首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rising temperature and altered precipitation regimes will lead to severe droughts and concomitant extreme events in the future. Forest ecosystems have shown to be especially prone to climate change. In assessing climate change impacts, many studies focus on high altitude or ecological edge populations where a climate signal is supposedly most pronounced. While these studies represent only a fraction of the forest ecosystems throughout Europe, findings on climate sensitivity of lowland core populations remain comparatively underrepresented.By using tree-ring widths of a large region-wide network of European beech and Scots pine populations along a precipitation gradient in northeastern Germany, we identify main climatic drivers and spatio-temporal patterns in climate sensitivity. Further, we analyze the resistance of tree growth towards drought. Detailed data on soil characteristics was used to interpret climate-growth relationships.Beech was found to be most sensitive to summer drought during early summer at dry sites, whereas pine displayed highest sensitivity for winter temperature at wet sites. The resistance to extreme drought was lower for beech. By splitting the observation period (1964–2017) into an early and late period, we found non-stationary climate-growth relationships for both study species with beech showing an increase in drought sensitivity and pine in winter temperature sensitivity.Overall, beech populations seem to be especially endangered by prospective climate changes, whereas climate-growth relationships of pine seem more ambiguous with a possible trade-off between enhanced photosynthetic activity caused by early photosynthesis in late winter and reduced activity due to summer drought.  相似文献   

2.
In high-elevation forests, growth is limited by low temperatures, while in Mediterranean climates drought and high temperatures are the main limiting factors. Consequently, the climate-growth relationships on Mont Ventoux, a mountain in the Mediterranean area, are influenced by both factors. Two co-occurring species were studied: silver fir (Abies alba Mill.) and common beech (Fagus sylvatica L.), whose geographical distribution depends on their low tolerance to summer drought at low altitude/latitude, and low temperatures (late frost and short length of the growing season) at high altitude/latitude. Firs and beeches distributed along an elevational gradient were investigated using dendroecological methods. Silver fir growth was found to be more sensitive to summer water stress than beech. On the other hand, beech growth was more impacted by extreme events such as the 2003 heat wave, and negatively related to earlier budburst, which suggests a higher sensitivity to late frost. These results are confirmed by the different altitudinal effects observed in both species. Beech growth decreases with altitude whereas an optimum of growth potential was observed at intermediate elevations for silver fir. Recent global warming has caused a significant upward shift of these optima. As found for the period 2000–2006, rising temperatures and decreasing rainfall may restrain growth of silver fir. If these trends continue in the future beech might be favored at low altitudes. The species will have a reduced capacity to migrate to higher altitudes due to its sensitivity to late frosts, although an upward shift of silver fir is likely.  相似文献   

3.
高佳妮  杨保  秦春 《应用生态学报》2021,32(10):3505-3511
在贺兰山苏峪口国家森林公园,利用径向生长测量仪监测2017和2018年2个生长季内、2个海拔(2010和2330 m)油松的径向生长,研究树木径向生长对干旱的响应。结果表明: 2018年6月的干旱事件使得油松径向生长速率减慢,生长量减小;而7—8月的降水使油松的径向生长重新激活。2018年油松的径向生长主要发生在6—8月,相比2017年延长一个月。油松径向生长与气候因子的响应关系在不同海拔间没有明显的差异。生长季早期干旱对树木径向生长有抑制作用,生长季中后期降水对树木径向生长具有促进作用。该区的气候重建工作中应当充分考虑8月的气候要素对树轮宽度的影响。  相似文献   

4.
Extreme climate events (ECEs) such as severe droughts, heat waves, and late spring frosts are rare but exert a paramount role in shaping tree species distributions. The frequency of such ECEs is expected to increase with climate warming, threatening the sustainability of temperate forests. Here, we analyzed 2,844 tree‐ring width series of five dominant European tree species from 104 Swiss sites ranging from 400 to 2,200 m a.s.l. for the period 1930–2016. We found that (a) the broadleaved oak and beech are sensitive to late frosts that strongly reduce current year growth; however, tree growth is highly resilient and fully recovers within 2 years; (b) radial growth of the conifers larch and spruce is strongly and enduringly reduced by spring droughts—these species are the least resistant and resilient to droughts; (c) oak, silver fir, and to a lower extent beech, show higher resistance and resilience to spring droughts and seem therefore better adapted to the future climate. Our results allow a robust comparison of the tree growth responses to drought and spring frost across large climatic gradients and provide striking evidence that the growth of some of the most abundant and economically important European tree species will be increasingly limited by climate warming. These results could serve for supporting species selection to maintain the sustainability of forest ecosystem services under the expected increase in ECEs.  相似文献   

5.

