首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Actin-binding protein (ABP-280; filamin) is a phosphoprotein present in the periphery of the cytoplasm where it can cross-link actin filaments, associate with lipid membranes, and bind to membrane surface receptors. Given its function and localization in the cell, we decided to investigate the possibility of whether it serves as substrate for p56lck, a lymphocyte-specific member of the src family of protein tyrosine kinases associated with cell surface glycoproteins. The interaction of p56lck with membrane glycoproteins is important for cell development and functional activation. Here, we show that purified p56lck interacts and catalyzes in vitro kinase reactions. Tyrosine phosphorylation by p56lck is restricted to a single peptide of labeled ABP-280 shown by protease digest. The addition of phorbol ester to cells results in the inhibition of phosphorylation of ABP-280 by p56lck. These results show a decrease in phosphorylation suggesting conformationally induced regulation. Dynamic light scattering confirmed increased actin filament cross-linking due to phosphorylation of ABP-280 by p56lck.  相似文献   

2.
Signaling molecules downstream from the insulin receptor, such as the insulin receptor substrate protein 1 (IRS-1), are also activated by other receptor tyrosine kinases. Here we demonstrate that the non-receptor tyrosine kinases, focal adhesion kinase pp125(FAK) and Src-class kinase pp59(Lyn), after insulin-independent activation by phosphoinositolglycans (PIG), can cross talk to metabolic insulin signaling in rat and 3T3-L1 adipocytes. Introduction by electroporation of neutralizing antibodies against pp59(Lyn) and pp125(FAK) into isolated rat adipocytes blocked IRS-1 tyrosine phosphorylation in response to PIG but not insulin. Introduction of peptides encompassing either the major autophosphorylation site of pp125(FAK), tyrosine 397, or its regulatory loop with the twin tyrosines 576 and 577 inhibited PIG-induced IRS-1 tyrosine phosphorylation and glucose transport. PIG-induced pp59(Lyn) kinase activation and pp125(FAK) tyrosine phosphorylation were impaired by the former and latter peptide, respectively. Up-regulation of pp125(FAK) by integrin clustering diminished PIG-induced IRS-1 tyrosine phosphorylation and glucose transport in nonadherent but not adherent adipocytes. In conclusion, PIG induced IRS-1 tyrosine phosphorylation by causing (integrin antagonized) recruitment of IRS-1 and pp59(Lyn) to the common signaling platform molecule pp125(FAK), where cross talk of PIG-like structures and extracellular matrix proteins to metabolic insulin signaling may converge, possibly for the integration of the demands of glucose metabolism and cell architecture.  相似文献   

3.
Insulin has pleiotropic effects on the regulation of cell physiology through binding to its receptor. The wide variety of tyrosine phosphorylation motifs of insulin receptor substrate 1 (IRS-1), a substrate for the activated insulin receptor tyrosine kinase, may account for the multiple functions of insulin. Recent studies have shown that activation of the insulin receptor leads to the regulation of focal adhesion proteins, such as a dephosphorylation of focal adhesion kinase (pp125FAK). We show here that C-terminal Src kinase (Csk), which phosphorylates C-terminal tyrosine residues of Src family protein tyrosine kinases and suppresses their kinase activities, is involved in this insulin-stimulated dephosphorylation of focal adhesion proteins. We demonstrated that the overexpression of Csk enhanced and prolonged the insulin-induced dephosphorylation of pp125FAK. Another focal adhesion protein, paxillin, was also dephosphorylated upon insulin stimulation, and a kinase-negative mutant of Csk was able to inhibit the insulin-induced dephosphorylation of pp125FAK and paxillin. Although we have shown that the Csk Src homology 2 domain can bind to several tyrosine-phosphorylated proteins, including pp125FAK and paxillin, a majority of protein which bound to Csk was IRS-1 when cells were stimulated by insulin. Our data also indicated that tyrosine phosphorylation levels of IRS-1 appear to be paralleled by the dephosphorylation of the focal adhesion proteins. We therefore propose that the kinase activity of Csk, through the insulin-induced complex formation of Csk with IRS-1, is involved in insulin's regulation of the phosphorylation levels of the focal adhesion proteins, possibly through inactivation of the kinase activity of c-Src family kinases.  相似文献   

