首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Microalgae have been widely considered for the production of valuable products, such as lipid-based biofuel, value-added pigments, and anti-photo aging reagents. More recently, microalgae have been considered an alternative host for recombinant protein production because of their economic benefits and ecofriendly characteristics. Additionally, many microalgal strains identified to date are generally recognized as safe (GRAS); therefore, the use of microalgae-based technology is promising. However, basic studies on the genetic engineering of microalgae are rare, despite their importance. Particularly, inducible promoter systems that can be applied for strain engineering or recombinant protein production are rarely studied; hence, a number of challenging issues remain unsolved. Therefore, in this study, we focused on the development of a convenient and compact-inducible promoter system that can be used in microalgae. Based on previous success with plant systems, we employed the alcohol-inducible AlcR-PalcA system, which originates from the filamentous fungus, Aspergillus nidulans. This system comprises only two components, a regulatory protein, AlcR, and an inducible promoter, PalcA. Therefore, construction and transformation of the gene cassettes can be easily performed. Ethanol-dependent gene expression was observed in the transformants with no significant growth retardation or inducer consumption observed in the cells cultivated under optimized conditions.  相似文献   

4.
The bioconversion of carbohydrates in the herbaceous bioenergy crop, switchgrass (Panicum virgatum L.), is limited by the associated lignins in the biomass. The cinnamyl alcohol dehydrogenase (CAD) gene encodes a key enzyme which catalyzes the last step of lignin monomer biosynthesis. Transgenic switchgrass plants were produced with a CAD RNAi gene construct under the control of the maize ubiquitin promoter. The transgenic lines showed reduced CAD expression levels, reduced enzyme activities, reduced lignin content, and altered lignin composition. The modification of lignin biosynthesis resulted in improved sugar release and forage digestibility. Significant increases of saccharification efficiency were obtained in most of the transgenic lines with or without acid pretreatment. A negative correlation between lignin content and sugar release was found among these transgenic switchgrass lines. The transgenic materials have the potential to allow for improved efficiency of cellulosic ethanol production.  相似文献   

5.
Since halophile Halomonas spp. can grow contamination free in seawater under unsterile and continuous conditions, it holds great promise for industrial biotechnology to produce low-cost chemicals in an economic way. Yet, metabolic engineering methods are urgently needed for Halomonas spp. It is commonly known that chromosomal expression is more stable yet weaker than plasmid one is. To overcome this challenge, a novel chromosomal expression method was developed for halophile Halomonas TD01 and its derivatives based on a strongly expressed porin gene as a site for external gene integration. The gene of interest was inserted downstream the porin gene, forming an artificial operon porin-inserted gene. This chromosome expression system was proven functional by some examples: First, chromosomal expression of heterologous polyhydroxybutyrate (PHB) synthase gene phaC Re from Ralstonia eutropha completely restored the PHB accumulation level in endogenous phaC knockout mutant of Halomonas TD01. The integrated phaC Re was expressed at the highest level when inserted at the locus of porin compared with insertions in other chromosome locations. Second, an inducible expression system was constructed in phaC-deleted Halomonas TD01 by integrating the lac repressor gene (lacI) into the porin site in the host chromosome. The native porin promoter was inserted with the key 21 bp DNA of lac operator (lacO) sequence to become an inducible promoter encoded in a plasmid. This inducible system allowed on-off switch of gene expression in Halomonas TD strains. Thus, the stable and strong chromosomal expression method in Halomonas TD spp. was established.  相似文献   

6.
Gene promoter(s) specialized in root tissues is an important component for crop biotechnology. In our current study, we report results of promoter analysis of the HPX1, a gene expressed predominantly in roots. The HPX1 promoter regions were predicted, linked to the gfp reporter gene, and transformed into rice. Promoter activities were analyzed in various organs and tissues of six independent transgenic HPX1:gfp plants using the fluorescent microscopy and q-RT-PCR methods. GFP fluorescence levels were high in root elongation regions but not in root apex and cap of the HPX1:gfp plants. Very low levels of GFP fluorescence were observed in anthers and leaves. Levels of promoter activities were 16- to 190-fold higher in roots than in leaves of the HPX1:gfp plants. The HPX1 promoter directs high levels of gene expression in root tissues producing GFP levels up to 0.39 % of the total soluble protein. Thus, the HPX1 promoter is predominantly active in the root elongation region during the vegetative stage of growth.  相似文献   