Key message

Beech trees were able to cope with the drought of 2003. Harmful water shortage has been avoided by an effective stomatal closure while use of carbon storage pools may have prevented carbon starvation and growth reduction.

Abstract

We applied hydrodynamic modeling together with a tree ring stable isotope approach to identify the physiological responses of beech trees to changing environmental conditions. The drought conditions of the extreme hot and dry summer in 2003 were hypothesized to significantly influence the radial growth of European beech mainly triggered by the stomatal response towards water scarcity leading, in turn, to a decline in carbon assimilation. The functional–structural single tree modeling approach applied, revealed in fact a strong limitation of water use and carbon gain during drought. However, tree ring width data did not show a clear drought response and no differentiation in radial growth during six subsequent years examined (2002–2007) has been observed. Using integrated results from mechanistic carbon–water balance simulations, tree ring carbon and oxygen isotope analysis and tree ring width measurements we postulate that the suggested drought-induced growth decline has been prevented by the remobilization of stored carbohydrates, an early onset in growth and the relatively late occurrence of the severe drought in 2003. Furthermore, we demonstrate that the stomatal response played a significant role in avoiding harmful water tension that would have caused xylem dysfunction. As a result of the combined investigation with physiological measurements (stable isotope approach) and hydrodynamic modeling of stomatal aperture, we could give insights into the physiological control of mature beech tree functioning under drought. We conclude that beech trees have been operating at their hydraulic limits and that the longer or repeated drought periods would have affected the growth considerably.
  相似文献   

6.
为探讨杉木径向变化的季节动态及其气候响应特征,利用径向生长仪连续2年(2016—2017年)监测了江西中部杉木的径向变化过程,分析了径向变化的日动态、季节动态规律及其与气候因子的相关性。结果表明: 杉木日径向昼夜变化呈白天收缩、夜间膨胀的格局;2017年径向生长开始时间比2016年提前一个月,但旱季持续的水分亏缺使生长季也早一个月结束;在主要生长季内(4—9月),无论湿季与旱季,径向增长量与降雨、相对湿度呈显著正相关,与光合有效辐射、饱和水汽压差呈显著负相关,而水分亏缺量的气候相关性与径向增长量相反;旱季严重缺水时土壤含水量对径向变化的影响显著增强。水分条件始终是影响杉木径向变化的关键因素,夏季干旱时可通过提高土壤含水量等有效途径促进杉木径向生长。  相似文献   

7.
? Severe drought may increase physiological stress on long-lived woody vegetation, occasionally leading to mortality of overstory trees. Little is known about the factors determining tree survival and subsequent recovery after drought. ? We used structural equation modeling to analyse the recovery of Scots pine (Pinus sylvestris) trees 4 yr after an extreme drought episode occurred in 2004-2005 in north-east Spain. Measured variables included the amount of green foliage, carbon reserves in the stem, mistletoe (Viscum album) infection, needle physiological performance and stem radial growth before, during and after the drought event. ? The amount of green leaves and the levels of carbon reserves were related to the impact of drought on radial growth, and mutually correlated. However, our most likely path model indicated that current depletion of carbon reserves was a result of reduced photosynthetic tissue. This relationship potentially constitutes a feedback limiting tree recovery. In addition, mistletoe infection reduced leaf nitrogen content, negatively affecting growth. Finally, successive surveys in 2009-2010 showed a direct association between carbon reserves depletion and drought-induced mortality. ? Severe drought events may induce long-term physiological disorders associated with canopy defoliation and depletion of carbon reserves, leading to prolonged recovery of surviving individuals and, eventually, to delayed tree death.  相似文献   

