首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
以TRAIL为靶点的肿瘤治疗研究进展   总被引:4,自引:0,他引:4  
林海  侯敢  黄迪南 《生命科学》2007,19(5):492-495
肿瘤坏死因子相关凋亡配体(tumor necrosis factor-related apoptosis-inducing ligand,TRAIL)是肿瘤坏死因子(tumor necrosis factor,TNF)超家族成员。TRAIL与其受体结合后启动凋亡信号转导,选择性地诱导肿瘤细胞凋亡,而对正常组织细胞没有明显的伤害,而且一些药物和细胞因子可协同TRAIL诱导肿瘤细胞凋亡。本文就TRAIL及其受体、TRAIL诱导凋亡的机制以及影响凋亡的因素和途径,以TRAIL为靶点的肿瘤治疗的研究现状作一综述。  相似文献   

2.
郝林  史振铎  韩从辉 《生物磁学》2009,(20):3983-3985
肿瘤坏死因子相关凋亡诱导配体(TRAIL)是肿瘤坏死因子(TNF)超家族成员之一,能选择性的诱导肿瘤细胞、转化细胞凋亡,而对正常组织无毒性,有望成为肿瘤治疗的新方法,备受人们的关注。本文从TRAIL的结构、受体、诱导肿瘤细胞凋亡机制及在肿瘤治疗中的应用等方面作了介绍,以期为TRAIL临床应用提供参考。  相似文献   

3.
肿瘤坏死因子相关凋亡诱导配体(TRAIL)可激活胱天蛋白酶(caspase)家族蛋白系列级联反应,最终诱导细胞凋亡. TRAIL选择性地诱导肿瘤细胞凋亡而不损伤正常细胞,使其成为治疗癌症的潜在药物靶点. 目前已知,细胞型FADD样白介素-1-β转换酶抑制蛋白(c FLIP)和凋亡抑制蛋白(IAPs)是肿瘤细胞对TRAIL耐受的主要原因.胱天蛋白酶原-8(procaspase-8)是TRAIL凋亡信号途径中的凋亡起始蛋白. 然而近年发现,在某些肿瘤细胞中procaspase-8功能失调常会阻碍凋亡信号传导,使肿瘤细胞对TRAIL诱导的凋亡产生耐受. 本文就其机制进行概述.  相似文献   

4.
肿瘤细胞抗TRAIL凋亡诱导的分子机制   总被引:1,自引:0,他引:1  
肿瘤坏死因子相关的凋亡诱导配体(tumornecrosisfactor-relatedapoptosis-inducingligand,TRAIL)是肿瘤坏死因子(tumornecrosisfactor,TNF)超家族的成员之一,它能选择性诱导肿瘤细胞凋亡,对大多数正常细胞无杀伤作用。研究表明,某些恶性肿瘤抵抗TRAIL诱导的凋亡,且TRAIL重复作用使一些TRAIL敏感的细胞产生获得性抗性,这是TRAIL应用于肿瘤治疗的重大障碍。现对与TRAIL凋亡诱导通路直接相关的抗TRAIL机制及由Akt等途径介导的抗性分子机制进行综述。  相似文献   

5.
肿瘤坏死因子相关的凋亡诱导配体(tumor necrosis factor related apoptosis-inducingligand,TRAIL)是肿瘤坏死因子超家族成员之一,由于它能特异性诱导肿瘤细胞的凋亡而对正常细胞无毒性,因此具有被开发成治疗肿瘤的蛋白质药物的可能性。目前已经有5个与TRAIL相关的受体被鉴定出,其中,TRAILR1和TRAILR2是与诱导细胞凋亡最直接相关的受体,也是最具有前景的药物设计靶点。本文基于TRAIL蛋白及其受体复合物的三维结构分析,阐述TRAIL诱导肿瘤细胞凋亡的机制以及影响凋亡的因素和途径,对以TRAIL为靶点的肿瘤治疗的研究现状作全面综述,为探索肿瘤生物治疗的新方法和途径提供帮助。  相似文献   

6.
肿瘤坏死因子家族新成员——TRAIL   总被引:10,自引:0,他引:10  
肿瘤坏死因子相关的凋亡诱导配体(TRAIL)或称凋亡素2配体(Apo2 ligand, Apo-2L), 是TNF家族的新成员.它是从表达序列标签库(expressed sequenced tag, EST)中寻找TNF的同源分子时发现的.TRAIL是一种分子质量为32.5 ku的Ⅱ型跨膜糖蛋白, 活性形式呈同源三聚体.TRAIL和可溶性的TRAIL强烈诱导肿瘤细胞株凋亡.新近发现的TRAIL受体DR4和DR5及TRID说明了TRAIL与TNF和Fas/Apo-1配体的作用途径是不同的.随着对TRAIL的受体及作用机理研究的深入, TRAIL很可能成为新一代抗肿瘤制剂.  相似文献   