4.
p56lck, a member of the src family of cytoplasmic tyrosine kinases, is expressed predominantly in T cells where it associates with the T-cell surface molecules CD4 and CD8. Mutants of CD4 and CD8 that have lost the ability to associate with p56lck no longer enhance antigen-induced T-cell activation. This suggests that p56lck plays an important role during T-cell activation. In an effort to understand the function of p56lck in T cells, a constitutively activated lck gene (F505lck) was introduced into T-helper hybridoma cell lines by retroviral infection. In four T-cell lines we examined, the activated lck protein stimulated interleukin-2 (IL-2) production, a hallmark of T-cell activation, in the absence of antigenic stimulation. In addition, a marked increase in antigen-independent IL-2 production was apparent when T cells infected with a temperature-sensitive F505lck were shifted to the permissive temperature. Only one cell line expressing F505lck exhibited increased sensitivity to antigenic stimulation. The SH3 domain of p56lck was dispensable for the induction of antigen-independent IL-2 production. In contrast, deletion of the majority of the SH2 domain of p56F505lck reduced its ability to induce spontaneous IL-2 production markedly. Activated p60c-src also induced antigen-independent IL-2 production, whereas two other tyrosine kinases, v-abl and the platelet-derived growth factor receptor, did not. Tyrosine phosphorylation of a 70-kDa cellular protein was observed after cross-linking of CD4 in T cells expressing F505lck but not in cells expressing F527src.  相似文献   

5.
Protein tyrosine kinases participate in the transduction and modulation of signals that regulate proliferation and differentiation of cells. Excessive or deregulated protein tyrosine kinase activity can cause malignant transformation. The catalytic activity of the T cell protein tyrosine kinase p56lck is normally suppressed by phosphorylation of a carboxyl-terminal tyrosine, Tyr-505, by another cellular protein tyrosine kinase. Here we characterize a human cytosolic 50 kDa protein tyrosine kinase, p50csk, which specifically phosphorylates Tyr-505 of p56lck and a synthetic peptide containing this site. Phosphorylation of Tyr-505 suppressed the catalytic activity of p56lck. We suggest that p50csk negatively regulates p56lck, and perhaps other cellular src family kinases.  相似文献   

6.
We previously reported that hypoxia caused rapid activation of RAS/mitogen-activated protein kinase (MAPK) pathway, two other stress-activated MAPK family members, stress-activated protein kinase (SAPK) and p38MAPK, and Src family tyrosine kinases, p60(c-src) and p59(c-fyn) in cultured rat cardiac myocytes. In this study, to elucidate how hypoxia affects adhesive interaction between cardiac myocytes and extracellular matrix (ECM), we investigated the molecular mechanism of the activation of focal adhesion-associated tyrosine kinases p125(FAK) and paxillin. Here, we show that hypoxia induced tyrosine phosphorylation of p125(FAK) and paxillin and that hypoxia-induced activation of p125(FAK) was accompanied by its increased association with adapter proteins Shc and GRB2, and non-receptor type tyrosine kinase p60(c-src). Furthermore, hypoxia caused subcellular translocation of p125(FAK) from perinuclear sites to the focal adhesions. These results strongly suggest that p125(FAK) is one of the most important components in hypoxia-induced intracellular signaling in cardiac myocytes and may play a pivotal role in adhesive interaction between cardiac myocytes and ECM.  相似文献   

7.
《The Journal of cell biology》1994,127(5):1477-1483
The focal adhesion protein paxillin undergoes tyrosine phosphorylation in response to signals mediated by integrins, neuropeptides and oncogene products, possibly via activation of the focal adhesion- associated kinase, p125FAK. In the present work, tumor necrosis factor- alpha (TNF) stimulated tyrosine phosphorylation of paxillin in human neutrophils. Cell adhesion and participation of the beta 2 integrin CD18 were necessary, but not sufficient, for the response. Adherent neutrophils also tyrosine phosphorylated paxillin in response to phorbol ester, formylmethionyl-leucyl-phenylalanine and opsonized bacteria. In contrast, p125FAK was constitutively tyrosine phosphorylated in a manner unaffected by adherence and/or TNF. Thus, cytokines and microbial products are among the stimuli that can induce the tyrosine phosphorylation of paxillin, and kinases other than p125FAK may be responsible. This is the first identification of paxillin and p125FAK in human cells and neutrophils, and one of the few identifications of a specific protein that undergoes tyrosine phosphorylation in response to any agonist in neutrophils or in response to TNF in any cell.  相似文献   

