首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Six overlapping viral RNAs are synthesized in cells infected with the avian coronavirus infectious bronchitis virus (IBV). These RNAs contain a 3'-coterminal nested sequence set and were assumed to be viral mRNAs. The seven major IBV virion proteins are all produced by processing of three polypeptides of ca. 23, 51, and 115 kilodaltons. These are the core polypeptides of the small membrane proteins, the nucleocapsid protein, and the 155-kilodalton precursor to the large membrane proteins GP90 and GP84, respectively. To determine which mRNAs specify these polypeptides, we isolated RNA from infected cells and translated it in a messenger-dependent rabbit reticulocyte lysate. Proteins of 23, 51, and 110 kilodaltons were produced. Two-dimensional tryptic peptide mapping demonstrated that these proteins were closely related to the major virion proteins. Fractionation of the RNA before cell-free translation permitted the correlation of messenger activities for synthesis of the proteins with the presence of specific mRNAs. We found that the smallest RNA, RNA A, directs the synthesis of P51, the nucleocapsid protein. RNA C, which contains the sequences of RNA A, directs the synthesis of the small membrane protein P23. RNA E directs the synthesis of the large virion glycoproteins. These results supported a model in which only the unique 5'-terminal domain of each IBV mRNA is active in translation and enabled us to localize genes for virion proteins on the IBV genome.  相似文献   

2.
Initiation sites for translation of sindbis virus 42S and 26S messenger RNAs.   总被引:21,自引:0,他引:21  
Sindbis virus 26S RNA is the principal species of virus-specific RNA found in the infected cell; it is derived from a one third segment of virion 42S RNA. When translated in cell-free extracts from mouse ascites cells or rabbit reticulocytes, 26S RNA directed the synthesis primarily of the 33,000 dalton virus capsid protein, and the protein products were in the form of free peptides rather than peptidyl-tRNA. In contrast, the polypeptides synthesized in either extract in response to Sindbis virus 42S RNA were heterogeneous, ranging in molecular weight from 33,000 to 190,000, and were largely in the form of peptidyl-tRNA. The number of independent initiation sites on the 26S and 42S RNAs was determined by analyzing a tryptic digest of reaction products labeled with yeast N-formyl-35S-methionyl-tRNAFmet. The 26S RNA appeared to contain a single initiation site, and this site could also be found in varying amounts in different preparations of 42S RNA. However, a second initiation site, distinct from that of 26S RNA, was the major site in 42S virion RNA. These results suggest that 42S virion RNA contains two potential sites for initiation of protein synthesis. Only one of these may be active, however, and it is postulated that the second site functions primarily, if not exclusively, in the subgenomic 26S RNA species. In this regard, Sindbis virus 42S RNA may represent a novel form of a eucaryotic messenger RNA.  相似文献   

3.
A human type-C retrovirus, designated HTLV (human T-cell leukemia virus), was isolated from the HTLV producer cell line MT-2. Agarose gel electrophoresis analysis 32P-labeled HTLVMT-2 virion RNA revealed that HTLVMT-2 virion RNA consists mainly of 24S and small amounts of 35S and 32S RNAs. The 24S HTLVMT-2 virion RNA and unfractionated HTLVMT-2 virion RNA were translated in a rabbit reticulocyte lysate system in vitro. The predominant polypeptide synthesized from 24S RNA had an apparent mol. wt. of 28 000 (28 K); unfractionated HTLVMT-2 virion RNA directed the synthesis of 53 000 (53 K), 33 000 (33 K) and 28 000 (28 K) polypeptides as main components. Most of the polypeptides synthesised in vitro by translation of HTLVMT-2 virion RNAs possess the same sizes as the proteins formerly designated as ATLA (ATL-associated antigen) in SDS-polyacrylamide gel electrophoresis and immunologically precipitated with sera of ATL patients. Therefore, the antigens termed ATLA, found by the serological study of ATL, are HTLVMT-2 encoded polypeptides.  相似文献   

4.
5.
We have identified and characterized two small virus-specific polypeptides which are produced during infection of cells with Sindbis virus, but which are not incorporated into the mature virion. The larger of these is a glycoprotein with an approximate molecular weight of 9,800 and is found predominantly in the medium of infected cells. Three independent lines of evidence demonstrate conclusively that this 9,800-dalton glycoprotein is produced during the proteolytic conversion of the precursor polypeptide, PE2, to the virion glycoprotein E2. This small glycoprotein is therefore analogous to the virion glycoprotein E3 of the very closely related alphavirus, Semliki Forest virus. The 9,800-dalton glycoprotein of Sindbis virus, unlike the E3 glycoprotein of Semliki Forest virus, is not, however, present in the viral particle. The other virus-specific polypeptide is 4,200 daltons in size, does not appear to be a glycoprotein, and is neither incorporated into the mature virus nor released into the culture medium. The gene for this small polypeptide is present in the viral 26S mRNA (the mRNA which encodes all the viral structural polypeptides) and appears to be located in the portion of the mRNA which encodes the two viral glycoproteins. The possibility that this 4,200-dalton polypeptide functions as a signal peptide during the synthesis of the viral membrane glycoproteins is discussed.  相似文献   

