine CC; furthermore, apoptotic CC may contribute to maturation failure of oocytes in vitro.  相似文献   

10.
Since resumption of meiosis and cytoplasmic maturation of bovine oocytes takes place in close association with follicular fluid, it would be logical to assume that this might be a perfect maturation medium. To test the hypothesis, abattoir-derived cumulus-oocyte complexes (COCs) were in vitro matured in undiluted (i) mixed follicular fluid (FF) from 3 to 15 mm follicles from abattoir ovaries, (ii) preovulatory follicular fluid (POF) from the dominant follicle from a cyclic unstimulated heifer, (iii) preovulatory follicular fluid (OPU) from synchronised and superovulated heifers 60 h after prostaglandin and 20 h after GnRH treatment, and in (iv) TCM-199 with 5% serum. Subsequent to IVM, the COC were subjected to IVF and IVC, and embryo development was followed until the blastocyst stage at Day 8 after insemination. The MII rates in the TCM-199 (69%), POF (69%) and OPU (72%) groups were not different from each other but different from the FF (41%) group (P<0.05). In spite of the high MII rates, none of the follicular fluids supported embryo development: the FF, POF and OPU blastocyst rates were alike (3%, 3%, 2%) and different (P<0.05) from the rates in the TCM-199 (19%). During IVM in follicular fluids but not in TCM-199, the expanded cumulus masses became trapped in a coagulum. Although it could be prevented by the presence of heparin during IVM, it did not improve the blastocyst rates. In conclusion, undiluted preovulatory follicular fluids supported nuclear maturation but not further embryonic development as judged by the high MII and low blastocyst rates.  相似文献   

11.
Developmental competence of oocytes is compromised if they originate from atretic follicles. Apoptosis is the underlying process of atresia. Apoptotic changes in follicular cells are thought to influence the outcome of IVF. The aim of this study was to investigate apoptosis in different compartments of single bovine follicles (follicular wall, granulosa and cumulus cells (CC)) in relation to COC morphology, and to determine whether the addition, in vitro, of exogenous follicular cells from atretic follicles to maturing cumulus oocyte complexes (COCs) influenced the development of oocytes.Antral follicles were dissected from bovine ovaries and opened to obtain COCs and free floating granulosa cells (GC). The COCs were classified according to morphology. Apoptosis was determined in cumulus and granulosa cells and in homogenates of the remaining follicular wall.For every morphological class of COCs, a large variability of apoptotic expression was found in all follicle compartments. Follicular wall apoptosis was not correlated to COC morphology or to the percentage of apoptotic granulosa or cumulus cells. In grade 1 (best morphology) COCs, the degree of apoptosis in granulosa cells was comparable to cumulus cell apoptosis (P<0.01). The overall expression of apoptosis in granulosa cells of follicles containing grade 3 COCs (median+/-median absolute deviation: 37.8+/-13.8%) was significantly higher (P<0.05) than in follicles with grade 1 (22.7+/-10.4%) or grade 2 COCs (20.0+/-17.0%). About 48.3% of grade 3 COCs possessed strongly apoptotic cumulus cells compared to 27.8 and 28.2% of grade 1 or grade 2 COCs, respectively. Nonapoptotic cumulus complexes were observed in grades 1 and 2 COCs only.Adding exogenous follicular cells from atretic follicles to bovine COCs (grades 1 and 2) during in vitro maturation (IVM) had no impact on fertilization, blastocyst formation or hatching after IVF. This is of particular practical relevance to embryo production after ovum pick up (OPU), as during this process, good quality COCs are cultured together with simultaneously collected slightly atretic COCs.  相似文献   

12.
The objective was to evaluate the effect of the interval between ovarian hyperstimulation and laparoscopic ovum pick-up (LOPU) on quality and developmental competence of goat oocytes before and after in vitro maturation (IVM) and intracytoplasmic sperm injection (ICSI). Estrus was synchronized with an intravaginal insert containing 0.3g progesterone (CIDR) for 10d, combined with a luteolytic treatment of 125 microg cloprostenol 36 h prior to CIDR removal. Ovaries were hyperstimulated with 70 mg FSH and 500 IU hCG given im 36, 60, or 72 h prior to LOPU (n=15, 16, and 7 does, respectively). For these groups, oocyte retrieval rates (mean+/-S.E.M.) were 24.7+/-2.9, 54.5+/-4.7, and 82.8+/-4.6% (P<0.001), and the proportions of cumulus-oocyte complexes (COC) with more than five layers of cumulus cells were 29.7+/-8.3, 37.6+/-6.9, and 37.3+/-7.0% (P<0.001). The proportion of IVM oocytes was highest at 72 h (82.1+/-2.8%; P<0.05), with no significant difference between 36 and 60 h (57.3+/-8.9% and 69.0+/-8.4%). Cleavage rates of ICSI embryos were 4.2+/-4.2, 70.9+/-8.4, and 78.9+/-8.2% with LOPU 36, 60, and 72 h post FSH/hCG (P<0.01), with a lower proportion of Grade-A embryos (P<0.05) following LOPU at 36 h compared to 60 and 72 h (29.7+/-8.3%, 37.6+/-6.9%, and 37.3+/-7.0%). In summary, a prolonged interval from FSH/hCG to LOPU improved oocyte retrieval rate and oocyte quality. Therefore, under the present conditions, LOPU 60 or 72 h after FSH/hCG optimized yields of good-quality oocytes for IVM and embryo production in goats.  相似文献   