8.
The CD4 receptor subserves both adhesion and signal transduction functions on CD4+ T-lymphocytes. CD4 is physically associated with the src-related protein tyrosine kinase p56lck. Cell surface engagement of CD4 leads to enzymatic activation of the associated p56lck and the phosphorylation of T-cell proteins on tyrosine residues. We have identified a 72-74kD protein phosphorylated on tyrosine residues following activation of CD4-associated p56lck as the serine-threonine kinase Raf-1. The demonstration that Raf-1 is a substrate for the CD4/p56lck receptor system in normal cells suggests that receptor and nonreceptor classes of protein tyrosine kinases can independently engage functionally overlapping signal transduction pathways.  相似文献   

9.
Sodium ortho-vanadate (Na3VO4), an inhibitor of protein tyrosine phosphatase, induces a rapid (15 min) and strong inhibition of phosphatidylserine synthesis with an IC50 = 100 microM. The mode of action of Na3VO4 was compared to that of CD3 mAbs. It was found that Na3VO4 bypasses the major CD3-induced T cell activation signals including protein tyrosine phosphorylation, p56lck activation and the generation of second messengers including inositol phosphates and its subsequent Ca2+ mobilization as well as diacylglycerol production. These facts were confirmed by using a panel of Jurkat clones that differs by the expression of either tyrosine kinases involved in the CD3-induced T cell activation pathway such as p56lck, p72syk and ZAP-70 or some cell surface receptors such as the CD3/TCR complex or the CD45 phosphatase.  相似文献   

10.
The lck proto-oncogene encodes a lymphocyte-specific member of the src family of protein tyrosine kinases. Here we demonstrate that pp56lck is phosphorylated in vivo at a carboxy-terminal tyrosine residue (Tyr-505) analogous to Tyr-527 of pp60c-src. Substitution of phenylalanine for tyrosine at this position resulted in increased phosphorylation of a second tyrosine residue (Tyr-394) and was associated with an increase in apparent kinase activity. In addition, this single point mutation unmasked the oncogenic potential of pp56lck in NIH 3T3 cell transformation assays. Viewed in the context of similar results obtained with pp60c-src, it is likely that the enzymatic activity and transforming ability of all src-family protein tyrosine kinases can be regulated by carboxy-terminal tyrosine phosphorylation. We further demonstrate that overexpression of pp56lck in the murine T-cell lymphoma LSTRA as a result of a retroviral insertion event produces a kinase protein that despite wild-type primary structure is nevertheless hypophosphorylated at Tyr-505. Thus, control of normal growth in this lymphoid cell line may have been abrogated through acquisition of a posttranslationally activated version of pp56lck.  相似文献   

11.
We have investigated mechanisms involved in integrin-mediated signal transduction in platelets by examining integrin-dependent phosphorylation and activation of a newly identified protein tyrosine kinase, pp125FAK (FAK, focal adhesion kinase). This kinase was previously shown to be localized in focal adhesions in fibroblasts, and to be phosphorylated on tyrosine in normal and Src-transformed fibroblasts. We show that thrombin and collagen activation of platelets causes an induction of tyrosine phosphorylation of pp125FAK and that pp125FAK molecules isolated from activated platelets display enhanced levels of phosphorylation in immune-complex kinase assays. pp125FAK was not phosphorylated on tyrosine after thrombin or collagen treatment of Glanzmann's thrombasthenic platelets deficient in the fibrinogen receptor GPIIb-IIIa, or of platelets pretreated with an inhibitory monoclonal antibody to GP IIb-IIIa. Fibrinogen binding to GP IIb-IIIa was not sufficient to induce pp125FAK phosphorylation because pp125FAK was not phosphorylated on tyrosine in thrombin-treated platelets that were not allowed to aggregate. These results indicate that tyrosine phosphorylation of pp125FAK is dependent on platelet aggregation mediated by fibrinogen binding to the integrin receptor GP IIb-IIIa. The induction of tyrosine phosphorylation of pp125FAK was inhibited in thrombin- and collagen-treated platelets preincubated with cytochalasin D, which prevents actin polymerization following activation. Under all of these conditions, there was a strong correlation between the induction of tyrosine phosphorylation of pp125FAK in vivo and stimulation of the phosphorylation of pp125FAK in vitro in immune-complex kinase assays. This study provides the first genetic evidence that tyrosine phosphorylation of pp125FAK is dependent on integrin-mediated events, and demonstrates that there is a strong correlation between tyrosine phosphorylation of pp125FAK in platelets, and the activation of pp125FAK-associated phosphorylating activity in vitro.  相似文献   