6.
Adenovirus type 2 mRNA was translated in S30 extracts from Ehrlich ascites and wheat embryo cells. The in vitro products were identified by sodium dodecyl sulfate-gel electrophoresis after immunoprecipitation with specific antisera in the presence of urea. Seven virion polypeptides could be identified by immunoprecipitation. Three of these appear to be precursors to polypeptides of the virion. mRNA isolated late in adenovirus infection was separated into three size classes by zonal sedimentation. Material sedimenting at 26S was translated into polypeptides corresponding to the largest virion polypeptides II to IV, a 22S fraction corresponding to polypeptide V, and smaller polypeptides and a 15S fraction corresponding to polypeptide IX. A significant amount of polypeptide IX was also synthesized by the 26S and 22S RNA.  相似文献   

7.
Cell-Free Translation of Paramyxovirus Messenger RNA   总被引:10,自引:6,他引:4       下载免费PDF全文
  相似文献   

8.
Chicken embryo fibroblasts infected with an RNA- temperature-sensitive mutant (ts24) of Sindbis virus accumulated a large-molecular-weight protein (p200) when cells were shifted from the permissive to nonpermissive temperature. Appearance of p200 was accompanied by a decrease in the synthesis of viral structural proteins, but [35S]methionine tryptic peptides from p200 were different from those derived from a 140,000-molecular-weight polypeptide that contains the amino acid sequences of viral structural proteins. Among three other RNA- ts mutants that were tested for p200 formation, only one (ts21) produced this protein. The accumulation of p200 in ts24- and ts21-infected cells could be correlated with a shift in the formation of 42S and 26S viral RNA that led to an increase in the relative amounts of 42S RNA. These data indicate that p200 is translated from the nonstructural genes of the virion 42S RNA and further suggest that this RNA does not function effectively in vivo as an mRNA for the Sindbis virus structural proteins.  相似文献   

9.
We isolated the virus-specific RNA species from Uukuniemi virus-infected chicken embryo cells and fractionated them by sucrose gradient centrifugation. In addition to three RNA species cosedimenting with the three viral RNA segments L (29S), M (23S), and S (17S), a fourth major RNA species, sedimenting at about 12S (S2), was found early in the infection. Annealing experiments indicated that the cytoplasmic L and M RNA species consisted of both plus and minus strands, with the plus strands in slight excess. Most of the S1 RNA was of negative polarity, whereas S2 was of positive polarity. The S2 RNA specifically annealed to the virion S RNA segment, indicating that it is transcribed from this segment. In vitro translation of the individual RNA species in micrococcal nuclease-treated cell-free reticulocyte extracts showed that an mRNA cosedimenting with the virion M RNA directed the synthesis of a virus-specific 110,000-dalton polypeptide (p110). This polypeptide could be immunoprecipitated with antiserum prepared against purified virions. When translation was carried out in the presence of dog pancreas microsomes, p110 was absent. Instead, an immunoprecipitable polypeptide band, with a molecular weight of about 70,000 and migrating between the virion surface glycoproteins G1 and G2, was observed. It is thus likely that the glycoproteins are synthesized as a precursor (p110), which during translation is cleaved roughly in the middle to yield G1 and G2. The 12S RNA species directed the synthesis of the nucleocapsid protein and a novel polypeptide with an apparent molecular weight of about 30,000. The latter was not precipitated with antivirion serum and was absent from lysates programmed with the corresponding RNA fraction from a mock-infected extract. Since, in addition, it was not found in purified virions and was present in the cytoplasm of infected cells but not in uninfected cells, it probably represents a nonstructural polypeptide.  相似文献   