7.
肿瘤坏死因子相关凋亡诱导配体(tumor necrosis factor-related apoptosis-inducing ligand,TRAIL)能选择性地诱导肿瘤细胞凋亡,因此作为抗肿瘤药物备受瞩目,现已进入II期临床试验,尽管有报道称部分肿瘤细胞对TRAIL耐药,导致治疗效果不如预期,但TRAIL用于肿瘤治疗的前景依旧被人们看好。通过对TRAIL耐药机理的研究将有助于寻找逆转肿瘤细胞耐药的靶点,并通过联合用药来调节相关的信号分子以获得更好的抗肿瘤效应。该文将介绍TRAIL及其介导的细胞凋亡通路并总结近年来TRAIL耐药机理及逆转其耐药方面的研究进展。  相似文献   

8.
肿瘤坏死因子相关凋亡诱导配体(TNF-related apoptosis inducing ligand, TRAIL) 是TNF超家族中的成员,能够广泛诱导肿瘤细胞凋亡,对正常细胞无明显毒副作用. TRAIL已成为肿瘤治疗领域的研究热点.人脑胶质瘤是神经系统肿瘤中最常见类型, 占颅内肿瘤50%~60%,5年存活率为20%~30%. 本研究探讨可溶性TRAIL蛋白对人脑胶质瘤细胞(U251)的抑制作用. 由大肠杆菌表达系统表达的TRAIL多为包涵体,为获得可溶性的蛋白,将hTRAIL95~281功能区基因片段插入到pHisSUMO表达载体,经IPTG低温诱导表达,Ni-NTA Agarose纯化后获得可溶性SUMO-hTRAIL,经SUMO ProteaseⅠ切去SUMO融合标签后获得成熟可溶hTRAIL蛋白. 以U251细胞为靶细胞,通过MTT法检测TRAIL对肿瘤细胞的抑制作用.结果证明,TRAIL对U251细胞的抑制呈剂量依赖关系,最大抑制率为53.9%.流式细胞仪检测TRAIL诱导U251细胞凋亡实验中,对照组细胞存活率为92.2±0.8%,实验组细胞存活率为35.5±1.2%,证明重组蛋白具有生物学活性,并在体外能明显诱导U251肿瘤细胞发生死亡.本研究结果为TRAIL蛋白在临床上应用于肿瘤治疗奠定了基础.  相似文献   

9.
肿瘤坏死因子相关凋亡诱导配体(tumor necrosis factor-related apoptosis inducing li-gand,TRAIL)是唯一能诱导癌细胞凋亡而对机体正常组织无明显损伤的内源性细胞因子,因而被认为是一种极具前景的抗癌药物。然而目前研究发现,许多恶性肿瘤细胞对TRAIL具有耐药性,使TRAIL在临床应用中遭遇瓶颈。越来越多的证据表明,一些关键信号通路可能与TRAIL耐药有关,且利用靶向基因治疗策略以及借助某些天然药物或小分子抑制剂能够部分恢复癌细胞对TRAIL的敏感性。该文主要描述了肿瘤细胞对TRAIL的耐药机制,并对如何有效克服和逆转TRAIL耐药的策略作了简要概括。  相似文献   

10.
TNF相关的凋亡诱导配体(TNF-related apoptosis-induicing ligand,TRAIL),属于TNF超家族成员,与Apo-1L(FasL)有较高的同源性,又称为Apo-2L。TRAIL有两类受体,一类是死亡受体,如DR4和DR5,TRAIL与DR4或DR5结合可以诱导细胞凋亡;另一类是“诱骗”受体,如DcR1、DcR2,可以竞争性地与TRAIL结合,逃避或抑制TRAIL诱导的正常细胞损伤。TRAIL及其受体的发现为肿瘤的治疗提供了一个新的方向。  相似文献   

