首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The rehabilitation program conducted by Richards Bay Minerals (RBM) of areas exposed to opencast surface mining of sand dunes north of Richards Bay (28°43'S, 32°12'E) on the coast of northern KwaZulu-Natal Province commenced 16 years before this study and has resulted in the development of a series of known-aged stands of vegetation. By assuming that these spatially separated stands develop along a similar pathway over time, instantaneous sampling should reveal successional or other changes usually associated with aging and should provide an opportunity to evaluate the success of rehabilitation. We compare relative densities of pioneer and secondary species, species richness, and a similarity index of the herbaceous layer, tree, beetle, millipede, bird, and small-mammal communities of rehabilitating areas of known age with those of 30-year-old unmined forests and unmined forests of unknown age adjacent to the rehabilitating area. Species richness for all but the mammalian taxa increased with increasing age of rehabilitating stands. For all taxa but the mammals and herbaceous layer, the unmined stands harbored more species than the mined rehabilitating stands. The relative densities of pioneer species of all the taxa decreased with an increase in the age of rehabilitating stands, whereas those of the secondary species increased with an increase in habitat age. Similarity between unmined stands and rehabilitating stands of different ages increased with increasing regeneration age of rehabilitating stands, suggesting that rehabilitating communities, in terms of species composition and relative densities, are developing towards the status of unmined communities. Rehabilitation based on RBM's management program of limited interference is occurring and may result in the reestablishment of a coastal dune forest ecosystem. But rehabilitation resulting from succession depends on the availability of species sources from which colonization can take place. In the Richards Bay mining operation the present mining path is laid out so that such refuges are present.  相似文献   

2.
Abstract Post‐mining coastal dune rehabilitation north of Richards Bay, KwaZulu‐Natal started 20 years before field work for the present study commenced. This resulted in the development of a known age sere of coastal dune forest succession. These rehabilitating areas are fragmented by roads that may act as ecological edges. To establish whether roads affect regenerating bird, millipede, and rodent assemblages, multivariate techniques were applied to test for existence of edge and core assemblages within seral stages representative of the coastal dune forest successional sere. Edge and core assemblages were identified for both the bird and millipede communities but not for the rodent community. Low rodent numbers may have concealed edge effects, but the absence of edge and core assemblages could also be ascribed to the absence of a forest core. In the bird community species composition, richness, density, and total number of species contributed to the identification of edge and core assemblages. Within seral stages the species composition of millipedes differed between the edge and core assemblages. However, if the site was the same age the number of species in edge and core assemblages was similar. The generality of the edge concept should be approached with caution when dealing with taxa comprising species with such diverse natural histories as in the present study. It should also be kept in mind that some species require forest interiors for survival.  相似文献   

3.
The rehabilitation of disturbed ecosystems through ecological succession should lead to the recovery of indigenous biological assemblages typical of a region. However, rehabilitation may give rise to unusual successional pathways and lead to atypical assemblages. We compared millipede assemblages along a chronosequence of habitats developing in response to a post‐mining coastal dune forest rehabilitation program with those developing spontaneously in the same area. Our comparison suggests that active rehabilitation mimics and even surpasses spontaneous successional development. On both chronosequences, the total number of species, as well as the mean density, diversity, and species richness increased, and dominance decreased, with habitat regeneration age. Moreover, the similarity of millipede assemblages on the two chronosequences to those on three sets of reference sites (mature forests) increased with regeneration age, but this recovery of community composition occurred faster on the rehabilitating chronosequence than on the spontaneously regenerating chronosequence. This suggests that successional processes are leading to a recovery of the predisturbed state, but factors like protection from further disturbances, which occur on the spontaneously regenerating chronosequence, is probably important to ensure success. The distance between a regenerating site and a colonization source area apparently affects the direction of community recovery—assemblages on the rehabilitating chronosequence converged faster onto assemblages on closer reference sites than onto those on reference sites farther away.  相似文献   

