首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coastal dune forest succession frequently proceeds via the Acacia karroo pathway, but may become arrested. We examine whether soil fertility arrests forest succession in A. karroo stands in coastal dune forest in KwaZulu-Natal province, South Africa. We examined soil fertility of A. karroo stands, the adjacent forest, and forested dune slacks at Cape Vidal, and four rehabilitating A. karroo stands (13- to 28-yr-old) at Richards Bay. The effect of nitrogen supplementation on growth of three tree species (a forest pioneer, a late successional forest species, and A. karroo) was compared between A. karroo stands and adjacent dune forest at Cape Vidal. Soil fertility in A. karroo stands and the adjacent forest at Cape Vidal was similar and neither total nor readily mineralisable nitrogen were limiting in either habitat. At Richards Bay, where the dunes were previously strip-mined, total nitrogen accumulated rapidly (2.1–8.0 g N m−2 yr−1) and the oldest rehabilitating A. karroo stands (26–28 yr) had similar total nitrogen and other soil nutrient levels as stands twice their age at Cape Vidal. Seedling growth was unaffected by nitrogen supplementation. All species grew fastest in A. karroo stands demonstrating that soil nutrient levels in disturbed forest colonised by A. karroo are suitable for the growth of forest tree species. Soil fertility, including available nitrogen, is not limiting secondary succession at Cape Vidal, yet forest species are not replacing A. karroo stands at this site. Post-emergence factors, such as herbivory, are likely responsible for the arrested succession of forest in A. karroo stands.  相似文献   

2.
Many native plant communities are replaced by exotic monocultures that may be successional stages or persistent community types. We surveyed a stand of Sapium sebiferum (Chinese Tallow Tree) that replaced tallgrass prairie in Texas and performed experiments with seeds and seedlings to determine the contributions of recruitment limitation and natural enemy release to allowing such a forest type to persist or to allowing native species to reduce Sapium dominance. The stand was dominated by Sapium, especially for mature trees (>99) and annual seed input (97) but less so for saplings (80). Field sown Sapium seeds had lower germination and survival rates than Celtis seeds. Together with the extreme dominance of Sapium in seed rain this suggests that native species are currently recruitment limited in this stand by seed supply but not by germination, early growth or survival. To investigate whether Sapium may benefit from low herbivory or diseases, we transplanted Sapium and Celtis seedlings into the forest and manipulated foliar fungal diseases and insect herbivores with sprays. As predicted, insect herbivores caused greater damage to Celtis seedlings than to Sapiumseedlings. However, suppression of insect herbivores caused significantly greater increases in survivorship of Sapium seedlings compared to Celtis seedlings. This suggests that herbivores in the understory of this Sapiumforest may significantly reduce Sapiumseedling success. Such a pattern of strong herbivore impact on seedlings growing near adult conspecifics was unexpected for this invasive species. However, even with insects and fungi suppressed, Sapium seedling performance was poor in this forest. Our results point towards Sapium as a successional species in a forest that will eventually be dominated by native trees that are currently recruitment limited but outperform Sapium in the understory.  相似文献   

3.
Abstract In Maputaland, South Africa vegetative and microclimatic changes on mined dunes drive the composition of the dung beetle fauna toward convergence with that in natural dune forest on unmined dunes. We assessed the pattern of these changes using a 23‐year vegetational chronosequence on mined dunes, which passes from grassland (approximately 1 year) to open Acacia shrubland thicket to Acacia karroo‐dominated woodland (approximately 9 years). Across this sequence, which represents successional stages in the restoration of dune forest, there was a sequential trend toward convergence in dung beetle species composition in both the entire species complement and, particularly, in shade specialist species. However, species abundance patterns showed a trend toward convergence only in early chronosequence Acacia woodland, followed by a decline in similarity between dung beetle assemblages of older Acacia woodland and unmined natural forest. This trend toward divergence was common both to the entire species complement, which includes widespread taxa, and to species endemic to Maputaland or the east coast. These trends in similarity and dissimilarity between dung beetle assemblages closely parallel the greater physiognomic and microclimatic similarity between early Acacia woodland and natural forest and the relative dissimilarity of older Acacia woodland. In conclusion, although percentage similarities between dung beetle assemblages of approximately 12‐year woodland and natural forests were comparable with those between each natural forest stand, decline in similarity in older woodland stands suggests that lasting convergence in dung beetle species abundance will only be attained once the Acacia woodland is replaced by secondary natural forest.  相似文献   