8.
The expected increase in drought severity and frequency as a result of anthropogenic climate change leads to concerns about the ability of native tree species to cope with these changes. To determine the susceptibility of Fagus sylvatica (European beech) and Quercus robur (pedunculate oak) – the two dominant deciduous tree species in Central Europe – to drought, we quantified the climate sensitivity and drought-response of radial growth for both species using an array of dendroecological methods. Tree-ring data were collected from a site east of Coburg, Bavaria which had shown pronounced stress-symptoms (early leaf coloration) during the record drought of 2018. Climate-growth relationships were used to establish the sensitivity of radial growth to multiple climatic variables. The impact of specific drought events on tree growth was quantified using tolerance indices. In addition, we employed a Principal Component Gradient Analysis (PCGA) and remote sensing data (MODIS Normalized Difference Vegetation Index (NDVI)) to delineate the species specific drought responses. Using these methods we were able to show a clear difference in drought susceptibility between beech and oak. Beech displayed a higher sensitivity to temperature and the standardized precipitation evapotranspiration index (SPEI) and showed lower resistance and resilience to drought events than oak. In particular, beech was unable to fully recover from the 2003 drought, after which it expressed a stark growth decline, i.e. drought legacies, which was not observed for oak. The PCGA revealed a clear differentiation in the grouping of drought responses between beech and oak, supporting the findings of the climate-growth analysis and the tolerance indices. Correlations of NDVI and ring-width indices (RWI) indicated that under normal climatic conditions NDVI variability is linked to the start of the growing season. This is in contrast to drought years, such as 2003, where summer NDVI mirrored the drought response of beech and oak. These results reveal beech to have both a higher sensitivity to summer temperature and SPEI and a higher susceptibility to drought events. Although, in the past high plasticity and adaptability to drought have been attributed to both beech and oak, our study assigns beech a higher risk than oak to suffer from anticipated increases in drought frequency and intensity as a consequence of climate change.  相似文献   

9.
Whether and how the timing of extreme events affects the direction and magnitude of legacy effects on tree growth is poorly understood. In this study, we use a global database of Ring‐Width Index (RWI) from 2,500 sites to examine the impact and legacy effects (the departure of observed RWI from expected RWI) of extreme drought events during 1948–2008, with a particular focus on the influence of drought timing. We assessed the recovery of stem radial growth in the years following severe drought events with separate groupings designed to characterize the timing of the drought. We found that legacies from extreme droughts during the dry season (DS droughts) lasted longer and had larger impacts in each of the 3 years post drought than those from extreme droughts during the wet season (WS droughts). At the global scale, the average integrated legacy from DS droughts (0.18) was about nine times that from WS droughts (0.02). Site‐level comparisons also suggest stronger negative impacts or weaker positive impacts of DS droughts on tree growth than WS droughts. Our results, therefore, highlight that the timing of drought is a crucial factor determining drought impacts on tree recovery. Further increases in baseline aridity could therefore exacerbate the impact of punctuated droughts on terrestrial ecosystems.  相似文献   

10.
Although growth limitation of trees at Alpine and high-latitude timberlines by prevailing summer temperature is well established, the loss of thermal response of radial tree growth during last decades has repeatedly been addressed. We examined long-term variability of climate–growth relationships in ring width chronologies of Stone pine (Pinus cembra L.) by means of moving response functions (MRF). The study area is situated in the timberline ecotone (ca. 2,000–2,200 m a.s.l.) on Mt. Patscherkofel (Tyrol, Austria). Five site chronologies were developed within the ecotone with constant sample depth (≥19 trees) throughout most of the time period analysed. MRF calculated for the period 1866–1999 and 1901–1999 for ca. 200- and ca. 100-year-old stands, respectively, revealed that mean July temperature is the major and long-term stable driving force of Pinus cembra radial growth within the timberline ecotone. However, since the mid-1980s, radial growth in timberline and tree line chronologies strikingly diverges from the July temperature trend. This is probably a result of extreme climate events (e.g. low winter precipitation, late frost) and/or increasing drought stress on cambial activity. The latter assumption is supported by a <10% increase in annual increments of ca. 50-year-old trees at the timberline and at the tree line in 2003 compared with 2002, when extraordinary hot and dry conditions prevailed during summer. Furthermore, especially during the second half of the twentieth century, influence of climate variables on radial growth show abrupt fluctuations, which might also be a consequence of climate warming on tree physiology.  相似文献   