4.
Topography is rarely considered as an independent goal of restoration. However, topography determines microenvironmental conditions and hence living conditions for species. Restoring topography may therefore be an important first step in ecological restoration. We aimed at establishing the relative importance of topography where coastal dunes destroyed by mining are rebuilt as part of a rehabilitation program. We assessed the response of (1) microclimatic and soil conditions, and (2) woody plant and millipede species richness and density, to location-specific topographic profiles. We enumerated the topographic profile using variables of dune morphology (aspect, elevation, and gradient) as well as relative position on a dune (crest, slope, and valley). Temperature, relative humidity, and light intensity varied with aspect, elevation, gradient, and position. However, regeneration age was a better predictor of soil nutrient availability than these topographic variables. Age also interacted with topographic variables to explain tree canopy density and species richness, as well as millipede species richness. The density of keeled millipedes (forest specialists) was best explained by topographic variables alone. The transient nature of these new-growth coastal dune forests likely masks topography-related effects on communities because age-related succession (increasing structural complexity) drives the establishment and persistence of biological communities, not habitat conditions modulated by topography. However, our study has shown that the microhabitats associated with topographic variability influence specialist species more than generalists.  相似文献   

5.
Rodents inhabit the coastal dune forests of KwaZulu‐Natal, South Africa. Here habitat rehabilitation following mining of dunes has resulted in coastal dune forest succession similar to that recorded in nonmined forests. We investigated the colonization of rehabilitating stands and evaluate the role of disturbance in maintaining rodent diversity. A trapping programme was established between July 1993 and February 1995 during which rodent colonization, local extinction and species richness were recorded for rehabilitating stands of different ages. Trends in these variables were closely associated with one of three possible outcomes for a disturbed patch over time, with no intervening disturbances following the initial disturbance. Colonization was initially high which led to an increase in species richness. Extinction was lower than colonization, but became higher when the habitat was 3 years old, which led to a decline in richness. We extrapolate this result assuming negligibly small disturbances after the initiation of rehabilitation and suggest that intermediate levels of disturbance maintain rodent species richness in coastal dune forests. Furthermore, our results illustrated species turnover, a prediction of the recorded outcome, with young stands dominated by Mastomys natalensis and older stands by Saccostomus campestris or Aethomys chrysophilus.  相似文献   

6.
Coastal dune forest succession frequently proceeds via the Acacia karroo pathway, but may become arrested. We examine whether soil fertility arrests forest succession in A. karroo stands in coastal dune forest in KwaZulu-Natal province, South Africa. We examined soil fertility of A. karroo stands, the adjacent forest, and forested dune slacks at Cape Vidal, and four rehabilitating A. karroo stands (13- to 28-yr-old) at Richards Bay. The effect of nitrogen supplementation on growth of three tree species (a forest pioneer, a late successional forest species, and A. karroo) was compared between A. karroo stands and adjacent dune forest at Cape Vidal. Soil fertility in A. karroo stands and the adjacent forest at Cape Vidal was similar and neither total nor readily mineralisable nitrogen were limiting in either habitat. At Richards Bay, where the dunes were previously strip-mined, total nitrogen accumulated rapidly (2.1–8.0 g N m−2 yr−1) and the oldest rehabilitating A. karroo stands (26–28 yr) had similar total nitrogen and other soil nutrient levels as stands twice their age at Cape Vidal. Seedling growth was unaffected by nitrogen supplementation. All species grew fastest in A. karroo stands demonstrating that soil nutrient levels in disturbed forest colonised by A. karroo are suitable for the growth of forest tree species. Soil fertility, including available nitrogen, is not limiting secondary succession at Cape Vidal, yet forest species are not replacing A. karroo stands at this site. Post-emergence factors, such as herbivory, are likely responsible for the arrested succession of forest in A. karroo stands.  相似文献   

7.
Studies of the rodent community in regenerating coastal dune forest areas north of Richards Bay, South Africa, have indicated that a number of species occupy newly rehabilitating areas. Unstable environmental conditions result in habitat changes, rather than competitive interactions, being the major determinant of rodent community development. This led to the present study, which investigated the effects of supplementary food on rodent assemblages. We attempted to stabilize food availability in order to elucidate some of the mechanisms responsible for the development of the rodent community. By only increasing an existing portion of the resource spectrum, we reduced species diversity, probably through dominance by competitive superior exploiters of the augmented resource. Thus, species diversity decreased with food supplementation, as a result of an increase in the abundance of Mastomys natalensis rather than because of a change in the number of species or the abundance of other species.  相似文献   