13.
The energy substrates lactate, pyruvate, and glucose were evaluated for supporting in vitro cytoplasmic maturation of rhesus monkey oocytes. A total of 321 cumulus-oocyte complexes (COCs) aspirated from > or = 1000 microm diameter follicles of unstimulated adult monkeys were matured in one of six media with various individual or combinations of energy substrates: (1) mCMRL-1066 (control); (2) HECM-10 (containing 4.5 mM lactate); (3) HECM-10+0.2 mM pyruvate; (4) HECM-10 + 5.0 mM glucose; (5) HECM-10+ 0.2 mM pyruvate + 5.0 mM glucose; and (6) HECM-10 minus lactate + 5.0 mM glucose. All media contained gonadotropins, oestradiol, and progesterone. Following maturation, all mature oocytes were subjected to the same in vitro fertilization and embryo culture procedures. Oocytes matured in control medium or in treatment groups 4 and 6 had the best morulae+ blastocysts developmental responses (35, 36, and 32%, respectively, P < 0.05). HECM-10 + 0.2 mM pyruvate + 5.0 mM glucose for COC maturation supported intermediate embryonic development (16% morulae + blastocysts). The lowest (P < 0.05) morula + blastocyst developmental responses were obtained after maturation of COCs in HECM-t10 and HECM-10 + 0.2 mM pyruvate (4 and 6%, respectively). The COCs matured in glucose-containing medium showed greater levels of cumulus expansion than those in glucose-free medium. These results indicate that (a) glucose is both necessary and sufficient as the energy substrate for supporting optimal cytoplasmic maturation in vitro of oocytes from unstimulated rhesus monkeys; (b) pyruvate suppresses the stimulatory effect of glucose on oocyte maturation; (c) glucose is involved in cumulus expansion; (d) cumulus expansion is not a reliable indicator of primate oocyte competence.  相似文献   

14.
This study evaluated the effect of adding reduced glutathione (GSH) during sperm washing and insemination on the subsequent fertilization dynamics and development of IVM porcine oocytes. Follicular oocytes were matured in vitro in NCSU 23 medium with porcine follicular fluid, cysteine and hormone supplements for 22 h. They were then matured in the same medium but without hormones for another 22 h. Matured oocytes were stripped of cumulus cells and co-incubated with frozen-thawed spermatozoa for 5 h. Putative embryos were cultured in NCSU 23 with BSA for either 7 h to examine fertilization parameters or 6 d to evaluate cleavage (2 d) and blastocyst rates. In Experiment 1, GSH was added to the insemination medium at 0, 0.125, 0.25 or 0.5 mM. The presence of GSH during insemination did not affect (P>0.05) rates of penetration, polyspermy, male pronuclear formation or cleavage, but did increase (P<0.05) blastocyst formation rates when added at concentrations of 0.125 (36%) and 0.25 mM (34%) compared with that of the control (0 mM; 19%). However, the numbers of inner cell mass and trophectoderm cells of blastocysts were unaffected by GSH treatment (P>0.05). The presence of GSH during insemination was found not to significantly increase intracellular glutathione concentrations of oocytes (P>0.05). In Experiment 2, addition of GSH (0.25 mM) during sperm washing did not affect cleavage or blastocyst formation rates or cell numbers (P>0.05). In conclusion, the presence of GSH during insemination improves the developmental competence of IVM pig oocytes in a dose-dependent manner.  相似文献   

