首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gibberellins (GAs) are phytohormones controlling major aspects of plant growth and development. Although previous studies suggested the existence of a transport of GAs in plants, the nature and properties associated with this transport were unknown. We recently showed through micrografting and biochemical approaches that the GA12 precursor is the chemical form of GA undergoing long-distance transport across plant organs in Arabidopsis. Endogenous GA12 moves through the plant vascular system from production sites to recipient tissues, in which GA12 can be converted to bioactive forms to support growth via the activation of GA-dependent processes. GAs are also essential to promote seed germination; hence GA biosynthesis mutants do not germinate without exogenous GA treatment. Our results suggest that endogenous GAs are not (or not sufficiently) transmitted to the offspring to successfully complete the germination under permissive conditions.  相似文献   

2.
In pea (Pisum sativum), normal fruit growth requires the presence of the seeds. The coordination of growth between the seed and ovary tissues involves phytohormones; however, the specific mechanisms remain speculative. This study further explores the roles of the gibberellin (GA) biosynthesis and catabolism genes during pollination and fruit development and in seed and auxin regulation of pericarp growth. Pollination and fertilization events not only increase pericarp PsGA3ox1 message levels (codes for GA 3-oxidase that converts GA20 to bioactive GA1) but also reduce pericarp PsGA2ox1 mRNA levels (codes for GA 2-oxidase that mainly catabolizes GA20 to GA29), suggesting a concerted regulation to increase levels of bioactive GA1 following these events. 4-Chloroindole-3-acetic acid (4-Cl-IAA) was found to mimic the seeds in the stimulation of PsGA3ox1 and the repression of PsGA2ox1 mRNA levels as well as the stimulation of PsGA2ox2 mRNA levels (codes for GA 2-oxidase that mainly catabolizes GA1 to GA8) in pericarp at 2 to 3 d after anthesis, while the other endogenous pea auxin, IAA, did not. This GA gene expression profile suggests that both seeds and 4-Cl-IAA can stimulate the production, as well as modulate the half-life, of bioactive GA1, leading to initial fruit set and subsequent growth and development of the ovary. Consistent with these gene expression profiles, deseeded pericarps converted [14C]GA12 to [14C]GA1 only if treated with 4-Cl-IAA. These data further support the hypothesis that 4-Cl-IAA produced in the seeds is transported to the pericarp, where it differentially regulates the expression of pericarp GA biosynthesis and catabolism genes to modulate the level of bioactive GA1 required for initial fruit set and growth.  相似文献   

3.
The application of small amounts of natural plant growth hormones, such as gibberellins (GAs), can increase the productivity and quality of many vegetable and fruit crops. However, gibberellin growth hormones usage is limited by the high cost of their production, which is currently based on fermentation of a natural fungal producer Fusarium fujikuroi that produces a mix of several GAs. We explored the potential of the oleaginous yeast Yarrowia lipolytica to produce specific profiles of GAs. Firstly, the production of the GA-precursor ent-kaurenoic acid (KA) at 3.75 mg/L was achieved by expression of biosynthetic enzymes from the plant Arabidopsis thaliana and upregulation of the mevalonate (MVA) pathway.We then built a GA4-producing strain by extending the GA-biosynthetic pathway and upregulating the MVA-pathway further, resulting in 17.29 mg/L GA4. Additional expression of the F. fujikoroi GA-biosynthetic enzymes resulted in the production of GA7 (trace amounts) and GA3 (2.93 mg/L). Lastly, through protein engineering and the expression of additional KA-biosynthetic genes, we increased the GA3-production 4.4-fold resulting in 12.81 mg/L. The developed system presents a promising resource for the recombinant production of specific gibberellins, identifying bottlenecks in GA biosynthesis, and discovering new GA biosynthetic genes.ClassificationBiological Sciences, Applied Biological Sciences.  相似文献   

4.
Fruit setting and development in a monoecious cucurbit,Momordica charantia L. could be regulated by the external application of gibberellin (GA3) and ethrel. Both GA3 and ethrel in lower concentrations promoted female flower production as well as fruit setting and development. Both growth regulators improved the quality of theMomordica fruit by increasing length, breath and biomass of the fruits as well as by increasing the content of total sugar of the fruit.  相似文献   