11.
  • Successful alien plant invasion is influenced by both climate change and plant–plant interactions. We estimate the single and interactive effects of competition and extreme weather events on the performance of the global legume invader Lupinus polyphyllus (Lindl.).
  • In three experimental studies we assessed (i) the stress tolerance of seedling and adult L. polyphyllus plants against extreme weather events (drought, fluctuating precipitation, late frost), (ii) the competitive effects of L. polyphyllus on native grassland species and vice versa, and (iii) the interactive effects of extreme weather events and competition on the performance of L. polyphyllus.
  • Drought reduced growth and led to early senescence of L. polyphyllus but did not reduce adult survival. Fluctuating precipitation events and late frost reduced the length of inflorescences. Under control conditions, interspecific competition reduced photosynthetic activity and growth of L. polyphyllus. When subjected to competition during drought, L. polyphyllus conserved water while simultaneously maintaining high assimilation rates, demonstrating increased water use efficiency. Meanwhile, native species had reduced performance under drought.
  • In summary, the invader gained an advantage under drought conditions through a smaller reduction in performance relative to its native competitors but was competitively inferior under control conditions. This provides evidence for a possible invasion window for this species. While regions of high elevation or latitude with regular severe late frost events might remain inaccessible for L. polyphyllus, further spread across Europe seems probable as the predicted increase in drought events may favour this non‐native legume over native species.
  相似文献   

12.

Key message

A drought event during spring produces a stronger and long lasting decrease in growth of ponderosa pine seedlings than a summer drought event. However, survival is not differentially affected.

Abstract

Although there is certainty about the increasing frequency of extreme climatic events, the consequences of changing patterns of drought events within the growing season on the growth and survival of different species are much less certain. In particular, little knowledge is available on the differential effect on tree seedlings of a drought event at different times within the growing season. The objective of this study was to quantify the effect of a drought event imposed at different times over the growing season on the growth, survival and some related morphological and physiological variables of Pinus ponderosa seedlings from two seed sources. Four treatments were applied: control conditions; spring drought; summer drought and spring plus summer drought (SpSuD). A drought event in spring reduced stem growth and biomass accumulation in ponderosa pine seedlings during the occurrence of the drought and afterwards, even when plant water status had recovered. The lack of growth recovery could not be associated with loss of stem hydraulic conductivity or reduction in stomatal conductance after drought. However, the spring drought did not differentially affect plant survival, as was the case with prolonged drought in the SpSuD treatment. The summer drought event had a significant but much smaller impact on plant growth. Our results suggest different consequences of a drought event in spring or in summer in ponderosa pine seedlings. This knowledge may be relevant to understand and predict tree seedlings responses to changing patterns of drought events within the growing season in the framework of climatic change.  相似文献   

13.
The future performance of native tree species under climate change conditions is frequently discussed, since increasingly severe and more frequent drought events are expected to become a major risk for forest ecosystems. To improve our understanding of the drought tolerance of the three common European temperate forest tree species Norway spruce, silver fir and common beech, we tested the influence of climate and tree‐specific traits on the inter and intrasite variability in drought responses of these species. Basal area increment data from a large tree‐ring network in Southern Germany and Alpine Austria along a climatic cline from warm‐dry to cool‐wet conditions were used to calculate indices of tolerance to drought events and their variability at the level of individual trees and populations. General patterns of tolerance indicated a high vulnerability of Norway spruce in comparison to fir and beech and a strong influence of bioclimatic conditions on drought response for all species. On the level of individual trees, low‐growth rates prior to drought events, high competitive status and low age favored resilience in growth response to drought. Consequently, drought events led to heterogeneous and variable response patterns in forests stands. These findings may support the idea of deliberately using spontaneous selection and adaption effects as a passive strategy of forest management under climate change conditions, especially a strong directional selection for more tolerant individuals when frequency and intensity of summer droughts will increase in the course of global climate change.  相似文献   

14.
树木是森林生态系统的基本组成, 其生长受气象因子的影响, 基于此, 该研究通过监测樟子松(Pinus sylvestris var. mongolica)的径向生长, 研究樟子松生长日动态规律、季节动态规律及其与气象因子的关系, 探讨河北塞罕坝地区樟子松森林生态系统对气候变化的响应机制。此外, 以往研究树木生长大多数基于树轮年代学, 缺少短期树木径向生长动态的研究。该研究利用径向生长记录仪监测河北塞罕坝机械林场内樟子松连续3年(2016-2018)的树干径向动态变化。结果表明: 由于树干的水分吸收与蒸腾作用, 樟子松树干径向昼夜变化呈现季节性规律, 可划分为4个阶段: 春季萌动期、夏季生长期、秋冬交替期和冬季休眠期。塞罕坝樟子松树干径向生长开始于每年4月初; 4月初至5月中旬为水分恢复阶段; 5月中旬至7月中旬为快速生长阶段; 7月中旬至10月中旬为缓慢生长阶段; 10月中、下旬生长趋于停止, 并有树干径向收缩现象。以一天为时间尺度, 在快速生长阶段(5月初至7月中旬)樟子松径向生长主要受空气温度的影响; 缓慢生长阶段(7月中旬至10月下旬)降水量、空气温度均影响樟子松径向生长。以15天为时间尺度, 温度对樟子松径向生长的影响显著。结果显示樟子松的生长动态规律及其影响因子, 为未来樟子松生理研究提供参考时间节点, 同时在极端低温与干旱的情况下, 为半干旱地区樟子松的生长状态提供参考依据。  相似文献   