15.
In vitro maturation (IVM) of goat oocytes with serum-supplemented media results in oocytes with reduced developmental potential. The objective of this study was to develop a defined medium for IVM of goat oocytes that better supports subsequent embryonic development. Cumulus oocyte complexes (COC) were matured for 18-20 hr in: Experiment (1), tissue culture medium 199 (TCM199) with 10% (v/v) goat serum or modified synthetic oviduct fluid maturation medium (mSOFmat) with 2.5, 8.0, or 20.0 mg/ml bovine serum albumin (BSA); Experiment (2), mSOFmat with 4.0, 8.0, 12.0, or 16.0 mg/ml BSA; or Experiment (3), 1.0 mg/ml polyvinyl alcohol (PVA; control), 4.0 mg/ml BSA, 0.5 mg/ml hyaluronate plus 0.5 mM citrate, or hyaluronate, citrate, and BSA. Mature COC were coincubated for 20-22 hr with 12-15 x 10(6) sperm/ml in modified Brackett and Oliphant (mBO) medium. Embryos were cultured for a total of 7 days in G1/2, and evaluated for cleavage, and blastocyst development, hatching, and total cell numbers. In the first experiment, more (P < 0.05) blastocysts developed per cleaved embryo following maturation in mSOFmat with 2.5 or 8.0 mg/ml BSA than with 20.0 mg/ml BSA or TCM199 with 10% goat serum. The various concentrations of BSA used in the second experiment did not affect (P > 0.05) any of the developmental endpoints examined. In the third experiment, developmental potential of oocytes matured with PVA or hyaluronate with citrate was not different (P > 0.05) from oocytes matured in the presence of BSA. These results demonstrate that developmentally competent goat oocytes can be matured under defined conditions.  相似文献   

16.
In vitro techniques for production of bovine embryos including in vitro oocyte maturation (IVM), fertilization (IVF) and culture (IVC) are becoming increasingly employed for a variety of research purposes. However, decreased viability following cryopreservation by conventional methods has limited commercial applications of these technologies. A practical alternative to facilitate transport would be to arrest development by chilling without freezing. The present research was undertaken to evaluate chilling sensitivity of IVM-IVF embryos at different stages of development, and to determine possible beneficial effects of cysteamine treatment during IVM, previously shown to enhance embryo development in culture, on survival following chilling at different stages. Embryos produced by standard IVM-IVF-IVC methods were chilled to 0 degrees C for 30 min at 2-cell (30-34 h post-insemination, hpi), 8-cell (48-52 hpi) or blastocyst (166-170 hpi) stages. Viability after chilling was assessed by IVC with development to expanded blastocyst stage determined on days 7 and 8 post-insemination (pi) and hatching blastocyst stage determined on days 9 and 10 pi. Control embryos at the same stages were handled similarly, but without chilling, and development during culture similarly assessed. The effect of cysteamine supplementation (100 microM) of the IVM medium was determined for both chilled and non-chilled (control) embryos. Cysteamine supplementation during IVM had no significant effect on oocyte maturation or fertilization, but increased the proportions of oocytes developing to blastocyst stage by day 7 (13.7+/-0.9% versus 7.2+/-0.9%; P<0.05), total blastocysts (20.5+/-0.9% versus 15.3+/-1.3%; P<0.05), and hatching blastocysts (16.8+/-1.6% versus 12.0+/-1.5%; P<0.05). The greater survival in terms of hatching (78.6+/-7.0) following chilling of blastocysts produced by IVM-IVF of oocytes matured in media supplemented with cysteamine offers promise for applications requiring short-term storage to facilitate transport of in vitro produced bovine embryos.  相似文献   

17.
Herrick JR  Pope WF 《Theriogenology》2002,58(6):1131-1139
Administration of exogenous androgens to pigs during the period of follicular development has been shown to positively affect ovulation rate and embryonic survival. The mechanisms of these actions are not known, but may include direct effects of androgens on the cumulus-oocyte complex (COC). The objective of this experiment was to assess the effects on embryonic development in vitro of exposure of COC to 0.26 and 2.6 microM testosterone (T) or dihydrotestosterone (DHT) during IVM. For IVM, COC were cultured for 44-46 h in protein-free tissue culture medium (TCM) 199 containing 10 IU/ml hCG and eCG and 10 ng/ml EGF. Oocytes were then stripped of cumulus cells, coincubated with 1 x 10(5) sperm/ml in modified TALP for 6 h, and cultured for 8 days in NCSU23. The proportions of oocytes that cleaved (Day 2) or developed to the morula (Day 6) or blastocyst (Day 6-8) stage were not different (P > 0.20) between oocytes exposed to androgens and oocytes not exposed to androgens. These results indicate that exposure to androgens during IVM does not affect the ability of oocytes to cleave or develop up to the blastocyst stage in vitro.  相似文献   

