首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
病毒性疾病的日益频繁暴发严重危害全球人类健康和经济发展.病毒感染的一个共同特征是重塑宿主细胞的膜结构和细胞骨架结构,形成用于病毒基因组复制的特化亚细胞结构,称为病毒工厂.不同的病毒可能会挟持不同的宿主细胞器进行膜修饰形成形态各异的复制工厂,包括病毒质体、小球体、双膜囊泡、管状体和细胞核病毒工厂.三种细胞骨架微丝、微管、中间丝形态在病毒复制过程中也会发生剧烈重塑,形成笼状结构包裹病毒工厂,包括肌动蛋白环、微管笼和中间丝笼.本文系统描述了病毒复制阶段病毒工厂的形成过程及细胞骨架组分和膜组分的形态学变化,重点阐述了三种细胞骨架及其相关蛋白在病毒工厂建立过程中的物质运输、物理支撑、和生化调控功能,简要介绍了相关研究技术手段,并讨论了病毒感染背景下病毒组分-细胞内膜-细胞骨架三者相互作用的重要性和未来研究方向.  相似文献   

2.
细胞骨架是细胞内由蛋白质万分组成的网架状结构,在细胞多种生命活动中起重要作用威奥综合征蛋白(WASP)家族为近年来发现的参与细胞信号传递和微丝骨架运动的中介蛋白,在促进细胞信号传递与微丝骨架运动而诱使细胞变形,趋化,形成伪足状突起结构中起到至关重要的作用。本文主要综述WASP近年来的研究进展及在介导T细胞信号级联及微丝骨架运动中的作用。  相似文献   

3.
细胞的骨架系统   总被引:4,自引:0,他引:4  
细胞骨架是一类复杂的蛋白质纤维结构,广泛地存在于动物细胞、植物细胞甚至一些原生动物与酵母中。细胞骨架按分布区域可分为胞质骨架和细胞核骨架,胞质骨架又具有三种类型:微管、微丝和中等纤维.胞质骨架和核骨架以及三种胞质骨架之间的结构、性质和功能上是有所区别的,但另一方面它们又协调地参予细胞的一系列生理活动,共同组成了细胞的骨架系统。六十年代初,波特(K·Porter)等第一次用电镜证明了细胞质中骨架结构的多样性,他们发现几乎每一个真核细胞的胞质中都存在三种类型的骨架结构,即微管、微丝和中等纤维。之后,对它们的结构、性质和功能进行了深入的研究。七十年代以来,在细胞核中又发现了一个形态类似于胞质骨架、蛋白质性质的网架结构——细胞核骨架(简称核骨架)对它可能的作用也有了初步的认识,这些发现丰富了骨架系统的内容。现在,已经证实胞质骨架和核骨架在结构与功能上是密切联系的,两者构成了统一的细胞骨架体系,对细胞生长、运动及细胞分化等过程起着重要的作用。  相似文献   

4.
采用激光共聚焦显微术研究微管微丝交联因子(MACF1)与成骨样细胞(MD63及MC3T3)微丝/微管骨架、黏着斑之间的相互关系.结果表明,MACF1不连续地分布于微管纤维上,与微丝骨架部分共定位于胞质中,在很多的成骨细胞中可见MACF1分布于骨架相关的粘着斑处:细胞松弛素B影响了MACF1在成骨细胞中的分布,并有使其向细胞核周围及核内转位的趋势.秋水仙素对MACF1的分布无明显的影响.转染了siRNA—MACFl的MG.63细胞微丝骨架纤维分布不连续、微管骨架纤维分布紊乱.这些结果提示MACF1不仅起交联微丝及微管细胞骨架的作用.而且还可稳定细胞骨架:成骨细胞MACF1的分布更依赖于微丝骨架的完整性.  相似文献   

5.
细胞骨架是由微丝、微管及中间纤维组成的蛋白质纤维网络体系.三种骨架纤维具有不同的形态、结构和功能特征,它们在细胞中彼此联系、互相依赖,共同构成完整的细胞骨架系统,在细胞的各项生命活动中起着重要的作用.认识与研究细胞骨架的这三种纤维之间存在的相互联系,揭示它们作用的分子机制,对全面、科学的认识细胞骨架系统在细胞中起所的作用以及对于科学研究都有着重要的意义.  相似文献   

6.
SINDBIS病毒对宿主细胞基因表达的影响   总被引:1,自引:1,他引:1  
Sindbis病毒(SBV)的感染能迅速地抑制宿主细胞的基因表达(mRNA合成与蛋白质合成),但细胞rRNA的合成水平与正常细胞接近.同时SBV还诱导产生一种细胞特异的核基质结合蛋白P105.用放线菌素D处理细胞,导致感染细胞中病毒结构蛋白的合成量及有感染力的子代病毒产量明显下降.实验结果不仅显示了SBV对宿主细胞基因表达的复杂调控关系,而且还表明SBV的非结构蛋白nsP2和衣壳蛋白C可能直接参与这一过程.  相似文献   