8.
The tropical coastal dunes in central Gulf of Mexico have been stabilizing over the last decades resulting in reduced substrate mobility, and promoting primary succession. We describe changes in species richness and diversity in dune vegetation during 20?years. Our questions: (a) Do species richness and diversity increase over time as predicted by models of ecological succession or do they show a hump-backed manner similar to the observations in temperate coastal dunes?, (b) What is the interaction between vegetation cover and diversity and species richness?, (c) Is there a relationship between species diversity and succession rate and does succession rate change over time?, and (d) How do plant functional types change during succession? In order to answer these questions, we set 140 4?×?4?m permanent plots in a mobile dune area and monitored vegetation cover and species richness from 1991 to 2011. In time, diversity increased in a logistic manner toward an asymptotic value once vegetation cover surpassed 60?%. Species richness increased in a humped-back shape, also reaching a maximum peak at 60?% vegetation cover. The succession rate of diversity was measured by the Euclidean distance, and showed a significant humped-back relation, meaning that it was slower in early and late successional stages. The study supports the intermediate disturbance theory. The conservation of coastal dunes vegetation should focus on all, species-poor and species-rich habitats that help to maintain the ecological integrity of these ecosystems. The understanding of community dynamics and diversity patterns becomes an essential component of coastal dune management and conservation.  相似文献   

9.
The habitat preferences of two closely related millipede species, Centrobolus richardii and C. fulgidus, were investigated on three different seral stages of a coastal dune forest successional sere north of Richards Bay, South Africa. Fixed‐width transects were used to survey millipedes in three habitats of different ages. Habitat preference occurred on both inter‐ and intra‐site levels and was influenced by season. A habitat shift was recorded for C. richardii, while C. fulgidus was dormant during the winter months, reflecting two different strategies used by these closely related species to meet their resource requirements. Successional changes previously reported are masked by these differential responses.  相似文献   

10.
The postmining rehabilitation of coastal sand dunes north of Richards Bay (28°43′S, 32°12′E), South Africa, is resulting in the development of a series of known-aged stands of vegetation dominated by Acacia karroo (sweet thorn). Other broad-leaved species are establishing themselves in rehabilitating areas more than 12 years of age. Soils from rehabilitating stands 3–5, 9–12, 13–15, and 16–18 years of age, from two disturbed, unmined stands 30 and 58 years of age, and from a mature unmined stand were examined to assess age-related trends in selected soil properties. Individually, these stands represent a series of different developmental stages of a coastal dune successional sere. Soil organic material, percentage organic carbon and concentrations of sodium, potassium, magnesium, calcium, and nitrogen increased with an increase in habitat regeneration age. Concentrations of most of these elements were lower than those recorded on the 58-year-old unmined and mature unmined stands. Multivariate analyses suggest, however, that the similarity of these values for rehabilitating stands to those for the unmined stands increased with an increase in regeneration age. The growth response of Raphanus sativus (radish) plants, based on mass attained under experimental growing conditions in soil collected from these stands, suggests an increase in soil fertility with an increase in regeneration age.  相似文献   

11.
Transects across undisturbed marine sand dunes sequentially traversed the following plant communities: littoral, foredunes, intradune complex of ridges and hollows, deflation plain, myrtle forest, and mature conifer forest. Organic carbon levels were low in the littoral zone and increased across the dune ecosystem landward to the forest communities. The highest percentage of nutrients was isolated from the heavy fraction of soil residues. Soil microfloral populations responded to vegetation, physical dune characteristics, and seasonal moisture patterns. Populations of bacteria and actinomycetes were higher in winter than during summer sampling periods in all communities. Populations of microscopic fungi were higher in winter in all the communities except the hollows. The distribution of vesicular-arbuscular mycorrhizal fungi responded to vegetation and sand dune succession but did not display seasonality. Species of Gigaspora and Acaulospora were the most commonly isolated VAM fungi.Sand aggregation increased along the dune transect and was correlated to plant community succession: the most highly aggregated soil was found in the two forest communities. With scanning electron microscopy, sand grains and organic residues were observed entangled by strands of filamentous mciroorganisms. Many of the filaments were of the dimensions of VAM fungi, which may be important for the release of nutrients associated with the cementing agents of sand aggregates and for the survival of early pioneer plants of sand dunes.  相似文献   