15.
In the search of timber species being tolerant towards summer droughts, which are expected to be more frequent in future, Douglas-fir is often discussed as a potential alternative for spruce in Central Europe. To assess physiological and growth reactions of Douglas-fir provenances towards climate- and weather-related environmental conditions we took advantage of a provenance trial with three sites in south-western Germany located along an elevation gradient. We examined six different provenances of Douglas-fir from North America for oxygen (δ18O) and carbon (δ13C) stable isotope composition in tree rings as well as for radial increment for a 7 year period and long-term height growth. Our results show that different Douglas-fir provenances clearly vary in their drought sensitivity at the driest and warmest site in the valley as shown by the radial growth decline in the extreme dry and hot year 2003. The growth decline in the provenances Pamelia Creek, Cameron Lake, Duncan Paldi and Conrad Creek could be clearly attributed to a reduction in stomatal conductance as assessed by the relations between δ18O and δ13C in the tree rings. These responses were not related to the long-term average climate at the places of origin of the provenances and the provenances with the lowest long-term (height) growth potential were the ones least affected in radial increment by the extreme drought of 2003. When selecting suitable Douglas-fir provenances, which are adapted to the climatic conditions projected for the future we thus might need to take into account the trade-off between the adaptation to extreme drought periods and the long-term growth performance. Site-specific evaluations of the probability of extreme drought events are thus needed to select the appropriate provenances.  相似文献   

16.
Some forest‐related studies on possible effects of climate change conclude that growth potential of European beech (Fagus sylvatica L.) might be impaired by the predicted increase in future serious drought events during the growing season. Other recent research suggests that not only multiyear increment rates but also growth resistance and recovery of beech during, respectively, after dry years may differ between pure and mixed stands. Thus, we combined dendrochronological investigations and wood stable isotope measurements to further investigate the impact of neighborhood diversity on long‐term performance, short‐term drought response and soil water availability of European beech in three major geographic regions of Germany. During the last four decades, target trees whose competitive neighborhood consisted of co‐occurring species exhibited a superior growth performance compared to beeches in pure stands of the same investigation area. This general pattern was also found in exceptional dry years. Although the summer droughts of 1976 and 2003 predominantly caused stronger relative growth declines if target trees were exposed to interspecific competition, with few exceptions they still formed wider annual rings than beeches growing in close‐by monocultures. Within the same study region, recovery of standardized beech target tree radial growth was consistently slower in monospecific stands than in the neighborhood of other competitor species. These findings suggest an improved water availability of beech in mixtures what is in line with the results of the stable isotope analysis. Apparently, the magnitude of competitive complementarity determines the growth response of target beech trees in mixtures. Our investigation strongly suggest that the sensitivity of European beech to environmental constrains depends on neighborhood identity. Therefore, the systematic formation of mixed stands tends to be an appropriate silvicultural measure to mitigate the effects of global warming and droughts on growth patterns of Fagus sylvatica.  相似文献   

17.
Tree growth is a key ecosystem function supporting climate change mitigation strategies. However climate change may induce feedbacks on radial growth and wood density, affecting the carbon sequestration capacity of forests. Using a mixed modeling technique long-term trends in radial growth, wood density and above-ground biomass, defined as the product of the annual basal area growth with the wood density, of common beech (Fagus sylvatica) and sessile oak (Quercus petraea) in the Belgian Ardennes, were determined and explained using climate drivers of change. This modeling strategy allowed us to determine if the same conclusions can be drawn when only BAI is considered, as is assumed in most carbon sequestration studies, when looking at long-term trends in carbon sequestration. The models indicate that above-ground biomass increment changes over time are more driven by changes in radial growth than by changes in wood density. Nevertheless, the assumption of constant wood density in most carbon sequestration studies is incorrect. Ignoring wood density results in an underestimation of long-term trends in above-ground biomass increment for beech, and an overestimation of above-ground biomass increment for oak. Interesting is that radial growth is mostly driven by climate variables of the current year, whereas wood density is more driven by the climate variables of the previous year. Beech radial growth and wood density is found to be negatively influenced by drought and positively by water availability. Oak radial growth and wood density is negatively affected by late frost and positively by water availability. The findings of this study suggest that radial growth in combination with wood density should be used in carbon sequestration studies as different climate driven long-term trends in radial growth and wood density are found.  相似文献   