7.
从以上叙述的资料中可以看出,近年来在植物微管蛋白的分离及其化学性质、微管的组织中心、微管的异质性、微丝的分布,以及微管和微丝骨架的功能及基因调节等方面的研究取得不少新的进展;特别是从植物中直接分离微管蛋白取得成功、以及微管蛋白异型、微管冷稳定性与植物抗寒性的关系及微丝分布广泛性等的发现,对植物细胞骨架的进一步研究具有重要意义。  相似文献   

8.
目的探讨黏着斑激酶(focal adhesion kinase,FAK)在胃癌细胞骨架结构及形态结构维持中的作用。方法利用靶向FAK的siRNA质粒,转染胃癌SGC-7901细胞,用罗丹明标记的鬼笔环肽及β-tubulin特异性抗体检测细胞骨架微丝及微管蛋白表达;考马斯亮蓝染液对细胞进行染色,观察细胞整体形态结构;环境扫描电子显微镜观察细胞表面结构。结果沉默FAK引起细胞质、细胞伪足及微绒毛等运动相关结构中F-actin解聚。随着沉默时间增长,围绕着细胞核,在细胞质中呈放射状的微管骨架发生解聚,且这种解聚现象呈时间依赖性。FAK沉默还使细胞由梭形、多边形变为圆形,发生脱壁;细胞微绒毛及伪足结构受损,细胞表面趋于光滑。结论 FAK对维持胃癌细胞微丝、微管的分布及癌细胞伪足、微绒毛等恶性形态学特征具有重要作用。  相似文献   

9.
应用直接荧光和免疫荧光标记显示,腹毛目纤毛虫华美游仆虫(Euplotes elegans)细胞微管胞器由口围带、波动膜、额腹横棘毛、缘棘毛、尾棘毛、背触毛等纤毛器微管以及纤毛器基部附属微管和非纤毛区皮层微管骨架组成.其中,口围带基部含有小膜托架、小膜附属微管,波动膜基部含有波动膜托架,额腹横棘毛基部含有前纵微管束、后纵微管束、横微管束或放射微管柬,左缘棘毛和尾棘毛基部微管束分化不明显,背纤毛基部含有攻瑰花状的基体周围骨架,这些微管结构与细胞背腹面皮层纵微管与横微管网一起组织成该类纤毛虫的主要皮层细胞骨架.结果表明,游仆虫皮层细胞骨架是以微管为主要成分构建而成的,并且其棘毛基部微管的组成具有与其他类纤毛虫不同的特征;游仆虫间期细胞及形态发生时期纤毛基体或纤毛原基中存在中心蛋白,其可能与纤毛基体结构的维持及基体发生过程中微管的组装有关.  相似文献   

10.
刘宁  刘建武 《植物学通报》2004,21(2):164-171
介绍了近年来蕨类植物游动精子运动器和细胞骨架的研究进展.游动精子由配子体精子器中的非运动细胞发育形成,其分化过程包括了运动器官和细胞骨架的合成和组装.精子发生过程中形成的运动器的各部分结构包括鞭毛、基体、多层结构及附属结构;基体是细胞中新形成的结构,在不同类群的蕨类植物中分别由双中心粒、分支生毛体和生毛体产生.鞭毛、基体和多层结构中的微管带形成了游动精子三个独特的微管列阵,由于微管蛋白的后修饰作用这些微管列阵十分稳定;centrin是运动器中的重要成分,但功能尚不清楚,可能和细胞骨架及运动器的构建有关.  相似文献   

11.
In our experiments, protein synthesis of host cells were inhibited quickly at the early stage of infection by Sindbis virus. Polysome and mRNA of host cell fell off from cytoskeletons, whereas virus RNA bound up. We also found it was via 3'-terminal that virus RNA bound with cytoskeleton. After studying on the virus nonstructural proteins, we found the synthesis and processing of virus protein in vitro were far slowly than in vivo, and most of proteins were premature. So, the cytoskeletons may play an important role there. After treated with colchicine and cytochalasin B, the microtubule and microfilament were destroyed. However, the synthesis and processing of nonstructural proteins of Sindbis virus didn't change much, while the structural proteins were inhibited largely. These results showed the differences of dependence of the synthesis of the two kinds of proteins on cytoskeletons. Microtubule and microfilament may be more important to the synthesis of structural proteins than to that of the nonstructural proteins.  相似文献   