5.
The role and source of gibberellins (GAs) involved in the development of parthenocarpic fruits of Pisum sativum L. has been investigated. Gibberellins applied to the leaf adjacent to an emasculated ovary induced parthenocarpic fruit development on intact plants. The application of gibberellic acid (GA3) had to be done within 1 d of anthesis to be fully effective and the response was concentration-dependent. Gibberellin A1 and GA3 worked equally well and GA20 was less efficient. [3H]Gibberellin A1 applied to the leaf accumulated in the ovary and the accumulation was related to the growth response. These experiments show that GA applied to the leaf in high enough concentration is translocated to the ovary. Emasculated ovaries on decapitated pea plants develop without application of growth hormones. When [3H] GA1 was applied to the leaf adjacent to the ovary a substantial amount of radioactivity accumulated in the growing shoot of intact plants. In decapitated plants, however, this radioactivity was mainly found in the ovary. There it caused growth proportional to the accumulation of CA1. Application of LAB 150978, an inhibitor of GA biosynthesis, to decapitated plants inhibited parthenocarpic fruit development and this inhibition was counteracted by the application of GA3 (either to the fruit, or the leaf adjacent to the ovary, or through the lower cut end of the stem). All evidence taken together supports the view that parthenocarpic pea fruit development on topped plants depends on the import of gibberellins or their precursors, probably from the vegetative aerial parts of the plant.Abbreviations FW flesh weight - GAn gibberellin An - HPLC high-performance liquid chromatography  相似文献   

6.
Gibberellins (GAs) were identified and quantified during flower and fruit development in the Christmas rose (Helleborus niger L.), a native of southeastern Europe with a long international horticultural tradition. Physiologically, the plant differs from popular model species in two major respects: (1) following anthesis, the initially white or rose perianth (formed in this species by the sepals) turns green and persists until fruit ripening, and (2) the seed is shed with an immature embryo, a miniature endosperm, and a prominent perisperm as the main storage tissue. GA1 and GA4 were identified by full-scan mass spectra as the major bioactive GAs in sepals and fruit. LC-MS/MS system in accord with previously verified protocols also afforded analytical data on 12 precursors and metabolites of GAs. In the fruit, GA4 peaked during rapid pericarp growth and embryo development and GA1 peaked during the subsequent period of rapid nutrient accumulation in the seeds and continued pericarp enlargement. In the sepals, the flux through the GA biosynthetic pathway was highest prior to the light green stage when the photosynthetic system was induced. Unfertilized, depistillated, and deseeded flowers became less green than the seed-bearing controls; chlorophyll accumulation could be restored by applying GA1, GA4, and, less efficiently, GA3 to the deseeded fruit. The sepals of unfertilized and depistillated flowers indeed contained very low levels of GA4 and gradually decreasing levels of GA1. However, the concentrations of their precursors and metabolites were less affected. These data suggest that a signal(s) from the fruit stimulates GA biosynthesis in the sepals resulting in greening. The fruit-derived GAs appear to be mainly involved in pericarp growth and seed development.  相似文献   

7.
Our previous work demonstrated that exogenous gibberellins (GAs) applications during rapid fruit growth significantly increases sink demand and results in a larger fruit in Japanese pear. In an attempt to unravel the mechanism of increased sink demand by applied GAs, the histology, cell wall components of the flesh, and carbon accumulation in the fruit were assessed for Japanese pear (Pyrus pyrifolia, cultivar ‘Kousui’), as were the activities of sucrose- and sorbitol-cleaving enzymes. Our results show that most vascular tissues occurred in core tissue with very little vascular tissue in the flesh. Application of a mixture of GA3 + GA4 in lanolin paste significantly increased the amount of ethanol-insoluble solids, e.g., total pectins, hemicellulose, and cellulose in the cell walls. There was a significantly increased sink demand (assessed by 13C accumulation in the fruit) by the applied GAs, and this increased sink strength was closely related to increased activities of cell wall-bound invertase in the core, neutral invertase and NAD-dependent sorbitol dehydrogenase in the flesh during rapid fruit growth. As well, concentrations of sorbitol and sucrose in the flesh were decreased by GA application, while glucose concentration increased. Most importantly, the fact that sink activity can be increased by GA application implies that endogenous GAs are likely to be important modulators for sugar metabolism. Hence, selecting for genotypes with elevated GA production in the growing fruit and increased activities of key enzymes for sugar metabolism could result in increased fruit size.  相似文献   