12.
Invasive species can alter the succession of ecological communities because they are often adapted to the disturbed conditions that initiate succession. The extent to which this occurs may depend on how widely they are distributed across environmental gradients and how long they persist over the course of succession. We focus on plant communities of the USA Pacific Northwest coastal dunes, where disturbance is characterized by changes in sediment supply, and the plant community is dominated by two introduced grasses – the long-established Ammophila arenaria and the currently invading A. breviligulata. Previous studies showed that A. breviligulata has replaced A. arenaria and reduced community diversity. We hypothesize that this is largely due to A. breviligulata occupying a wider distribution across spatial environmental gradients and persisting in later-successional habitat than A. arenaria. We used multi-decadal chronosequences and a resurvey study spanning 2 decades to characterize distributions of both species across space and time, and investigated how these distributions were associated with changes in the plant community. The invading A. breviligulata persisted longer and occupied a wider spatial distribution across the dune, and this corresponded with a reduction in plant species richness and native cover. Furthermore, backdunes previously dominated by A. arenaria switched to being dominated by A. breviligulata, forest, or developed land over a 23-yr period. Ammophila breviligulata likely invades by displacing A. arenaria, and reduces plant diversity by maintaining its dominance into later successional backdunes. Our results suggest distinct roles in succession, with A. arenaria playing a more classically facilitative role and A. breviligulata a more inhibitory role. Differential abilities of closely-related invasive species to persist through time and occupy heterogeneous environments allows for distinct impacts on communities during succession.  相似文献   

13.
The natural coastal habitat of Fraser Island located in the State of Queensland, Australia, has been disturbed in the past for mining of the mineral sand ilmenite. Currently, there is no information available on whether these past mining disturbances have affected the distribution, diversity, and survival of beneficial soil microorganisms in the sand dunes of the island. This in turn could deleteriously affect the success of the natural regeneration, plant growth, and establishment on the sand dunes. To support ongoing restoration efforts at sites like these mesophilic actinomycetes were isolated using conventional techniques, with particular emphasis on the taxa previously reported to produce plant-growth-promoting substances and providing support to mycorrhizal fungi, were studied at disturbed sites and compared with natural sites. In the natural sites, foredunes contained higher densities of micromonosporae replaced by increasing numbers of streptomycete species in the successional dune and finally leading to complex actinomycete communities in the mature hind dunes. Whereas in the disturbed zones affected by previous mining activities, which are currently being rehabilitated, no culturable actinomycete communities were detected. These findings suggest that the paucity of beneficial microflora in the rehabilitated sand dunes may be limiting the successful colonization by pioneer plant species. Failure to establish a cover of plant species would result in the mature hind dune plants being exposed to harsh salt and climatic conditions. This could exacerbate the incidence of wind erosion, resulting in the destabilization of well-defined and vegetated successional dunal zones.  相似文献   