12.
Infection of BHK cells by Sindbis virus leads to rapid inhibition of host cell protein synthesis and cytopathic effects (CPE). We have been studying these events to determine whether the expression of a specific viral gene is required and, in the present study, have focused our attention on the role of the structural proteins--the capsid protein and the two membrane glycoproteins. We tested a variety of Sindbis viruses and Sindbis virus replicons (virus particles containing an RNA that is self-replicating but with some or all of the viral structural protein genes deleted) for their abilities to inhibit host cell protein synthesis and cause CPE in infected BHK cells. Our results show that shutoff of host cell protein synthesis occurred in infected BHK cells when no viral structural proteins were synthesized and also under conditions in which the level of the viral subgenomic RNA was too low to be detected. These results support the conclusion that the early steps in viral gene expression are the ones required for the inhibition of host cell protein synthesis in BHK cells. In contrast, the Sindbis viruses and Sindbis virus replicons were clearly distinguished by the time at which CPE became evident. Viruses that synthesized high levels of the two membrane glycoproteins on the surface of the infected cells caused a rapid (12 to 16 h postinfection) appearance of CPE, and those that did not synthesize the glycoprotein spikes showed delayed (30 to 40 h) CPE.  相似文献   

13.
Maximum amounts of 42S and 26S single-stranded viral RNA and viral structural proteins were synthesized in Aedes albopictus cells at 24 h after Sindbis virus infection. Thereafter, viral RNA and protein syntheses were inhibited. By 3 days postinfection, only small quantities of 42S RNA and no detectable 26S RNA or structural proteins were synthesized in infected cells. Superinfection of A. albopictus cells 3 days after Sindbis virus infection with Sindbis, Semliki Forest, Una, or Chikungunya alphavirus did not lead to the synthesis of intracellular 26S viral RNA. In contrast, infection with snowshoe hare virus, a bunyavirus, induced the synthesis of snowshoe hare virus RNA in both A. Ablpictus cells 3 days after Sindbis virus infection and previously uninfected mosquito cells. These results suggested that at 3 days after infection with Sindbis virus, mosquito cells restricted the replication of both homologous and heterologous alphaviruses but remained susceptible to infection with a bunyavirus. In superinfection experiments the the alphaviruses were differentiated on the basis of plaque morphology and the electrophoretic mobility of their intracellular 26S viral RNA species. Thus, it was shown that within 1 h after infection with eigher Sindbis or Chikungunya virus, A. albopictus cells were resistant to superinfection with Sindbis, Chikungunya, Una, and Semliki Forest viruses. Infected cultures were resistant to superinfection with the homologous virus indefinitely, but maximum resistance to superinfection with heterologous alphaviruses lasted for approximately 8 days. After that time, infected cultures supported the replication of heterologous alphaviruses to the same extent as did persistently infected cultures established months previously. However, the titer of heterologous alphavirus produced after superinfection of persistently infected cultures was 10- to 50-fold less than that produced by an equal number of previously uninfected A. albopictus cells. Only a small proportion (8 to 10%) of the cells in a persistently infected culture was capable of supporting the replication of a heterologous alphavirus.  相似文献   

14.
15.
Phospholipid Synthesis in Sindbis Virus-Infected Cells   总被引:5,自引:5,他引:0       下载免费PDF全文
We investigated the metabolic requirements for the decrease in phospholipid synthesis previously observed by Pfefferkorn and Hunter in primary cultures of chick embryo fibroblasts infected with Sindbis virus. The incorporation of (32)PO(4) into all classes of phospholipids was found to decline at the same rate and to the same extent; thus, incorporation of (14)C-choline into acid-precipitable form provided a convenient measure of phospholipid synthesis that was used in subsequent experiments. Experiments with temperature-sensitive mutants suggested that some viral ribonucleic acid (RNA) synthesis was essential for the inhibition of choline incorporation, but that functional viral structural proteins were not required. The reduction in phospholipid synthesis was probably a secondary effect of infection resulting from viral inhibition of the cellular RNA and protein synthesis. All three inhibitory effects required about the same amount of viral RNA synthesis; the inhibition of host RNA and protein synthesis began sooner than the decline in phospholipid synthesis; and both actinomycin D and cycloheximide inhibited (14)C-choline incorporation in uninfected cells. In contrast, incorporation of (14)C-choline into BHK-21 cells was not decreased by 10 hr of exposure to actinomycin D and declined only slowly after cycloheximide treatment. Growth of Sindbis virus in BHK cells did not cause the marked stimulation of phospholipid synthesis seen in picornavirus infections of other mammalian cells; however, inhibition was seen only late in infection.  相似文献   