10.
11.
Gene protein products of SA11 simian rotavirus genome   总被引:33,自引:18,他引:15  
When MA104 cells were infected with SA11 rotavirus, 12 protein classes, absent in mock-infected cells, could be distinguished by polyacrylamide gel electrophoresis. At least two of these proteins were glycosylated, and their synthesis could be blocked with tunicamycin. The oligosaccharides of both glycoproteins were cleaved by endo-beta-N-acetylglucosaminidase H, suggesting that they were residues of the "high-mannose" type. Of the 12 viral polypeptides observed in infected cells, 1 was probably the apoprotein of one of these glycoproteins; 5, including 1 glycoprotein, were structural components of the virions, whereas the other 6, including a second and possibly third glycoprotein, were nonstructural viral proteins. When the 11 double-stranded RNA genome segments of SA11 were translated, after denaturation, in an RNA-dependent cell-free translation system, at least 11 different polypeptides were synthesized. Ten of these polypeptides had electrophoretic migration patterns equal to those of viral proteins observed in tunicamycin-treated infected cells. Nine of the 11 double-stranded RNA genome segments were resolved by polyacrylamide gel electrophoresis and were translated individually. Two were not resolved from each other and therefore were translated together. Correlation of each synthesized polypeptide with an individual RNA segment allowed us to make a probable gene-coding assignment for the different SA11 genome segments.  相似文献   

12.
We have isolated from a single plaque a mutant of Sindbis virus characterized by an E1 glycoprotein with higher electrophoretic mobility. This higher mobility is not attributable to a different extent of glycosylation of the protein nor to an altered proteolytic maturation pathway of the polypeptide precursor, but is the result of a deletion occurring during the replication of the viral RNA. The 26S RNA (the messenger for the Sindbis structural proteins) extracted from cells infected with the mutant is about 0.75 x 10(5) daltons smaller than the 26S RNA from the parental strain. As a consequence, in cells infected with the mutant, an E1 glycoprotein is synthesized with a polypeptide chain about 70 amino acids shorter. The biological relevance of this naturally occurring deletion of the viral genome is discussed.  相似文献   

13.
Message activity of influenza viral RNA.   总被引:3,自引:3,他引:0       下载免费PDF全文
The message activity of influenza virion RNA in the wheat germ cell-free protein-synthesizing system was investigated. RNA extracted from purified virions was found to direct the synthesis of a polypeptide that had the mobility of viral nucleocapsid protein on sodium dodecyl sulfate-polyacrylamide gels. Further characterization of the protein indicated it was not the nucleocapsid protein. No other polypeptides were detected. We conclude that influenza virion RNA is inactive as a template for the synthesis of virus-specific proteins.  相似文献   

14.
Polypeptides synthesized in Newcastle disease virus (NDV)-infected CHO cells in the absence of glycosylation were characterized. Incorporation of either [3H]mannose of [3H]glucosamine into NDV polypeptides was inhibited to greater than 99% by the antibiotic tunicamycin. Under these conditions, infected cells synthesized proteins which comigrated on polyacrylamide gels with the viral L protein, nucleocapsid protein, membrane protein, and a polypeptide with a molecular weight of 55,000 (P55). These cells did not synthesize polypeptides with the size of the hemagglutinin-neuraminidase (HN) protein or the fusion (F0) protein. They did, however, synthesize new polypeptides with molecular weights of 75,000 (P75), 67,000 (P67), and 52,000 (P52). Peptide analysis revealed that P75 was a host cell protein whose synthesis is enhanced by tunicamycin. P67 corresponded to the unglycosylated forms of the glycoproteins were found to be relatively stable in infected cells. P55, previously thought to correspond to the cleaved form of F0, was found to be a unique viral protein which is associated with intracellular nucleocapsid structures.  相似文献   

15.
Cells infected with wild-type Sindbis virus contain at least two forms of mRNA, 26S and 49S RNA. Sindbis 26S RNA (molecular weight 1.6 x 10(6)) constitutes 90% by weight of the mRNA in infected cells, and is thought to specify the structural proteins of the virus. Sindbis 49S RNA, the viral genome (molecular weight 4.3 x 10(6)), constitutes approximately 10% of the mRNA in infected cells and is thought to supply the remaining viral functions. In cells infected with ts2, a temperature-sensitive mutant of Sindbis virus, the messenger forms also include a third species of RNA with a sedimentation coefficient of 33S and an apparent molecular weight of 2.3 x 10(6). Hybridization-competition experiments showed that 90% of the base sequences in 33S RNA from these cells are also present in 26S RNA. Sindbis 33S RNA was also isolated from cells infected with wild-type virus. After reaction with formaldehyde, this species of 33S RNA appeared to be completely converted to 26S RNA. These results indicate that 33S RNA isolated from cells infected with either wild-type Sindbis or ts2 is not a unique and separate form of Sindbis RNA.  相似文献   