14.
Aims Coastal areas, and in particular coastal dunes, are ecosystems strongly affected by the invasion of alien plants. However, few attempts have ever been made to quantify alien species incidence in different communities along the coastal zonation. This work aims to analyze the distribution of alien plants along the coastal zonation of sandy shores on the Tyrrhenian coast, addressing specifically differences among plant communities in abundance of alien plants.Methods The study was performed on recent dunes (Holocene) of the central western coast of Italy. We selected dune landscapes where invasion processes were particularly evident. Vegetation plots were randomly sampled and through cluster analysis, we identified six plant communities corresponding to the typical zonation described for the Tyrrhenian sandy coast of Central Italy. We evaluated and compared frequency and abundance of invasion in these different communities. Further, we investigated how propagule pressure (measured using as proxy human structures) contributed to the observed invasion patterns.Important findings We found a relatively low total number of aliens but also a differential distribution pattern and strong abundance of some of the aliens in specific sectors of the vegetation zonation. The perennial community of transition dunes appears most affected by invasion processes, related almost exclusively to the frequent and widespread Carpobrotus aff. acinaciformis. This alien species reaches high cover values, apparently lowering cover of native species of transition dune plant communities. Higher levels of invasion in the transition dune can be partially explained because of greater propagule pressure in this section of the dune profile. Our findings thus have important conservation and management implications since transition dune communities with Crucianella maritima are rare and protected (sensu Habitat 92/43/EEC Directive) along the entire Italian coast.  相似文献   

15.
Dispersal or recruitment limitation may arrest succession after disturbance. In north-eastern South Africa the Acacia karroo successional pathway is used to facilitate coastal forest recovery after strip-mining. However, although A. karroo establishes naturally, it forms monospecific stands, arresting forest succession for decades. This casts doubt on the efficacy of this restoration pathway. We investigated the causes of arrested succession. The seed and seedling banks of A. karroo stands and of forest at Cape Vidal, and three A. karroo stands (7–27 years old) on rehabilitated strip-mined dunes at nearby Richards Bay were examined. The establishment and growth of seedlings at Cape Vidal were also considered. The seed bank was larger and more diverse in forest, but the seedling bank was larger in Acacia stands. At Richards Bay, the size of the seed bank increased and the seedling bank decreased with Acacia stand age. Excluding mammalian herbivores in Acacia stands at Cape Vidal resulted in greater species richness and survival of naturally established seedlings, as well as two experimentally planted species. Neither seed dispersal nor seedling establishment limited recruitment of tree species in Acacia stands. Herbivory arrested forest succession by causing the differential mortality of seedlings. In contrast, at Richards Bay where there were few mammalian herbivores, the advanced regeneration in A. karroo stands converged on the diversity of nearby forests 29 years after restoration. Controlling herbivore access and seeding Acacia stands with forest species are site-specific options for preventing arrested succession when using the A. karroo successional pathway.  相似文献   

16.
The sand dune habitats found on barrier islands and other coastal areas support a dynamic plant community while protecting areas further inland from waves and wind. Foredune, interdune, and backdune habitats common to most coastal dunes have very different vegetation, likely because of the interplay among plant succession, exposure, disturbance, and resource availability. However, surprisingly few long-term data are available describing dune vegetation patterns. A nine-year census of 294 plots on St. George Island, Florida suggests that the major climatic drivers of vegetation patterns vary with habitat. Community structure is correlated with the elevation, soil moisture, and percent soil ash of each 1 m2 plot. Major storms reduce species richness in all three habitats. Principle coordinate analysis suggests that changes in the plant communities through time are caused by climatic events: changes in foredune vegetation are correlated with temperature and summer precipitation, interdune vegetation with storm surge, and backdune vegetation with precipitation and storm surge. We suggest that the plant communities in foredune, interdune, and backdune habitats tend to undergo succession toward particular compositions of species, with climatic disturbances pushing the communities away from these more deterministic trajectories.  相似文献   

17.
1.  The evaluation of restoration measures is an important task of conservation biology. Inland sand dunes and dry, oligotrophic grasslands have become rare habitat types in large parts of Central Europe and their restoration and management is of major importance for the preservation of many endangered plant and insect species. Within such habitats, it is important to restore key ecosystem services, such as pollination networks. As wild bees are the most important pollinators in many ecosystems, they represent a suitable key group to evaluate restoration measures. Furthermore, the recent decline of many bee species and the potential ecological and economic consequences are currently topics of strong scientific interest.
2.  We studied the succession of bee communities in response to restoration measures of sand dunes and sand grasslands and compared these communities with those of old sand dune complexes.
3.  Our results show that wild bees respond rapidly to restoration measures indicated by a high species richness and abundance. The community structure of bees at restoration sites converged only slightly to those of the target sites. A higher similarity was found between bee communities at the restoration sites (sand dunes and grasslands), indicating that their close proximity was an important determinant of species overlap. Environmental factors such as the number of entomophilous plant species and moisture had a strong influence on wild bee species composition.
4.   Synthesis and applications . The restoration of inland sand dune complexes provides opportunities for colonization by a diverse wild bee community. Although it is difficult to establish a given target community, restoration measures gave rise to a high pollinator diversity and abundance, suggesting that community function can be re-established.  相似文献   