4.
Abstract. In order to explain conifer species recruitment in Canada's southeastern boreal forest, we characterized conifer regeneration microsites and determined how these microsites vary in abundance during succession. Microsite abundance was evaluated in deciduous, mixed and coniferous stands along a 234-yr postfire chronosequence. Conifers were most often found in relatively well-illuminated microsites, devoid of litter, especially broad-leaf litter, and with a reduced cover of lower vegetation (< 50 cm tall). Although associated with moss-rich forest floor substrates, Abies balsamea was the most ubiquitously distributed species. Picea glauca and especially Thuja occidentalis seedlings were frequently found on rotten logs. Light measurements did not show differences among seedling species nor between stand types. The percentage cover of broad-leaf litter decreased significantly during succession. Also, rotten logs covered with moss occupied a significantly larger area in the mid-successionnal stands than in early successional deciduous or late successional coniferous stands. The results suggest that the presence of specific forest floor substrate types is a factor explaining low conifer recruitment under deciduous stands, conifer codominance in the mid-successional stage, and delayed Thuja recolonization after fire. Results also suggest that some facilitation mechanism is responsible for the observed directional succession.  相似文献   

5.
Questions: How do changes in forest management, i.e. in disturbance type and frequency, influence species diversity, abundance and composition of the seed bank? How does the relationship between seed bank and vegetation change? What are the implications for seed bank dynamics? Location: An ancient Quercus petraea — Carpinus betulus forest in conversion from coppice‐with‐standards to regular Quercus high forest near Montargis, France. Methods: Seed bank and vegetation were sampled in six replicated stand types, forming a chronosequence along the conversion pathway. The stand types represented mid‐successional stages of stands in transition from coppice‐with‐standards (to high forest (16 plots) and early‐ and mid‐successional high forest stands (32 plots). Results: Seed bank density and species richness decreased with time since last disturbance. Adjusting for seed density effects obscured species richness differences between stand types, but species of later seres were nested subsets of earlier seres, implying concomitant shifts in species richness and composition with time since disturbance. Later seres were characterized by species with low seed weight and high seed longevity. Seed banks of early seres were more similar to vegetation than to later seres. Conclusions: Abandonment of the coppice‐with‐standards regime altered the seed bank characteristics, as well as its relationship with vegetation. Longer management cycles under high forest yield impoverished seed banks. For their persistence, seed bank species will increasingly rely on management of permanently open areas in the forest landscape. Thus, revegetation at the beginning of new high‐forest cycles may increasingly depend on inflow from seed sources.  相似文献   

6.
Abstract. We used a forest chronosequence at the Barro Colorado Nature Monument (BCNM) to examine changes in the abundance and species composition of seeds in the soil during forest succession. At each of eight sites varying from 20 yr to 100 yr since abandonment, and at two old-growth (> 500 yr) forest stands, we established two 160-m transects and sampled the surface 0–3 cm of soil in cores collected at each 5 m interval. Seed densities were estimated from the number of seedlings germinated from the soil over a six-week period. Contrary to expectation, neither the density of the soil seed bank, nor species richness or diversity were directly related to age since abandonment, but the density of the soil seed bank was correlated with the abundance of seed-bank-forming species in the standing vegetation. In marked contrast to published studies, herbaceous taxa were rare even in the youngest stands, and the common tree species, which accounted for most seeds in the soil, were present in all stands. The pioneer tree Miconia argentea (Melastomataceae) was the single most common species in the seed bank, accounting for 62% of seeds and present in 92% of soil samples. Rapid recovery of the vegetation of young regrowth stands on BCNM, when compared to sites elsewhere may be partly due to allochthonous seed rain from nearby mature forest stands and the lack of seed inputs of weeds and grasses from agricultural and pasture lands which may inhibit forest succession.  相似文献   

7.
Barriers to Forest Regeneration in an Abandoned Pasture in Puerto Rico   总被引:9,自引:0,他引:9  
Sources of forest regeneration (soil seed bank, seed rain) and barriers to seedling establishment were examined in a recently abandoned pasture in eastern Puerto Rico. Few woody species were found in the soil seed bank or in the seed rain. The number of seeds and species in the seed rain and soil seed bank declined with distance from the adjacent secondary forest. Nine species naturally dispersed and colonized plots during the study, with the wind‐dispersed tree Tabebuia heterophylla being the predominant colonizer (91% of all seedlings). Barriers to seedling establishment were determined using a blocked field experiment with eleven woody species representative of a variety of life histories. Each species was planted under the pasture vegetation (control) or in areas where all vegetation was removed (removal). Germination was enhanced for four species in the control treatment, five species were not affected, and two species did not germinate under either treatment. Survival to 6 months was higher in the removal treatment for two species. Seedling biomass was greater in the removal treatment at 12 months for one species. Seed mass was a good predictor of germination success and final shoot biomass, but not survival. This study demonstrates that seeding recently abandoned pastures with a mix of known pioneer species may accelerate the rate of secondary succession, but some species will have to be planted in later successional stages in order to overcome strong barriers to establishment.  相似文献   