8.
The effect of applied gibberellin (GA) and auxin on fruit-set and growth has been investigated in tomato (Solanum lycopersicum L.) cv Micro-Tom. It was found that to prevent competition between developing fruits only one fruit per truss should be left on the plant. Unpollinated ovaries responded to GA3 and to different auxins [indol-3-acetic acid, naphthaleneacetic acid, and 2,4-dichlorophenoxyacetic acid (2,4-D)], 2,4-D being the most efficient. GA3- and 2,4-D-induced fruits had different internal morphology, with poor locular tissue development in the case of GA, and pseudoembryos development in the case of 2,4-D. Also, GA3 produced larger cells in the internal region of the mesocarp (IM) associated with higher mean C values, whereas 2,4-D produced more cell layers in the pericarp than pollinated fruits. The smaller size of GA3- compared with 2,4-D-induced fruits was due to them having fewer cells, only partially compensated by the larger size of IM cells. Simultaneous application of GA3 and 2,4-D produced parthenocarpic fruits similar to pollinated fruits, but for the absence of seeds, suggesting that both kinds of hormones are involved in the induction of fruit development upon pollination. It is concluded that Micro-Tom constitutes a convenient model system, compared to tall cultivars, to investigate the hormonal regulation of fruit development in tomato.  相似文献   

9.
该研究采用ISSR分子标记,对黄枝油杉7个自然种群的遗传多样性进行了分析。结果表明:用12条ISSR引物对218个黄枝油杉个体进行扩增,共扩增出125个位点。在物种水平上,多态性位点百分数( PPL)为100.00%,Shannon信息多样性指数( I)为0.4177,Nei’ s基因多样性指数( H)为0.2666;在种群水平上,多态性位点百分数(PPL)在71.20%~92.00%之间,平均值为80.69%,Shannon信息多样性指数(I)在0.3273~0.3886之间,平均值为0.3548,Nei’ s基因多样性指数( H)在0.2139~0.2478之间,平均值为0.2291。这说明黄枝油杉在物种水平和种群水平上均显示出较高的遗传多样性。 Nei’ s遗传多样性分析( Gst=0.1433)和AMOVA分析(Φst=17.91%)表明,黄枝油杉的遗传变异主要存在于种群内,种群间的遗传分化程度较低,种群间保持一定的基因交流( Nm=2.9890>1)。 Mantel分析显示,黄枝油杉种群间的遗传距离和地理距离之间不存在显著的相关关系( r=0.4567, P=0.0610>0.05)。  相似文献   

10.
The role of plant hormones under saline stress is critical in modulating physiological responses that will eventually lead to adaptation to an unfavorable environment. Nevertheless, the functional level of plant hormones, and their relative tissue concentration, may have a different impact on plant growth and stress tolerance at increasing salinity of the root environment. Vigorous plant growth may counteract the negative effects of salinization. In contrast, low gibberellin (GA) levels have been associated with reduced growth in response to salinity. Based on these facts and considering that the physiological basis of the cause-effect relationship between functional growth control and stress adaptation/survival is still a matter of debate, we hypothesized that exogenous applications of the plant hormone GA3 may compensate for the salt-induced growth deficiency and consequently facilitate tomato plant adaptation to a saline environment. GA3 application (0 or 100 mg GA3 l−1) was compared under four salinity levels, obtained by adding equal increments of NaCl:CaCl2 (2:1 molar basis) (EC = 2.5, 6.8, 11.7, 16.7 dS m−1) to the nutrient solution. GA3 treatment reduced stomatal resistance and enhanced plant water use at low salinity. These responses were associated with an increased number of fruit per plant at harvest. However, moderate and high salinity nullified these differences. The fruit carotenoid level was generally lower in GA3-treated plants, indicating either an inhibitory effect of GA3 treatment on carotenoid biosynthesis or a reduced perception of the stress environment by GA3-treated tomato plants.  相似文献   

11.
The effect of 100 mgl–1 gibberellic acid (GA3) on flowering and fruit ripening synchrony, fruit set, fruit fresh weight, and vegetative growth were studied for different size classes of coffee (Coffea arabica L. cv. Guatemalan) flower buds. Flower buds that were > 4 mm, but not developed to the candle stage at the time of GA3 treatment, reached anthesis 20 days earlier than the controls, and their development was independent of precipitation, unlike the controls. Fruit from buds that were treated with GA3 at the candle stage showed earlier and more synchronous ripening than the control, although no differences in flowering were found during anthesis. Buds that were smaller than 4 mm at the time of treatment did not respond to GA3 applications. Treatment with GA3 did not affect fruit set, fresh weight of fruits, or vegetative shoot growth.  相似文献   