11.
The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL/APO2L) is a member of the TNF gene superfamily that induces apoptosis upon engagement of cognate death receptors. While TRAIL is relatively non-toxic to normal cells, it selectively induces apoptosis in many transformed cells. Nevertheless, breast tumor cells are particularly resistant to the effects of TRAIL. Here we report that, in combination with the cyclin-dependent kinase inhibitor roscovitine, exposure to TRAIL induced marked apoptosis in the majority of TRAIL-resistant breast cancer cell lines examined. Roscovitine facilitated TRAIL death-inducing signaling complex formation and the activation of caspase-8. The cFLIP(L) and cFLIP(S) FLICE-inhibitory proteins were significantly down-regulated following exposure to roscovitine and, indeed, the knockdown of cFLIP isoforms by siRNA sensitized breast tumor cells to TRAIL-induced apoptosis. In addition, we demonstrate that roscovitine strongly suppressed Mcl-1 expression and up-regulated E2F1 protein levels in breast tumor cells. Significantly, the silencing of Mcl-1 by siRNA sensitized breast tumor cells to TRAIL-induced apoptosis. Furthermore, the knockdown of E2F1 protein by siRNA reduced the sensitizing effect of roscovitine in TRAIL-induced apoptosis. In summary, our results reveal a pleitropic mechanism for the pro-apoptotic influence of roscovitine, highlighting its potential as an antitumor agent in breast cancer in combination with TRAIL.  相似文献   

12.
Tumor necrosis factor related apoptosis-inducing ligand (TRAIL) induced apoptosis specifically in tumor cells. However, with approximately half of all known tumor lines being resistant to TRAIL, the identification of TRAIL sensitizers and their mechanism of action become critical to broadly use TRAIL as a therapeutic agent. In this study, we explored whether c-Met protein contributes to TRAIL sensitivity. We found a direct correlation between the c-Met expression level and TRAIL resistance. We show that the knock down c-Met protein, but not inhibition, sensitized brain tumor cells to TRAIL-mediated apoptosis by interrupting the interaction between c-Met and TRAIL cognate death receptor (DR) 5. This interruption greatly induces the formation of death-inducing signaling complex (DISC) and subsequent downstream apoptosis signaling. Using intracranially implanted brain tumor cells and stem cell (SC) lines engineered with different combinations of fluorescent and bioluminescent proteins, we show that SC expressing a potent and secretable TRAIL (S-TRAIL) have a significant anti-tumor effect in mice bearing c-Met knock down of TRAIL-resistant brain tumors. To our best knowledge, this is the first study that demonstrates c-Met contributes to TRAIL sensitivity of brain tumor cells and has implications for developing effective therapies for brain tumor patients.  相似文献   

13.
TRAIL (Apo2 ligand) is a member of the tumor necrosis factor (TNF) family of cytokines that induces apoptosis. Because TRAIL preferentially kills tumor cells, sparing normal tissues, interest has emerged in applying this biological factor for cancer therapy in humans. However, not all tumors respond to TRAIL, raising questions about resistance mechanisms. We demonstrate here that a variety of natural and synthetic ligands of peroxisome proliferator-activated receptor-gamma (PPAR gamma) sensitize tumor but not normal cells to apoptosis induction by TRAIL. PPAR gamma ligands selectively reduce levels of FLIP, an apoptosis-suppressing protein that blocks early events in TRAIL/TNF family death receptor signaling. Both PPAR gamma agonists and antagonists displayed these effects, regardless of the levels of PPAR gamma expression and even in the presence of a PPAR gamma dominant-negative mutant, indicating a PPAR gamma-independent mechanism. Reductions in FLIP and sensitization to TRAIL-induced apoptosis were also not correlated with NF-kappa B, further suggesting a novel mechanism. PPAR gamma modulators induced ubiquitination and proteasome-dependent degradation of FLIP, without concomitant reductions in FLIP mRNA. The findings suggest the existence of a pharmacologically regulated novel target of this class of drugs that controls FLIP protein turnover, and raise the possibility of combining PPAR gamma modulators with TRAIL for more efficacious elimination of tumor cells through apoptosis.  相似文献   

14.
TRAIL (Apo2L), a cytokine from the family of tumor necrosis factors (TNF), causes apoptosis in various types of tumor cells but is not toxic for normal cells. Recombinant TRAIL obtained using an original method stimulates the release of cytochrome c from mitochondria into the cytoplasm and apoptosis in HeLa carcinoma cells. Expression of oncoprotein Bcl-2 in these cells blocks both processes. The microtubule inhibitors taxol, nocodazole, and colcemid, as well as an inhibitor of actin microfilaments cytochalasin D, enhance the action of TRAIL and allow it to overcome protection caused by overexpression of Bcl-2. This effect is not associated with enhancement of early steps of TRAIL-dependent apoptosis leading to activation of caspase-8 and Bid protein. The inactivation of Bcl-2 also does not define the effect of cytoskeleton inhibitors. It is supposed that destruction of cytoskeleton alters the mechanism of the TRAIL- (or TNF)-dependent cytochrome c release from mitochondria by making it resistant to Bcl-2. The combined use of cytoskeleton inhibitors, which are antitumor drugs, with the recombinant TRAIL preparations may be efficient in therapy of tumors resistant to traditional chemotherapy.  相似文献   