12.
Changes in cellular growth and dramatic alterations in cell morphology and adhesion are common features of cells transformed by oncogenic protein tyrosine kinases, such as pp60src and other members of the Src family. In this report, we present evidence for the stable association of two Src family kinases (pp60src and pp59fyn) with tyrosine-phosphorylated forms of a focal adhesion-associated protein tyrosine kinase, pp125FAK. In Src-transformed chicken embryo cells, most of the pp125FAK was stably complexed with activated pp60src (e.g., pp60(527F). The stable association of pp125FAK with pp60(527F) in vivo required the structural integrity of the Src SH2 domain. The association of pp60(527F) and pp125FAK could be reconstituted in vitro by incubation of normal cell extracts with glutathione S-transferase fusion proteins containing SH2 or SH3/SH2 domains of pp60src. Furthermore, the association of isolated SH2 or SH3/SH2 domains with in vitro 32P-labeled pp125FAK protected the major site of pp125FAK autophosphorylation from digestion with a tyrosine phosphatase, indicating that the autophosphorylation site of pp125FAK participates in binding with Src. Immunoprecipitation of Src family kinases from extracts of normal chicken embryo cells revealed stable complexes of pp59fyn and tyrosine-phosphorylated pp125FAK. These data provide evidence for a direct interaction between two cytoplasmic nonreceptor protein tyrosine kinases and suggest that Src may contribute to changes in pp125FAK regulation in transformed cells. Furthermore, pp125FAK may directly participate in the targeting of pp59fyn or possibly other Src family kinases to focal adhesions in normal cells.  相似文献   

13.
A number of cellular processes, such as proliferation, differentiation, and transformation, are regulated by cell-extracellular matrix interactions. Previous studies have identified a novel tyrosine kinase, the focal adhesion kinase p125FAK, as a component of cell adhesion plaques. p125FAK was identified as a 125-kDa tyrosine-phosphorylated protein in cells transformed by the v-src oncogene. p125FAK is an intracellular protein composed of three domains: a central domain with homology to protein tyrosine kinases, flanked by two noncatalytic domains of 400 amino acids which bear no significant homology to previously cloned proteins. p125FAK is believed to play an important regulatory role in cell adhesion because it localizes to cell adhesion plaques and because its phosphorylation on tyrosine residues is regulated by binding of cell surface integrins to the extracellular matrix. Recent studies have shown that Src, through its SH2 domain, stably associates with pp125FAK and that this association prevents dephosphorylation of pp125FAK in vitro by protein tyrosine phosphatases. In this report, we identify Tyr-397 as the primary in vivo and in vitro site of p125FAK tyrosine phosphorylation and association with Src. Substituting phenylalanine for tyrosine at position 397 significantly reduces p125FAK tyrosine phosphorylation and association with Src but does not abolish p125FAK kinase activity. In addition, p125FAK kinase is able to trans-phosphorylate Tyr-397 in vitro in a kinase-deficient p125FAK variant. Phosphorylation of Tyr-397 provides a site [Y(P)AEI] that fits the consensus sequence for the binding of Src.  相似文献   