12.
The rice pathogen Fusarium fujikuroi is known for producing a wide range of secondary metabolites such as pigments, mycotoxins, and a group of phytohormones, the gibberellic acids (GAs). Bioactive forms of these diterpenes are responsible for hyperelongation of rice stems, yellowish chlorotic leaves, and reduced grain formation during the bakanae disease leading to severely decreased crop yields. GAs are also successfully applied in agriculture and horticulture as plant growth regulators to enhance crop yields, fruit size, and to induce earlier flowering. In this study, six F. fujikuroi wild-type and mutant strains differing in GA yields and the spectrum of produced GAs were cultivated in high-quality lab fermenters for optimal temperature and pH control and compared regarding their growth, GA production, and GA gene expression levels. Comparative analysis of the six strains revealed that strain 6314/ΔDESPPT1, holding mutations in two GA biosynthetic genes and an additional deletion of the 4'-phosphopantetheinyl transferase gene PPT1, exhibits the highest total GA amount. Expression studies of two GA biosynthesis genes, CPS/KS and DES, showed a constantly high expression level for both genes under production conditions (nitrogen limitation) in all strains. By cultivating these genetically engineered mutant strains, we were able to produce not only mixtures of different bioactive GAs (GA3, GA4, and GA7) but also pure GA4 or GA7. In addition, we show that the GA yields are not only determined by different production rates, but also by different decomposition rates of the end products GA3, GA4, and GA7 explaining the varying GA levels of genetically almost identical mutant strains.  相似文献   

13.
Gibberellins A1 and A3 are the major physiologically active gibberellins (GAs) present in young fruit of pea (Pisum sativum L.). The relative importance of these GAs in controlling fruit growth and their biosynthetic origins were investigated in cv. Alaska. In addition, the non-13-hydroxylated active GAs, GA4 and GA7, were identified for the first time in young seeds harvested 4 d after anthesis, although they are minor components and are not expected to play major physiological roles. The GA1 content is maximal in seeds and pods at 6 d after anthesis, the time of highest growth-rate of the pod (Garcia-Martinez et al. 1991, Planta 184: 53–60), whereas gibberellic acid (GA3), which is present at high levels in seeds 4–8 d after anthesis, has very low abundance in pods. Gibberellins A19, A20 and A29 are most concentrated in seeds at, or shortly after, anthesis and their abundance declines rapidly with development, concomitant with the sharp increase in GA1 and GA3 content. Application of GA1 or GA3 to the leaf subtending an emasculated flower stimulated parthenocarpic fruit development. Measurement of the GA content of the pods at 4 d after anthesis indicated that only 0.002–0.5% of the applied GA was transported to the fruit, depending on dose. There was a linear relationship between GA1 content and pod weight up to about 2 ng · (g FW)−1, whereas no such correlation existed for GA3 content. The concentration of endogenous GA1 in pods from pollinated ovaries is just sufficient to give the maximum growth response. It is concluded that GA1, but not GA3, controls pod growth in pea; GA3 may be involved in early seed development. The distribution of GAs within the seeds at 4 d post anthesis was also investigated. Most of the GA1, GA8, GA19, GA20 and GA29 was present in the testa, whereas GA3 was distributed equally between testa and endosperm and GA4 was localised mainly in the endosperm. Of the GAs analysed, only GA3 and GA20 were detected in the embryo. Metabolism experiments with intact tissues and cell-free fractions indicated compartmentation of GA biosynthesis within the seed. Using 14C-labelled GA12, GA9, 2,3-didehydroGA9 and GA20 as substrates, the testa was shown to contain 13-hydroxylase and 20-oxidase activities, the endosperm, 3β-hydroxylase and 20-oxidase activities. Both tissues also produced 16,17-dihydrodiols. However, GA1 and GA3 were not obtained as products and it is unlikely that they are formed via the early 13-hydroxylation pathway. [14C]gibberellin A12, applied to the inside surface of pods in situ, was metabolised to GA19, GA20, GA29, GA29-catabolite, GA81 and GA97, but GA1 was not detected. Gibberellin A20 was metabolised by this tissue to GA29 and GA29-catabolite. Received: 23 July 1996 / Accepted: 2 September 1996  相似文献   