8.
Seed dynamics during forest succession in Costa Rica   总被引:5,自引:0,他引:5  
Soil seed banks and current seed inputs each play a role in tropical succession. We compared the abundance and floristic composition of seeds from these two sources at a Costa Rican site by germinating seeds from the soil, measuring seed inputs for 3 yr, and monitoring the earliest colonists in a forest clearing.There were an estimated 6800 viable seeds/m2 in the soil of 3.3-yr-old vegetation, 9500 seeds/m2 in 11-yr-old vegetation, and 7000 seeds/m2 in a 75-yr-old forest. An estimated 10100 seeds/m2 fell on the soil surface of the young successional vegetation during 3 yr and 3700 seeds/m2 fell during that same time in the forest.Locally produced seeds accounted for about 75% of the seed input to the soil surface early in succession. Seeds dispersed out of young successional vegetation increased the quantity and species richness of the seed input and storage in an adjacent forest. Much of the species richness of the young successional vegetation resulted from seeds dispersed there from other communities by animals.Deforestation stimulated germination of most seeds in the surface soil of the old forest, including seeds of the dominant canopy tree. The recruitment of seedlings from the soil seed bank numerically overwhelmed that from post-disturbance seed rain and sprouts.We evaluated patterns of soil seed storage during succession and predicted the ability of vegetation of differing ages to respond to disturbance. Immediately after disturbance the number of seeds in the soil plummeted due to mortality, low inputs, and germination. As the vegetation regrew, the soil seed bank increased to a peak after 4 to 7 yr, then gradually decreased to its pre-disturbance size. High-frequency pulses of disturbance should result in reduced species richness, dominance by species with long-lived seeds, and fast recovery by seedling recruitment from the soil seed bank.Journal series number 6459 from the Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, USA.Reprint requests to J. J. E. at Florida.  相似文献   

9.
We studied mechanisms of vegetation change in fens subject to succession from open water to floating mats and finally herbaceous rich-fens. Earlier research showed that these systems are characterized by transient seed banks. Our main question was whether seedlings of later successional fen stages are already present in earlier stages, remaining subordinate in the vegetation until conditions become suitable for them. If, however, conditions during succession change in a way that only a limited set of species can survive as seedlings during each of the successional stages, no seedling bank will exist. The transient character of the seeds would then imply that seeds will not germinate and will subsequently die and that seeds that have germinated in the “wrong” stage will not become established. We hypothesized that: (1) germination and seedling survival of fen species are significantly better in the successional fen stage for which these species are characteristic, (2) as a consequence no seedling banks occur in these fens. In a field experiment, seeds of five characteristic fen species in the standing vegetation of three successional fen stages i.e. raft fen, quaking fen and rich fen were sown in each of these stages in a turf pond in the Tienhoven area, The Netherlands. Germination and seedling survival were measured over two growing seasons together with environmental variables. Germination was higher in the “own” stage for all species groups as was survival for quaking fen species and rich fen species. For both these stages, percentage of germination and survival of four out of five characteristic species were significantly higher in the “own” stage. Germination and survival can be considered stage-dependent and it was concluded that seedling banks do not exist in these fens. Site-specific environmental variables act as a sieve and differentiate on species presence already during early life history stages. We found clues that the environmental sieve acts at the level of nutrient availability, tolerance for high sulphide concentration and light climate. Because of the transient seed bank and absence of a seedling bank in these fen wetlands, successful establishment of species necessitates a continuous dispersal of characteristic species until the environmental conditions permit establishment. This also implies that species of the whole successional sere should be present within dispersal distance.  相似文献   