7.
8.
Chemically regulated gene expression in plants   总被引:16,自引:0,他引:16  
Chemically inducible systems that activate or inactivate gene expression have many potential applications in the determination of gene function and in plant biotechnology. The precise timing and control of gene expression are important aspects of chemically inducible systems. Several systems have been developed and used to analyze gene function, marker-free plant transformation, site-specific DNA excision, activation tagging, conditional genetic complementation, and restoration of male fertility. Chemicals that are used to regulate transgene expression include the antibiotic tetracycline, the steroids dexamethasone and estradiol, copper, ethanol, the inducer of pathogen-related proteins benzothiadiazol, herbicide safeners, and the insecticide methoxyfenozide. Systems that are suitable for field application are particularly useful for experimental systems and have potential applications in biotechnology.  相似文献   

9.
Epigenetic switches encode their state information either locally, often via covalent modification of DNA or histones, or globally, usually in the level of a trans-regulatory factor. Here we examine how the regulation of cis-encoded epigenetic switches controls the extent of heterogeneity in gene expression, which is ultimately tied to phenotypic diversity in a population. We show that two copies of the FLO11 locus in Saccharomyces cerevisiae switch between a silenced and competent promoter state in a random and independent fashion, implying that the molecular event leading to the transition occurs locally at the promoter, in cis. We further quantify the effect of trans regulators both on the slow epigenetic transitions between a silenced and competent promoter state and on the fast promoter transitions associated with conventional regulation of FLO11. We find different classes of regulators affect epigenetic, conventional, or both forms of regulation. Distributing kinetic control of epigenetic silencing and conventional gene activation offers cells flexibility in shaping the distribution of gene expression and phenotype within a population.  相似文献   

10.
Summary Purrtins can be utilized as a secondary nitrogen source by Neurospora crassa during conditions of nitrogen limitation. The expression of purine catabolic enzymes is governed by the nitrogen regulatory circuit and requires induction by uric acid. The major positive-acting nitrogen regulatory gene, nit-2, turns on the expression of the purine catabolic enzymes, which may also be subject to negative regulation by a second control gene, nmr. We have cloned alc, the structural gene which encodes allantoicase, an inducible enzyme of the purine degradative pathway. The identity of the alc clone was confirmed by restriction fragment length polymorphism analysis and by repeat-induced mutation. The alc gene is transcribed to give a single messenger RNA, approximately 1.2 kb in length. The negative-acting nmr gene affects the expression of alc in the expected manner. Both the nit-2 and the nmr control genes affect alc mRNA levels and allantoicase enzyme activity in both the induced and nitrogen-repressed conditions.  相似文献   

11.
A number of essential genes have been identified in mycobacteria, but methods to study these genes have not been developed, leaving us unable to determine the function or biology of the genes. We investigated the use of a tetracycline-inducible expression system in Mycobacterium tuberculosis and Mycobacterium smegmatis. Using a reporter gene which encodes an unstable variant of GFP, we showed that tetracycline-inducible expression occurred in M. smegmatis and that expression levels were titratable to some extent by varying the concentration of tetracycline. The removal of tetracycline led to cessation of GFP expression, and we showed that this was a controllable on/off switch for fluorescence upon addition and removal of the antibiotic inducer. The system also functioned in M. tuberculosis, giving inducible expression of the reporter gene. We used homologous recombination to construct a strain of M. tuberculosis that expressed the only copy of the tryptophan biosynthetic enzyme, TrpD, from the tetracycline-inducible promoter. This strain was conditionally auxotrophic, showing auxotrophy only in the absence of tetracycline, confirming that trpD was tightly controlled by the foreign promoter. This is the first demonstration of the use of an inducible promoter to generate a conditional auxotroph of M. tuberculosis. The ability to tightly regulate genes now gives us the possibility to define the functions of essential genes by switching them off under defined conditions and paves the way for in vivo studies.  相似文献   

12.
13.
14.
Designing the expression cassettes with desired properties remains the most important consideration of gene engineering technology. One of the challenges for predictive gene expression is the modeling of synthetic gene switches to regulate one or more target genes which would directly respond to specific chemical, environmental, and physiological stimuli. Assessment of natural promoter, high-throughput sequencing, and modern biotech inventory aided in deciphering the structure of cis elements and molding the native cis elements into desired synthetic promoter. Synthetic promoters which are molded by rearrangement of cis motifs can greatly benefit plant biotechnology applications. This review gives a glimpse of the manual in vivo gene regulation through synthetic promoters. It summarizes the integrative design strategy of synthetic promoters and enumerates five approaches for constructing synthetic promoters. Insights into the pattern of cis regulatory elements in the pursuit of desirable “gene switches” to date has also been reevaluated. Joint strategies of bioinformatics modeling and randomized biochemical synthesis are addressed in an effort to construct synthetic promoters for intricate gene regulation.  相似文献   