14.
The p56lck and p59fyn protein tyrosine kinases are important signal transmission elements in the activation of mature T lymphocytes by ligands to the T-cell antigen receptor (TCR)/CD3 complex. The lack of either kinase results in deficient early signaling events, and pharmacological agents that block tyrosine phosphorylation prevent T-cell activation altogether. After triggering of the TCR/CD3 complex, both kinases are moderately activated and begin to phosphorylate cellular substrates, but the molecular mechanisms responsible for these changes have remained unclear. We recently found that the p72syk protein tyrosine kinase is physically associated with the TCR/CD3 complex and is rapidly tyrosine phosphorylated and activated by receptor triggering also in T cells lacking p56lck. Here we examine the regulation of p72syk and its interaction with p56lck in transfected COS-1 cells. p72syk was catalytically active and heavily phosphorylated on its putative autophosphorylation site, Tyr-518/519. Mutation of these residues to phenylalanines abolished its activity in vitro and toward cellular substrates in vivo and reduced its tyrosine phosphorylation in intact cells by approximately 90%. Coexpression of lck did not alter the catalytic activity of p72syk, but the expressed p56lck was much more active in the presence of p72syk than when expressed alone. This activation was also seen as increased phosphorylation of cellular proteins. Concomitantly, p56lck was phosphorylated at Tyr-192 in its SH2 domain, and a Phe-192 mutant p56lck was no longer phosphorylated by p72syk. Phosphate was also detected in p56lck at Tyr-192 in lymphoid cells. These findings suggest that p56lck is positively regulated by the p72syk kinase.  相似文献   

15.
Tyrosine phosphorylation of focal adhesion kinase (FAK) creates a high-affinity binding site for the src homology 2 domain of the Src family of tyrosine kinases. Assembly of a complex between FAK and Src kinases may serve to regulate the subcellular localization and the enzymatic activity of members of the Src family of kinases. We show that simultaneous overexpression of FAK and pp60(c-src) or p59(fyn) results in the enhancement of the tyrosine phosphorylation of a limited number of cellular substrates, including paxillin. Under these conditions, tyrosine phosphorylation of paxillin is largely cell adhesion dependent. FAK mutants defective for Src binding or focal adhesion targeting fail to cooperate with pp60(c-src) or p59(fyn) to induce paxillin phosphorylation, whereas catalytically defective FAK mutants can direct paxillin phosphorylation. The negative regulatory site of pp60(c-src) is hypophosphorylated when in complex with FAK, and coexpression with FAK leads to a redistribution of pp60(c-src) from a diffuse cellular location to focal adhesions. A FAK mutant defective for Src binding does not effectively induce the translocation of pp60(c-src) to focal adhesions. These results suggest that association with FAK can alter the localization of Src kinases and that FAK functions to direct phosphorylation of cellular substrates by recruitment of Src kinases.  相似文献   

16.
Protein-tyrosine phosphatase-alpha (PTPalpha) activates Src family kinases (SFKs) to promote the integrin-stimulated early autophosphorylation of focal adhesion kinase (FAK). We report here that integrin stimulation induces tyrosine phosphorylation of PTPalpha. PTPalpha was dephosphorylated upon fibroblast detachment from the substratum and rephosphorylated when cells were plated on the integrin ligand fibronectin. alpha PTP phosphorylation occurred at Tyr789 and required SFKs (Src or Fyn/Yes), FAK, and an intact cytoskeleton. It also required active PTPalpha or constitutively active Src. These observations indicate that PTPalpha activates SFKs and that the subsequently activated SFK.FAK tyrosine kinase complex in turn phosphorylates PTPalpha. Reintroduction of wild-type PTPalpha or unphosphorylatable PTPalpha(Y789F) (but not inactive PTPalpha) into PTPalpha-null fibroblasts restored defective integrin-induced SFK activation, FAK phosphorylation, and paxillin phosphorylation. PTPalpha(Y789F) and inactive PTPalpha could not rescue delayed actin stress fiber assembly and focal adhesion formation or defective cell migration. This study distinguishes two roles of PTPalpha in integrin signaling: an early role as an activator of SFKs and FAK with no requirement for PTPalpha phosphorylation and a later downstream role in cytoskeleton-associated events for which PTPalpha phosphorylation at Tyr789 is essential.  相似文献   