18.
The impact of an exotic species in natural systems may be dependent not only on invader attributes but also on characteristics of the invaded community. We examined impacts of the invader bitou bush, Chrysanthemoides monilifera ssp. rotundata , in fore and hind dune communities of coastal New South Wales, Australia. We compared invader impacts on vegetation structure, richness of both native and exotic growth forms and community variability in fore and hind dunes. We found that impacts of bitou invasion were context specific: in fore dune shrublands, functionally distinct graminoid, herb and climber rather than shrub growth forms had significantly reduced species richness following bitou invasion. However, in forested hind dunes, the functionally similar native shrub growth form had significantly reduced species richness following bitou invasion. Density of vegetation structure increased at the shrub level in both fore and hind dune invaded communities compared with non-invaded communities. Fore dune ground-level vegetation density declined at invaded sites compared with non-invaded sites, reflecting significant reductions in herb and graminoid species richness. Hind dune canopy-level vegetation density was reduced at invaded compared with non-invaded sites. Bitou bush invasion also affected fore dune community variability with significant increases in variability of species abundances observed in invaded compared with non-invaded sites. In contrast, variability among all hind dune sites was similar. The results suggest that effects of bitou bush invasion are mediated by the vegetation community. When bitou bush becomes abundant, community structure and functioning may be compromised.  相似文献   

19.
Although dipteran communities play a fundamental role in the ecosystem, little is known about their diversity, richness and abundance in different environments. In spite of the importance of Natural Protected Areas (NPAs) as reservoirs of biological diversity, information about community parameters of most insects, including Diptera, are practically unknown in these areas. In this study, we described and compared the composition and structure of Dipteran communities (considering Tabanidae, Asilidae and Syrphidae families) within six (NPAs) of Yucatan, Southeast Mexico, comprising four main vegetation types: seasonally flooded forest, tropical deciduous forest, semi-deciduous tropical forest and coastal dune. We used Malaise-traps to collect samples during a period of two days, twice a month, for one year (2006–2007) within each NPAs. A total of 6 910 specimens belonging to 33 genera and 78 species/morphospecies were recorded. Our results show that the four vegetation types host a vast diversity of dipterans. However, species richness, abundance, diversity and similarity were higher in the communities of tropical deciduous forests compared with those from semi-deciduous forests and coastal dune vegetation, probably as a result of microhabitat differences between sites. We highlight the role of tropical deciduous forests as a refuge for Diptera species and the importance of these forests for conservation of dipteran communities.  相似文献   

20.
The structure and composition of the soil micro‐arthropod communities of five postmining rehabilitating sites (between 1 and 24 years after rehabilitation) are compared with that of an undisturbed dune forest benchmark. We extracted soil micro‐arthropods (Acari and insects) with a modified Berlese–Tullgren funnel and used soil carbon, calcium, potassium, magnesium, nitrogen, sodium, phosphorous and acidity (pH) as explanatory variables of micro‐arthropod community composition. Acari accounted for the majority of all the micro‐arthropods (between 65 and 97% of the sample) at the different sites. Density, richness, diversity and composition showed significant differences between the unmined benchmark site and the rehabilitating sites for both insects and Acari, with weak habitat‐age related patterns. Canonical Correspondence Analysis suggests that differences between samples from regenerating sites and those from the benchmark sites slowly decrease with increasing regeneration age, but that community composition is only weakly related to soil properties. Our results suggest that coastal dune forest rehabilitation could give rise to the regeneration of micro‐arthropod assemblages, but it may take a long time. Therefore, potential limiting factors for community regeneration need to be identified to improve the chances for successful restoration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号