14.
The induction of parthenocarpic fruit set was investigated using the apple cvs. Golden Delicious and Jonagold. The gibberellins GA3, GA4, GA5 and GA7 and the synthetic phenylurea-type cytokinin CPPU (N-(2-chloro-4-pyridyl)-N-phenylurea), were applied alone and in combination to unpollinated flowers at the end of petal fall. Gibberellins induced only a marginal final set of parthenocarpic fruits. CPPU sprays were more effective, particularly in the first year. When applied in combination, CPPU and gibberellins had a positive synergistic effect on parthenocarpic fruit set and fruit size, but a negative effect on flower induction the next year. After CPPU + GA sprays, percent fruit set was similar, or greater, compared to natural pollinated trees. The parthenocarpic fruits induced by CPPU + GA had an increased length to diameter ratio. CPPU stimulated, and GA4 and GA7 reduced, the russeting of the parthenocarpic fruits. The internal quality of the fruits was hardly affected, but Ca-deficiency symptoms occurred more frequently in parthenocarpic fruits.  相似文献   

15.
Although fruit set and development are induced by applications of gibberellins, final fruit weight of gibberellin-induced parthenocarpic fruit is often less than that of pollinated fruit. We examined changes in the activities of sucrose-metabolizing enzymes and sugar accumulation in developing fruits of cultivated blueberry (Vaccinium ashei Reade) and their correlation with fruit growth upon pollination or exogenous applications of gibberellic acid (GA3). The objective was to determine if differences in fruit growth could be attributed to differences in enzyme activities and subsequent sugar accumulation in fruits. The fruit development period of GA3-treated fruits was 15 days longer than that of pollinated fruits. At maturity, GA3-treated fruit accumulated an average of 180 mg dry weight while pollinated fruit accumulated 390 mg dry weight. Dry weight accumulation in nonpollinated fruits was negligible and these fruits abscised by 45 days after bloom (DAB). The total carbon (C) cost (dry weight C + respiratory C) for fruit development was 109 and 244 mg C fruit-1 for GA3-treated and pollinated fruits, respectively. Hexose concentration increased to 100 mg (g fresh weight)-1 at ripening in both GA3-treated and pollinated fruits. Nonpollinated fruits reached a maximum hexose concentration at 45 DAB. Sucrose phosphate synthase (EC 2.4.1.14) and sucrose synthase (EC 2.4.1.13) activities reached a maximum of ≤5.0 μmol (g fresh weight)-1 h-1 in both GA3-treated and pollinated fruits. Soluble acid invertase (EC 3.2.1.26) activity increased to about 60 μmol (g fresh weight)-1 h-1 in both GA3-treated and pollinated fruits at ripening, while in nonpollinated fruits, a maximum soluble acid invertase activity of 0.12 μmol (g fresh weight)-1 h-1 was measured at 24 DAB. Insoluble acid invertase activity declined during the early stages of fruit growth and remained relatively low throughout fruit development. Neutral invertase activity was low throughout development, increasing to 5 μmol (g fresh weight)-1 h-1 at ripening in GA3-treated and pollinated fruits. Our studies demonstrate that blueberry fruit development does not appear to be limited by sucrose metabolizing enzyme activity and/or the ability to accumulate sugars in either GA3-treated or pollinated fruits.  相似文献   

16.
17.
The effects of applied gibberellins (GAs), GA1, GA3, GA4 and GA7 with a cytokinin, N-(2-chloro-4-pyridyl)-N′-phenylurea (CPPU) and indole-3-acetic acid (IAA) on fruit set, parthenogenesis induction and fruit expansion of a number of Rosaceae species were assessed. These included Japanese pear cv. ‘Akibae’ (self-compatible) and cv. ‘Iwate yamanashi’ (a seedless cultivar). Other Rosaceae species (Pyrus communis, Chaenomeles sinensis, Cydonia oblonga, and Malus pumila) were also investigated. GA4, GA7 and CPPU are very effective in inducing parthenocarpic fruit growth, whereas GA1, GA3 and IAA, have no ability to induce parthenogenesis in Japanese pear. GA4- and GA7-induced parthenocarpic fruit tended to be smaller in size, higher in flesh hardness, and showed advanced fruit ripening in comparison to pollinated fruit and to parthenocarpic fruit induced by CPPU. GA4- and GA7-induced parthenocarpic fruit also had an increased pedicel length and fruit shape index and also showed a slight protrusion of the calyx end. CPPU, GA4 and GA7 alone or combination with uniconazole were also active in inducing parthenogenesis in three other Rosaceae species, although final fruit set was extremely low. GA1 was essentially inactive in promoting fruit expansion unlike the other bioactive GAs, whose effectiveness in promoting fruit cell expansion was as follow: GA4 ≈ GA7 > GA3 > GA1.  相似文献   