15.
Comparative results of the studied effectiveness of two new promoters, pro-SmAMP1 and pro- SmAMP2, from chickweed (Stellaria media L.) in various types of cultivated plants with transient expression and in stable transformants are given. The effectiveness of the promoters was evaluated through the expression of the reporter uidA gene by measuring the activity of its GUS protein product. It was found that the deletion variant (442 bp) of the pro-SmAMP1 promoter was significantly stronger in plants of Nicotiana benthamiana (Domin) with transient expression than the deletion variant (455 bp) of the pro-SmAMP2 promoter. The effectiveness of these short deletion variants of both promoters under transient expression in the plants of rapeseed (Brassica napus L.) and sugar beet (Beta vulgaris L.) was comparable with that of the viral CaMV35S promoter. The functionality of the pro-SmAMP2 promoter in the calluses of common flax plants (Linum usitatissimum L.) was shown. In the homozygous lines of transgenic tobacco plants (Nicotiana tabacum L.), all deletion variants of the pro-SmAMP1 promoter and the shortest version of pro-SmAMP2 were twice as strong as the CaMV35S viral promoter. The effectiveness of short variants of both promoters from the chickweed in controlling the gene encoding neomycin phosphotransferase II in the transgenic plants of tobacco and arabidopsis (Arabidopsis thaliana L.) growing on media supplemented with recommended concentrations of kanamycin are not inferior to the duplicated 2хCaMV35S viral promoter. The obtained experimental data show that short deletion variants of pro-SmAMP1 (442 bp) and pro-SmAMP2 (455 bp) promoters may be recommended as strong constitutive promoters for use in the biotechnology of crop plants.  相似文献   

16.
A new inducible yeast expression vector, pXS7, was constructed by using the promoter and terminator sequences from the Saccharomyces cerevisiae SOR1 gene, which codes for the sorbitol dehydrogenase protein. We cloned the coding sequence of the Saccharomyces YEF3 gene in this vector and demonstrated an increase in YEF3 protein levels when cells were grown in the presence of the sugar sorbitol.  相似文献   

17.
The ability to regulate spatial and temporal expression of genes is a useful tool in biotechnology as well as studies of functional genomics. Such regulation can provide information concerning the function of a gene in a developmental context while avoiding potential harmful effects due to constitutive overexpression of the gene. A GUS gene construct that uses the ecdysone receptor-based chemically inducible system and several different tissue-specific promoters was introduced into the model plant Arabidopsis thaliana and into the crop plant Brassica juncea. Here we describe the results of studies showing that this system provides both temporal and spatial control of transgene expression, and confirm that this system is useful for tissue-specific and temporal induction of gene expression in A. thaliana and B. juncea.  相似文献   

18.
MethodsParticle bombardment was used to transform wheat with TaALMT1, the Al3+ resistance gene from wheat, using the maize ubiquitin promoter to drive expression. TaALMT1 expression, malate efflux and Al3+ resistance were measured in the T1 and T2 lines and compared with the parental line and an Al3+-resistant reference genotype, ET8.ConclusionsThe Al3+ resistance of wheat was increased by enhancing TaALMT1 expression with biotechnology. This is the first report of a major food crop being stably transformed for greater Al3+ resistance. Transgenic strategies provide options for increasing food supply on acid soils.  相似文献   

19.
20.
Calmodulin (CaM) is a small, eukaryotic protein that reversibly binds Ca2+. Study of CaM localization in genetically tractable organisms has yielded many insights into CaM function. Here, we described the dynamic localization of Aspergillus nidulans CaM (AnCaM) in live-cells by using recombination strains with homologous, single cross-over insertions at the target gene which placed the GFP fused copy under the inducible alcA promoter and the RFP–CaM integration under the native cam promoter. We found that the localization of CaM fusion was quite dynamic throughout the hypha and was concentrated to the active growing sites during germination, hyphal growth, cytokinesis and conidiation. The depletion of CaM by alcA promoter repression induced the explicit abnormalities of germlings with the swollen germ tubes. In addition, the position of highly concentrated GFP–CaM in the extreme apex seemed to determine the hyphal orientation. These data collectively suggest that CaM is constantly required for new hyphal growth. In contrast to this constant accumulation at the apex, GFP–CaM was only transiently localized at septum sites during cytokinesis. Notably, depletion of CaM caused the defect of septation with a completely blocked septum formation indicating that the transient CaM accumulation at the septum site is essential for septation. Moreover, the normal localization of CaM at a hyphal tip required the presence of the functional actin cytoskeleton and the motor protein KipA, which is indispensable for positioning Spitzenkörper. This is the first report of CaM localization and function in live-cells by the site-specific homologous integration in filamentous fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号