18.
Dey SR  Deb GK  Ha AN  Lee JI  Bang JI  Lee KL  Kong IK 《Theriogenology》2012,77(6):1064-1077
The present study examined the effect of coculturing cumulus oocyte complexes (COCs) and denuded oocytes (DOs) during in vitro maturation (IVM) on nuclear and cytoplasmic maturation, zona pellucida (ZP) hardening, the pattern of fertilization and glutathione peroxidase 1 (GPX1) gene expression in the oocyte. Furthermore, the rate of embryonic development and the quality of blastocysts were examined for both COCs and DOs. Three IVM conditions were studied: 1) the coculture of 12 COCs and 60 DOs, 2) COC control with 12 COCs, and 3) DO control with 60 DOs. The IVM was performed in a 120-μl droplet of TCM199-based IVM medium. Following IVM, in vitro fertilization (IVF) and in vitro culture (IVC) were conducted separately for the COCs and DOs (DO coculture) from the IVM coculture group. Coculturing COCs and DOs increased the percentage of oocytes reaching the blastocyst stage and the total number of cells per blastocyst in both the COC coculture (44.4 ± 8.6 vs 26.7 ± 9.7%, P < 0.01, and 137.9 ± 24.9 vs 121.7 ± 21.1, P < 0.05) and the DO coculture (20.5 ± 5.0 vs 11.1 ± 2.5%, P < 0.01, and 121.9 ± 27.5 vs 112.3 ± 33.2, P < 0.05) compared to their respective control groups. The synergistic effects of coculturing were detected as increased nuclear and cytoplasmic maturation, the prevention of ZP hardening, increased monospermic fertilization and increased expression of GPX1 in the oocytes in response to endogenous oocyte-secreted factors. In conclusion, coculturing COCs and DOs may be an effective culture system for both intact COCs and immature DOs.  相似文献   

19.
Oocyte maturation and somatic cell nuclear transfer (NT) studies conducted in the domestic cat can provide valuable insights that are relevant to the conservation of endangered species of felids. The present investigation focuses on the in vitro maturation (IVM) of domestic cat oocytes stimulated by insulin-like growth factor-I (IGF-I) and their possible use as recipient cytoplasts for somatic cell NT. In Experiment I, the effects of IGF-I on cat oocyte IVM were monitored. Cumulus-oocyte complexes (COCs) were recovered in TALP-HEPES medium following ovarian follicular aspiration and were classified under a stereomicroscope into four grades using criteria based on cumulus cell investment and the uniformity of ooplasm. The COCs were either cultured in Dulbecco's modified Eagle medium (DMEM) alone as a control group or supplemented with 100 ng/ml IGF-I. After culturing for 32-34 h, oocytes were denuded and maturation rate was evaluated by observing the extrusion of the first polar body and staining with aceto-orcein. The percentages of maturation of Grades 1 and 2 oocytes were significantly increased (P<0.05) in IGF-I supplemented medium compared with medium alone (85.8 versus 65.5 and 70.3 versus 51.8, respectively) whereas the maturation rates of Grades 3 and 4 oocytes were not different. The IVM of Grade 1 oocytes was significantly higher (P<0.05) than for all other grades in both control and experimental groups. In Experiment II, the in vitro development of cat NT embryos using cumulus cells, fetal or adult fibroblasts as donor nuclei was investigated. The IVM oocytes in medium containing IGF-I were enucleated and fused with cumulus cells, fetal or adult fibroblasts between passages 2 and 4 of culture. Reconstructed embryos were cultured and monitored every 24h for progression of development through Day 9. There was no significant difference in the percentage of fusion of NT embryos using different donor nuclei whereas the cleavage rates of NT embryos reconstructed with fetal fibroblasts and cumulus cells were significantly higher (P<0.05) than those reconstructed with adult fibroblasts (72.5 and 70.7% versus 54.8%, respectively). Development of NT embryos reconstructed with adult fibroblast to the morula stage was significantly lower (P<0.05) compared with cumulus cell or fetal fibroblast donor cells (25.8% versus 37.9 or 47.5%, respectively). However, no difference was observed in development to the blastocyst stage. These results demonstrated that IGF-I promoted the IVM of domestic cat oocytes. The enucleated IVM oocytes could be used as recipient cytoplasm for fetal and adult somatic cell nuclei resulting in the production of cloned cat embryos.  相似文献   

20.
An important aim of an oocyte recovery method is to maximize the number of oocytes per ovary which can be employed for in vitro maturation (IVM), in vitro fertilization (IVF) and in vitro culture (IVC). In this study, primary bovine oocytes were collected by 2 methods: aspiration of visible follicles (2 to 6mm in diameter) or surface dissection in which the ovary surface is finely dissected. The oocytes were classified on the basis of cumulus cover and cytoplasmic appearance. The total number of oocytes and the yield of good-quality oocytes recovered per ovary by surface dissection and aspiration were 44.2 and 13.9 and 13.5 and 4.6 (P<0.05), respectively. When a sample group of selected oocytes recovered by each method was measured, no significant difference was found in the mean diameter (144.11m vs 142.54m). A representative sample of good-quality oocytes recovered by each method was put through the IVM/IVF/IVC procedure: no significant difference in cleavage rate, cleavage index or blastocyst yield was found. However, when the blastocyst yield was compared on a per ovary basis, a significant difference was observed in favor of surface dissection (3.30+/-0.46 vs 0.96+/-0.16;P<0.05). When unselected oocytes recovered by surface dissection of the ovaries were put through the standard embryo production system, an average of 15.4 blastocysts per dam was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号