15.
TRAIL ligand induces selectively apoptosis in tumor cells by binding to two death receptors (DR4 and DR5) and holds promise as a potential therapeutic agent against cancer. While it has been known for long time that TRAIL receptors are commonly expressed in wide variety of normal tissues, it is not well understood why TRAIL kills tumor cells but leaves normal cells unharmed. The prototypic oncogene c-Myc promotes the cell cycle and simultaneously primes activation of the Bcl-2 family controlled mitochondria apoptosis pathway. A striking reflection of the c-Myc-dependent apoptotic sensitization is the dramatic c-Myc-induced vulnerability of cells to TRAIL and other death receptor ligands. Here we summarize the recent findings regarding the death mechanisms of TRAIL/TRAIL receptor system and the connection of c-Myc to the mitochondrial apoptosis pathway, focusing on our work that couples c-Myc via Bak to the TRAIL death receptor pathway. Finally, we present a mitochondria-priming model to explain how c-Myc-Bak interaction amplifies the TRAIL-induced caspase 8-Bid pathway to induce fullblown apoptosis. We discuss the implications of these findings for understanding the selective cytotoxicity of TRAIL and for the therapeutic exploitation of the death receptor pathway.  相似文献   

16.
TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is a cytokine that preferentially induces apoptosis in tumor cells compared with normal cells through two receptors (DR4 and DR5). Somatic mutations in these receptors have been found in different kinds of cancer; however, it is poorly understood how the mutations affect signaling. We found that point mutations (L334F, E326K, E338K, and K386N) that were identified in human tumors result in the DR5 receptor losing its ability to form a functional death-inducing signaling complex and induce apoptosis. The mutant receptors also have a "dominant negative" effect whereby they inhibit the ability of TRAIL to induce apoptosis through functional DR4 receptors. This dominant negative mechanism is achieved through competition for TRAIL binding as shown by experiments where the ability of the mutant DR5 receptor to bind with the ligand was abolished, thus restoring TRAIL signaling through DR4. The inhibitory effect on signaling through the wild-type DR4 protein can be overcome if the inhibitory mechanism is bypassed by using a DR4-agonistic antibody that is not subject to this competition. This study provides a molecular basis for the use of specific therapeutic agonists of TRAIL receptors in people whose tumors harbor somatic DR5 mutations.  相似文献   

17.
A new member of the TNF family, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), has been shown to induce apoptosis. However, the mechanism for TRAIL-induced apoptosis remains to be clarified. SDS-PAGE and Western blot analysis showed that cleavage of Bid was induced by a 1-h incubation of BJAB cells with TRAIL and was blocked by a caspase-8 inhibitor. Flow cytometry demonstrated that loss of mitochondrial membrane potential in BJAB cells began about 1.5 h after the treatment with TRAIL and was apparent at 2 h in comparison with the control. DNA ladder formation, which is characteristic for apoptosis, in the cells treated with TRAIL was detected at 2 h and observed most effectively at 3 h. The time course study suggests that TRAIL causes cleavage of Bid via activation of caspase-8, subsequently the loss of mitochondrial membrane potential, resulting in apoptosis in BJAB cells.  相似文献   

18.
The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L) offers promising therapeutic potential based on its ability to induce apoptosis in various cancer cell lines without obvious adverse effect to normal cells. However, the mechanism of the differential sensitivity towards TRAIL-induced apoptosis remains unclear. Here, we demonstrate that caveolin-1 directly regulated TRAIL-induced apoptosis in HepG2 cells. ShRNA-mediated caveolin knockdown sensitized TRAIL-induced apoptosis and disruption of caveolae structure by the cholesterol-extracting reagent, methyl-β-cyclodextrin (MCD), enhanced TRAIL-induced apoptosis. Over-expression of caveolin-1 partially blocked TRAIL-induced apoptosis. The engagement of TRAIL with its receptor DR4 reduced the localization of DR4 in caveolae and resulted in its internalization. Blockade of caveolae-mediated internalization of DR4 by filipin III effectively enhanced TRAIL-induced apoptosis. Collectively, our results reveal a new mechanism by which caveolin-1 negatively regulates TRAIL-induced apoptosis in human hepatocarcinoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号