17.
Actin-binding protein (ABP-280; filamin) is a phosphoprotein present in the periphery of the cytoplasm, where it can cross-link actin filaments, associate with lipid membranes, and bind to membrane surface receptors. Given its function and localization in the cell, the hypothesis that it serves as a substrate for p56lck, a lymphocyte-specific member of the src family of protein tyrosine kinases associated with cell surface glycoproteins is considered. The results suggest conformationally-induced regulation of filamin (ABP-280).  相似文献   

18.
The Src family of protein tyrosine kinases is involved in transducing signals at sites of cellular adhesion. In particular, the v-Src oncoprotein resides in cellular focal adhesions, where it induces tyrosine phosphorylation of pp125FAK and focal adhesion loss during transformation. v-Src is translocated to cellular focal adhesions by an actin-dependent process. Here we have used mutant v-Src proteins that are temperature-dependent for translocation, but with secondary mutations that render them constitutively kinase-inactive or myristylation-defective, to show that neither v-Src kinase activity nor a myristyl group are required to induce association of v-Src with actin stress fibres and redistribution to sites of focal adhesions at the stress fibre termini. Moreover, switching the constitutively kinase-inactive or myristylation-defective temperature-sensitive v-Src proteins to the permissive temperature resulted in concomitant association with tyrosine-phosphorylated focal adhesion kinase (pp125FAK) and redistribution of both to focal adhesions. However, both catalytic activity and myristylation-mediated membrane association are required to induce dissociation of pp125FAK from v-Src, later degradation of pp125FAK and focal adhesion turnover during transformation and cell motility. These observations provide strong evidence that the role of the tyrosine kinase activity of the Src family at sites of cellular focal adhesions is to regulate the turnover of these structures during cell motility.  相似文献   

19.
The phosphorylation of protein tyrosine kinases (PTKs) on tyrosine residues is a critical regulatory event that modulates catalytic activity and triggers the physical association of PTKs with Src homology 2 (SH2)-containing proteins. The integrin-linked focal adhesion kinase, pp125FAK, exhibits extracellular matrix-dependent phosphorylation on tyrosine and physically associates with two nonreceptor PTKs, pp60src and pp59fyn, via their SH2 domains. Herein, we identify Tyr-397 as the major site of tyrosine phosphorylation on pp125FAK both in vivo and in vitro. Tyrosine 397 is located at the juncture of the N-terminal and catalytic domains, a novel site for PTK autophosphorylation. Mutation of Tyr-397 to a nonphosphorylatable residue dramatically impairs the phosphorylation of pp125FAK on tyrosine in vivo and in vitro. The mutation of Tyr-397 to Phe also inhibits the formation of stable complexes with pp60src in cells expressing Src and FAK397F, suggesting that autophosphorylation of pp125FAK may regulate the association of pp125FAK with Src family kinases in vivo. The identification of Tyr-397 as a major site for FAK autophosphorylation provides one of the first examples of a cellular protein containing a high-affinity binding site for a Src family kinase SH2 domain. This finding has implications for models describing the mechanisms of action of pp125FAK, the regulation of the Src family of PTKs, and signal transduction through the integrins.  相似文献   

20.
The protein tyrosine kinase pp125FAK (focal adhesion kinase, or FAK) is expressed by a variety of cell types and has been implicated in integrin-mediated signaling events. We explored the potential functions of FAK by expressing it de novo in a cell type lacking FAK. We showed previously that cultured human macrophages lack FAK yet still have well-formed focal contacts. Adenovirus-mediated expression of FAK results in the appearance of FAK protein, which localizes to focal contacts and becomes tyrosine-phosphorylated without perturbing overall cell morphology or focal contacts. FAK associates with CSK 48 h after infection and recruits it to focal contacts. Tyrosine phosphorylation of p130cas but not of paxillin is stimulated after FAK expression. The phosphorylation of p130cas is lost at 48 h in parallel with CSK accumulation in focal contacts. The ERK2 form of MAP kinase is similarly activated at 12-24 h, but it also returns to low levels at 48 h. These findings demonstrate that FAK can be reconstituted to focal contacts in cells that lack it without affecting cell morphology or focal contact structure. FAK can regulate the distribution and activities of elements of the MAP kinase signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号