16.
Synthesis of Alphavirus-Specified RNA   总被引:7,自引:6,他引:1       下载免费PDF全文
  相似文献   

17.
Cell-free translation of avian erythroblastosis virus RNA   总被引:12,自引:6,他引:6       下载免费PDF全文
Avian erythroblastosis virus (AEV) RNA rescued from nonproducer cells by superinfection with a helper virus is translated into three polypeptides in the messenger-dependent rabbit reticulocyte lysate. A 75,000 molecular weight polypeptide (P75AEV) is synthesized from 28S RNA and is encoded by the 5' section of the AEV RNA, including gag-related and AEV-specific sequences. The P75AEV synthesized in infected cells and the P75AEV synthesized in the cell-free system are electrophoretically identical. A 44,000 molecular weight polypeptide (P44AEV) is synthesized from 20-24S RNA, apparently from the 3' section of the AEV-specific RNA sequence. A minor 37,000 molecular weight polypeptide (P37AEV) is synthesized from 20S AEV RNA. A comparison is drawn between the cell-free products of MC29 and AEV RNAs.  相似文献   

18.
The polypeptide products formed in two cell-free protein-synthetic systems programmed with encephalomyocarditis (EMC) virus ribonucleic acid (RNA) have been compared with the virus-specific proteins found in EMC-infected cells and with the capsid proteins of the purified virion. Tryptic peptides of (35)S-methioninelabeled proteins from these three sources were compared by co-chromatography and electrophoresis and by isoelectric focussing. Fifty-two methionine-containing peptides were resolved in digests of material from infected cells, of which about one-third were also clearly present in digests of the virion capsid proteins. The product formed in response to EMC RNA in cell-free systems from Krebs mouse ascites tumor cells yielded 26 to 29 such peptides. Most of these peptides were shown to behave identically with virus-specific peptides from infected cells, whereas just under half of them appeared to be identical with peptides from the virion capsid proteins. The product formed in response to EMC RNA in the L-cell cell-free system was similar, whereas six additional EMC-specific peptides were detected in mixed Krebs L-cell systems. The results indicate that the EMC RNA genome is partially translated in the mouse cell-free systems used to yield products containing both virion capsid and virus-specific noncapsid polypeptides.  相似文献   

19.
Polypeptide Synthesis in Simian Virus 5-Infected Cells   总被引:11,自引:6,他引:5       下载免费PDF全文
Polypeptide synthesis in three different cell types infected with simian virus 5 has been examined using high-resolution polyacrylamide slab gel electrophoresis, and all of the known viral polypeptides have been identified above the host cell background. The polypeptides were synthesized in infected cells in unequal proportions, which are approximately the same as they are found in virions, suggesting that their relative rates of synthesis are controlled. The nucleocapsid polypeptide (NP) was the first to be detected in infected cells, and by 12 to 14 h the other virion structural polypeptides were identified, except for the polypeptides comprising the smaller glycoprotein (F). However, a glycosylated precursor (F(0)) with a molecular weight of 66,000 was found in each cell type, and pulse-chase experiments suggested that this precursor was cleaved to yield polypeptides F(1) and F(2). No other proteolytic processing was found. In addition to the structural polypeptides, the synthesis of five other polypeptides, designated I through V, has been observed in simian virus 5-infected cells. One of these (V), with a molecular weight of 24,000, was found in all cells examined and may be a nonstructural viral polypeptide. In contrast, there are polypeptides present in uninfected cells that correspond in size to polypeptides I through IV, and similar polypeptides have also been detected in increased amounts in cells infected with Sendai virus. These findings, and the fact that the synthesis of all four of these polypeptides is not increased in every cell type, suggest that they represent host polypeptides whose synthesis may be enhanced upon infection. When a high salt concentration was used to decrease host cell protein synthesis in infected cells, polypeptides IV and (to a lesser extent) I were synthesized in relatively greater amounts than other cellular polypeptides, as were the viral polypeptides. The possibility that these polypeptides may play some role in virus replication is discussed.  相似文献   

20.
BHK cells infected with defective-interfering passages of Sindbis virus accumulate a species of RNA (20S) that is about half the molecular weight of the major viral mRNA (26S). We have performed competitive hybridization experiments with these species of RNA and have established that 20S RNA contains approximately 50% of the nucleotide sequences present in 26S RNA. Our further studies, however, demonstrate that 20S RNA is unable to carry out the messenger function of 26S RNA. We found very little of the defective RNA associated with polysomes in vivo. In addition, it was unable to stimulate protein synthesis in vitro under conditions in which 26S RNA was translated. We have also examined viral RNA synthesis in BHK cells infected with standard or defective-interfering passages of Sindbis virus. This comparison suggests that defective partioles do not synthesize a functional replicase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号