10.
Rachel T. King 《Biotropica》2003,35(4):462-471
I investigated the effects of successional stage and micro‐elevation on seedling establishment of Calophyllum brasiliense (Clusiaceae), a common canopy tree of seasonally flooded lowland forest along the Manú River meander zone in southeastern Peru. To compare seedling establishment between microhabitat types, I planted C. brasiliense seeds in a fully crossed experimental design of three successional stages (early, mid, and mature) and two micro‐elevations (levees and backwaters). Seedling establishment success in this study was affected by both successional stage and micro‐elevation, but micro‐elevation was most important in mid‐successional habitats. In general, seedlings in early succession experienced better conditions than in mature forest; light levels were higher, herbivory lower, and seedling growth higher. In mid‐successional forest, micro‐elevation determined habitat quality; backwaters had higher light levels, lower herbivory, and higher seedling growth and survival than levees. Mid‐successional backwaters were similar in quality to early successional forest for seedling establishment, while levees in that same successional stage were the poorest microhabitats for establishment. Although mid‐successional backwaters are similar to early succession for seedling establishment, in the long run, seedlings that establish in mid‐succession have a lower chance of reaching reproductive size before their habitat ages to mature forest than members of their cohort that established in early succession. I hypothesize that successful recruitment for C. brasiliense in the Manú River meander system requires dispersal to early successional habitat.  相似文献   

11.
Abstract. Questions: How do physical microsite conditions of microsites affect germination and seedling survival in different successional stages? Do different species germinate in similar microsites in a given successional stage? Location: Coleman Glacier foreland, Mount Baker, Washington State, USA. Methods: Two methods were used to characterize safe sites. 1. Grids of 300 10 cm × 10 cm plots were located in four different age classes on the foreland. 2.105 pairs of plots, with and without seedlings of Abies amabilis, were located in each age class. For each plot we identified all seedlings and all individuals < 1 m tall. Microsite characteristics such as topography and presence of rocks or woody debris were noted for each plot. Microsite characteristics were compared between plots with and without each species. In addition we examined the effect of distance from seed sources on the presence of Alnus viridis seeds and seedlings in a newly disturbed area. Results: In early successional sites, seedlings of several species were positively associated with depressions and presence of rocks, and negatively associated with ridges. Patterns were generally consistent among species. In later succession, seedlings were not significantly associated with any microsite characteristics. For Alnus viridis, seed density decreased with distance from seed sources but seedling density did not. Conclusions: Because of harsh conditions in early succession, physical microsites are important, and most species have similar microsite requirements. In later succession, physical microsites characteristics are not as important and are more variable. Microsites appear to be more important than seed rain in controlling the distribution of Alnus viridis in early succession.  相似文献   

12.
Hurricane‐caused tree mortality in tropical dry forests occurs predominantly in early successional species. Consequently, hurricanes may accelerate succession in these forests. Forest regeneration, however, must be measured over an extended posthurricane time period to demonstrate this pattern. In this study, we recorded tree seedlings in 19 Florida Keys forests during May–August 1995, 3 years after Hurricane Andrew. For these forests—spanning a chronosequence from 14 to over 100 years since the most recent clearing—we used weighted averaging regression on relative abundances of pre‐hurricane trees to calculate a successional age optimum for each species; and used weighted averaging calibration to calculate inferred successional ages for stands based on pre‐hurricane trees and on posthurricane seedlings. To test the hypothesis that successional stage of seedlings exceeded successional stage of pre‐hurricane trees, we compared inferred stand ages based on posthurricane seedlings with those based on pre‐hurricane trees. Across the study area, inferred stand ages based on posthurricane seedlings were greater than those based on pre‐hurricane trees (P < 0.005); however, more seedlings in the youngest stands were early successional than in older stands. Of 29 species present both as pre‐hurricane trees and posthurricane seedlings, 23 had animal‐dispersed seeds. These results provide evidence that: (1) hurricanes do not ‘reset’ succession, and may accelerate succession; and (2) a strong legacy of stand successional age influences seedling assemblages in these forests.  相似文献   

13.
We examined whether the experimental exclusion of large mammalian and small rodent seed predators had differing effects on seedling recruitment under natural seed rain conditions. In both primary and late‐successional secondary forested areas, exclosure experiments using natural seed densities were designed to assess seedling recruitment. To assess the differences in seedling recruitment, we monitored three exclosure treatments (1.2 m radius/1.5 m height) in two forest types (primary vs. late‐successional secondary forest): (1) fenced exclosures that excluded large mammals; (2) fenced exclosures that excluded both large and small mammals; and (3) open controls. Within each exclosure treatment, we marked and identified all seedlings at the beginning of the experiment (February 2001), followed the marked seedlings' fate for a year, and then marked and identified all new seedlings after a year. Two preliminary findings were generated from these data: for some tree species, small rodents and large mammals have differential effects on seedling recruitment, and the effect of excluding mammals did not differ with habitat type (primary vs. late‐successional secondary forest). These preliminary results highlight the need to examine further how the effects of small rodent and large mammal exclusion may affect species‐specific seed predation and seedling recruitment in a variety of habitat/land use types (e.g., primary forest, late‐successional forest, and early‐successional forest).  相似文献   