18.
Ongoing climate change has induced modification in the frequency and intensity of extreme climatic events, with consequent impact on tree and forest growth resilience. Araucaria araucana is an endangered Patagonian conifer, which provides several ecosystem services to local human societies and plays fundamental ecological roles in natural communities. These woodlands have historically suffered different types of anthropogenic disturbance, such as fire, logging and grazing, nevertheless the species resilience to extreme drought events remains still poorly understood. To fill this gap of knowledge, we applied dendrochronological methods to several A. araucana stands distributed along a steep bioclimatic gradient in order to reconstruct resilience capacity, in term of stem growth resistance and recovery, to three successive extreme spring-early summer droughts which occurred during the 20th century. Results showed an increase in the species recovery along the considered dry spells, whereas no clear trend emerged for resistance, suggesting no cumulative effect of drought upon resilience. Both resistance and recovery presented different values depending on bioclimatic settings, being xeric stands more sensitive to extreme episodes with respect to mesic woodlands, particularly during the more recent drought event when trees growing in drier environments were not able to reach pre-drought stem growth rates. Tree-level characteristics, such as age and growth trends prior to drought, modulated the species resilience, suggesting that future dry spells would possibly induce shifts in population dynamics, and furthermore be detrimental for fast-growing trees. Our analysis highlighted the response of a key Patagonian tree species to extreme drought events, providing bioclimatic-specific useful information for conservation plans of this natural resource.  相似文献   

19.
In the spring of 2010, temperatures averaged ~3 °C above the long‐term mean (March–May) across the northeastern United States. However, in mid‐to‐late spring, much of this region experienced a severe frost event. The spring of 2010 therefore provides a case study on how future spring temperature extremes may affect northeastern forest ecosystems. We assessed the response of three northern hardwood tree species (sugar maple, American beech, yellow birch) to these anomalous temperature patterns using several different data sources and addressed four main questions: (1) Along an elevational gradient, how was each species affected by the late spring frost? (2) How did differences in phenological growth strategy influence their response? (3) How did the late spring frost affect ecosystem productivity within the study domain? (4) What are the potential long‐term impacts of spring frost events on forest community ecology? Our results show that all species exhibited early leaf development triggered by the warm spring. However, yellow birch and American beech have more conservative growth strategies and were largely unaffected by the late spring frost. In contrast, sugar maples responded strongly to warmer temperatures and experienced widespread frost damage that resulted in leaf loss and delayed canopy development. Late spring frost events may therefore provide a competitive advantage for yellow birch and American beech at the expense of sugar maple. Results from satellite remote sensing confirm that frost damage was widespread throughout the region at higher elevations (>500 m). The frost event is estimated to have reduced gross ecosystem productivity by 70–153 g C m?2, or 7–14% of the annual gross productivity (1061 ± 82 g C m?2) across 8753 km2 of high‐elevation forest. We conclude that frost events following leaf out, which are expected to become more common with climate change, may influence both forest composition and ecosystem productivity.  相似文献   

20.
Climate change is expected to result in more extreme weather conditions over large parts of Europe, such as the prolonged drought of 2003. As water supply is critical for tree growth on many sites in North-Western Europe, such droughts will affect growth, species competition, and forest dynamics. To be able to assess the susceptibility of tree species to climate change, it is necessary to understand growth responses to climate, at a high temporal resolution. We therefore studied the intra-annual growth dynamics of three beech trees (Fagus sylvatica L.) and five oak trees (Quercus robur L.) growing on a sandy site in the east of the Netherlands for 2 years: 2003 (oak and beech) and 2004 (oak). Microcores were taken at 2-week intervals from the end of April until the end of October. Intra-annual tree-ring formation was compared with prior and contemporary records of precipitation and temperature from a nearby weather station.The results indicate that oak and beech reacted differently to the summer drought in 2003. During the drought, wood formation in both species ceased, but in beech, it recovered after the drought. The causes of species-specific differences in intra-annual wood formation are discussed in the context of susceptibility to drought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号