16.
Sindbis virus-specific polypeptides were synthesized in lysates of rabbit reticulocytes in response to added 26 S or 49 S RNA. Sindbis 26 S RNA was translated into as many as three polypeptides which co-migrate in acrylamide gels with proteins found in infected cells.Wild type 26 S RNA was translated primarily into two polypeptides, which appear to be the Sindbis nucleocapsid protein (mol. wt 30,000) and the precursor of the two glycoproteins of the virion (mol. wt 100,000). A larger polypeptide (mol. wt 130,000) was synthesized in response to ts2 26 S RNA, a species of RNA which was isolated from cells infected with the ts2 mutant of Sindbis virus. This large polypeptide is apparently the protein which accumulates in cells infected with the mutant virus and which is thought to be a precursor of all three viral structural proteins.These results support the hypothesis that 26 S RNA is the messenger for the three structural proteins of the virion and that the RNA codes for one large polypeptide precursor. The precursor may then be cleaved at a specific site to yield the nucleocapsid protein and a second polypeptide which, in infected cells, is cleaved in a series of steps to yield the two glycoproteins of the virion.Sindbis 49 S RNA was translated into eight or nine polypeptides ranging from 60,000 to 180,000 molecular weights. The viral structural proteins, as such, were not synthesized in response to the added 49 S RNA.  相似文献   

17.
Brief treatment of Sindbis virus-infected BHK-21 or Vero cells with low concentrations of trypsin irreversibly blocked further production of progeny virions after removal of the enzyme. The inhibitory effects of the trypsin treatment could only be demonstrated in cells in which virus infection was established; optimal inhibition occurred at ca. 3 h postinfection. Production of virus structural proteins PE2, E1, and C occurred at normal levels in inhibited cells. PE2 and E1 were also transported to the cell plasma membrane during inhibition; however, PE2 was not cleaved to E2, and little capsid protein became membrane associated relative to control cells. Although trypsin treatment had no effect on Sindbis protein synthesis, the production of both 26S and 42S RNA was greatly reduced. Similar trypsin treatment of BHK cells infected with vesicular stomatitis virus had no detectable effect on the course of virus infection.  相似文献   

18.
Defects in RNA and protein synthesis of seven Sindbis virus and seven Semliki Forest virus RNA-negative, temperature-sensitive mutants were studied after shift to the restrictive temperature (39 degrees C) in the middle of the growth cycle. Only one of the mutants, Ts-6 of Sindbis virus, a representative of complementation group F, was clearly unable to continue RNA synthesis at 39 degrees C, apparently due to temperature-sensitive polymerase. The defect was reversible and affected the synthesis of both 42S and 26S RNA equally, suggesting that the same polymerase component(s) is required for the synthesis of both RNA species. One of the three Sindbis virus mutants of complementation group A, Ts-4, and one RNA +/- mutant of Semliki Forest virus, ts-10, showed a polymerase defect even at the permissive temperature. Seven of the 14 RNA-negative mutants showed a preferential reduction in 26S RNA synthesis. The 26S RNA-defective mutants of Sindbis virus were from two different complementation groups, A and G, indicating that functions of two viral nonstructural proteins ("A" and "G") are required in the regulation of the synthesis of 26S RNA. Since the synthesis of 42S RNA continued, these functions of proteins A and G are not needed for the polymerization of RNA late in infection. The RNA-negative phenotype of 26S RNA-deficient mutants implies that proteins regulating the synthesis of this subgenomic RNA must have another function vital for RNA synthesis early in infection or in the assembly of functional polymerase. Several of the mutants having a specific defect in the synthesis of 26S RNA showed an accumulation of a large nonstructural precursor protein with a molecular weight of about 200,000. One even larger protein was demonstrated in both Semliki Forest virus- and Sindbis virus-infected cells which probably represents the entire nonstructural polyprotein.  相似文献   

19.
20.
Initiation sites for translation of sindbis virus 42S and 26S messenger RNAs.   总被引:21,自引:0,他引:21  
Sindbis virus 26S RNA is the principal species of virus-specific RNA found in the infected cell; it is derived from a one third segment of virion 42S RNA. When translated in cell-free extracts from mouse ascites cells or rabbit reticulocytes, 26S RNA directed the synthesis primarily of the 33,000 dalton virus capsid protein, and the protein products were in the form of free peptides rather than peptidyl-tRNA. In contrast, the polypeptides synthesized in either extract in response to Sindbis virus 42S RNA were heterogeneous, ranging in molecular weight from 33,000 to 190,000, and were largely in the form of peptidyl-tRNA. The number of independent initiation sites on the 26S and 42S RNAs was determined by analyzing a tryptic digest of reaction products labeled with yeast N-formyl-35S-methionyl-tRNAFmet. The 26S RNA appeared to contain a single initiation site, and this site could also be found in varying amounts in different preparations of 42S RNA. However, a second initiation site, distinct from that of 26S RNA, was the major site in 42S virion RNA. These results suggest that 42S virion RNA contains two potential sites for initiation of protein synthesis. Only one of these may be active, however, and it is postulated that the second site functions primarily, if not exclusively, in the subgenomic 26S RNA species. In this regard, Sindbis virus 42S RNA may represent a novel form of a eucaryotic messenger RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号