14.
Little is known about the soil seed bank and the influence of plant communities on the interaction between the seed bank and aboveground vegetation in the Hyrcanian temperate deciduous forest. We surveyed species composition and diversity of the persistent soil seed bank and the aboveground vegetation in six community types in old-growth Hyrcanian Box tree (Buxus hyrcana) stands in northern Iran. Fifty-two species with an average of 3,808 seeds/spores m−2 germinated; forbs accounted for 64% of the seed bank flora. Thirty-four species in the aboveground vegetation were not presented in the seed bank, 32 species in the seed bank were not found in the vegetation, and 20 species were in both. The dominant tree species were Diospyros lotus and Alnus subcordata with an average of 17 and 4.6 seeds m−2, respectively. Our results suggest that (1) vernal geophytes and shade-tolerant perennials are not incorporated in the seed bank, (2) early successional species are well represented in the seed bank, (3) plant community type has significant impacts on seed bank densities, and seed bank richness and diversity were significantly related to presence/absence of Box tree in the aboveground vegetation. The persistent seed bank contained species that potentially have a negative impact on the regeneration of forests, thus forest managers should retain old-growth Hyrcanian Box tree stands to conserve disturbance-sensitive indicator forest species.  相似文献   

15.
Naturalization of Schinus molle (Anacardiaceae) has been observed in semi arid savanna of the Northern Cape Province of South Africa. However, with high dispersal ability, the species is expected to achieve greater densities and invade more widely. The study involved a field manipulation experiment over 14 months using a factorial block design to examine transplanted seedlings in different savanna environments. The experiments examine the effects of soil type (sandy and clay), microsite, and herbivores on seedling performance (establishment, growth and survival). Seedlings were grown in a greenhouse and individually transplanted into four treatment groups: in open grassland, under tree canopies, and with and without cages to exclude large herbivores (cattle and game). The same experiment was repeated in two different soil types: coarse sand and fine-textured clay soil. Results suggest that protection provided by canopies of large indigenous Acacia trees facilitates S. molle invasion into semi-arid savanna. In the field, S. molle seedlings performed considerably better beneath canopies of indigenous Acacia trees than in open areas regardless of soil type. Whether exposed or protected from large herbivores, no seedlings planted in open grassland survived the first winter. Although, seedlings grew better and had higher survival rates beneath tree canopies than in the open sites, exposure to large herbivores significantly decreased heights and canopy areas of seedlings compared with those protected from large herbivores. The effect was greater on clay soil than on sandy soil. The results suggest that low temperature (frost), and possibly inter-specific competition with grasses, may limit S. molle seedling establishment, survival and growth away from tree canopies in semi arid savannas. Low soil nutrient status and browsing may also delay growth and development of this species. The invasive potential of S. molle is thus greatest on fertile soils where sub-canopy microsites are present and browsing mammals are absent.  相似文献   

16.
Abstract. This study focuses on the relationship between vegetation succession and soil seed bank composition on the Schiermonnikoog (The Netherlands) salt marsh over 100 yr. The importance of driftline material in seed dispersal and the relationship with succession is also investigated. The results indicate that the majority of species have a transient or short‐term seed persistent bank. Seeds of most species are able to float over the salt marsh and become concentrated in the driftline higher up the marsh. After plants have established a seed bank forms, which disappears when vegetation is replaced by later‐successional species. Exceptions are Spergularia mar‐itima, which is still present in the seed bank of late successional stages, and Juncus gerardi and Glaux maritima, which appear in the seed bank of early successional stages, but are absent in the vegetation. Based on the results of this study constraints and possibilities for salt‐marsh restoration by de‐embankment are discussed.  相似文献   