18.
Satsuma (Citrus unshiu [Mak] Marc.) and Clementine (Citrus reticulata [Hort.] Ex. Tanaka, cv Oroval) are two species of seedless mandarins differing in their tendency to develop parthenocarpic fruits. Satsuma is a male-sterile cultivar that shows a high degree of natural parthenocarpy and a high fruit set. Seedless Clementine varieties are self-incompatible, and in the absence of cross-pollination show a very low ability to set fruit. The gibberellins (GAs) GA53, putative 17-OH-GA53, GA44, GA17, GA19, GA20, GA29, GA1, 3-epi-GA1, GA8, GA24, GA9, and GA4 have been identified from developing fruits of both species by full-scan combined gas chromatography-mass spectrometry. Using selected ion monitoring with [2H2]- and [13C]-labeled internal standards, the levels of GA53, GA44, GA19, GA20, GA1, GA8, GA4, and GA9 were determined in developing ovaries at anthesis and 7 days before and after anthesis, from both species. Except for GA8, levels of the 13-hydroxy-GAs were higher in Satsuma than in Clementine, and these differences were more prominent for developing young fruits. At petal fall, Satsuma had, on a nanograms per gram dry weight basis, higher levels of GA53 (10.4x), GA44 (13.9x), GA19 (3.0x), GA20 (11.2x), and GA1 (2.0x). By contrast, levels of GA8 were always higher in Clementine, whereas levels of GA4 did not differ greatly. Levels of GA9 were very low in both species. At petal fall, fruitlets of Satsuma and Clementine contained 65 and 13 picograms of GA1, respectively. At this time, the application of 25 micrograms of paclobutrazol to fruits increased fruit abscission in both varieties. This effect was reversed by the simultaneous applications of 1 microgram of GA3. GA3 alone improved the set in Clementine (13x), but had little influence on Satsuma. Thus, seedless fruits of the self-incompatible Clementine mandarin may not have adequate GA levels for fruit set. Collectively, these results suggest that endogenous GA content in developing ovaries is the limiting factor controlling the parthenocarpic development of the fruits.  相似文献   

19.
Watermelon(Citrullus lanatus) as non-climacteric fruit is domesticated from the ancestors with inedible fruits. We previously revealed that the abscisic acid(ABA) signaling pathway gene ClSnRK2.3 might infuence watermelon fruit ripening. However,the molecular mechanisms are unclear. Here,we found that the selective variation of ClSnRK2.3 resulted in lower promoter activity and gene expression level in cultivated watermelons than ancestors, which indicated ClSnRK2.3 might be a negative regulator ...  相似文献   

20.
Experiments were performed to monitor (1) uptake and translocation of foliar-applied microdroplets of14C hormones and (2) effects of multiple growth regulator sprays on foliar and fruit growth variables and photosynthate partitioning in Valencia orange trees (Citrus sinensis (L.) Osbeck). The uptake of14C-sucrose,14C-paclobutrazol (PP333), and14C-napthaleneacetic acid (NAA) in 6-month-old greenhouse-grown trees exceeded that of14C-abscisic acid (ABA) and14C-benzyladenine (BA) 48 h after microdroplet application.14C-sucrose transport from the application site was much greater than any other source, especially14C-BA. In a second study, 2-year-old Valencia orange trees were maintained under field conditions and were sprayed to foliar runoff (3 × /week for 3 weeks) with BA, NAA, ABA, PP333, and gibberellic acid (GA3) at 100 M during flowering and early fruit set. Select branches were then briefly exposed to14CO2 and harvested 24 h later. Both GA3 and BA sprays promoted foliar growth. BA also stimulated fruit growth, whereas GA3 sharply increased fruit dry weight while fruit number decreased. BA and GA3 enhanced14C assimilate export by the foliage to the developing fruit, and GA3 was especially active in promoting fruit sink intensity (14C/dry wt). The other compounds (NAA, ABA, PP333) restricted foliar and fruit growth. They also inhibited transport of14C assimilate from the leaves to the fruit. Results indicate that foliar-applied growth regulators can influence source-sink relations in citrus early in reproductive development by manipulating photoassimilate production and partitioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号