17.
S. Catovsky  F. A. Bazzaz 《Oikos》2002,98(3):403-420
To address the role of canopy‐seedling feedbacks in the structure and dynamics of mixed conifer broad‐leaved forests in the eastern US, we monitored seedling regeneration patterns and environmental conditions in the understorey of stands dominated by either hemlock (Tsuga canadensis) or red oak (Quercus rubra) for three years. Hemlock seedlings were favoured over other species’ seedlings in hemlock stands (a true positive feedback), due to a combination of high seed inputs, high seedling emergence and relatively high seedling survival during the growing season, which allowed hemlock to remain dominant under its own canopy. Red oak stands favoured a suite of mid‐successional broad‐leaved species over hemlock. A more even age structure of broad‐leaved species in red oak stands revealed that high seedling survival in such stands were driving this feedback. Canopy‐mediated variations in both understorey light availability (1.5% for hemlock vs 3.5% for red oak) and soil pH (3.9 for hemlock vs 4.4 for red oak) were found to be the primary correlates of stand‐level differences in seedling regeneration dynamics. In mixed temperate forests in the eastern US, canopy‐seedling feedbacks could act to slow successional trajectories and contribute to the maintenance of a stable landscape structure over many generations.  相似文献   

18.
Planting seedlings is a common technique for abandoned pastures restoration in the tropics, supposedly by increasing the seedling recruitment and accelerating succession. In this study we evaluated the role of a young restored forest (one year old) in enhancing seedling establishment from two sources (seed rain and seed bank), in the Atlantic Rainforest region in Southern Brazil. We compared abandoned pasture, young restored forest and old-growth forest with respect to the seedlings recruited from different sources, by monitoring 40 permanent plots (0.5 m x 0.5 m) over 20 months. From the three studied areas a total of 392 seedlings of 53 species were recruited. Species were mainly herbaceous (85%), pioneers (88%), zoochorous (51%) and small-seeded species (60%). Seedling recruitment from the seed bank (density and species richness) was higher and dominated by herbaceous species in the abandoned pasture and in the young restored forest; on the other hand, the recruitment of woody species from seed rain was more pronounced in the old-growth forest. The young restored forest increased the species richness of woody seedlings recruitment from the seed bank (two-fold) and from seed rain (three-fold) compared to the abandoned pasture. Also, the seedling density in young restored forest was still higher than abandoned pastures (seed bank: four times; seed rain: ten times). Our results show that even young restored areas enhance the establishment of woody species and should be considered an important step for pasture restoration.  相似文献   

19.
Tropical secondary forests form an important part of the landscape. Understanding functional traits of species that colonize at different points in succession can provide insight into community assembly. Although studies on functional traits during forest succession have focused on trees, lianas (woody vines) also contribute strongly to forest biomass, species richness, and dynamics. We examined life history traits of lianas in a forest chronosequence in Costa Rica to determine which traits vary consistently over succession. We conducted 0.1 ha vegetation inventories in 30 sites. To examine the establishment of young individuals, we only included small lianas (0.5–1.5 cm diameter at 1.3 m height). For each species, we identified seed size, dispersal mode, climbing mode, and whether or not the seedling is self‐supporting. We found a strong axis of variation determined by seed size and seedling growth habit, with early successional communities dominated by small‐seeded species with abiotic dispersal and climbing seedlings, while large‐seeded, animal‐dispersed species with free‐standing seedlings increased in abundance with stand age. Contrary to previous research and theory, we found a decrease in the abundance of stem twiners and no decrease in the abundance of tendril‐climbers during succession. Seed size appears to be a better indicator of liana successional stage than climbing mode. Liana life history traits change predictably over succession, particularly traits related to seedling establishment. Identifying whether these trait differences persist into the growth strategies of mature lianas is an important research goal, with potential ramifications for understanding the impact of lianas during tropical forest succession.  相似文献   

20.
The rehabilitation program conducted by Richards Bay Minerals (RBM) of areas exposed to opencast surface mining of sand dunes north of Richards Bay (28°43'S, 32°12'E) on the coast of northern KwaZulu-Natal Province commenced 16 years before this study and has resulted in the development of a series of known-aged stands of vegetation. By assuming that these spatially separated stands develop along a similar pathway over time, instantaneous sampling should reveal successional or other changes usually associated with aging and should provide an opportunity to evaluate the success of rehabilitation. We compare relative densities of pioneer and secondary species, species richness, and a similarity index of the herbaceous layer, tree, beetle, millipede, bird, and small-mammal communities of rehabilitating areas of known age with those of 30-year-old unmined forests and unmined forests of unknown age adjacent to the rehabilitating area. Species richness for all but the mammalian taxa increased with increasing age of rehabilitating stands. For all taxa but the mammals and herbaceous layer, the unmined stands harbored more species than the mined rehabilitating stands. The relative densities of pioneer species of all the taxa decreased with an increase in the age of rehabilitating stands, whereas those of the secondary species increased with an increase in habitat age. Similarity between unmined stands and rehabilitating stands of different ages increased with increasing regeneration age of rehabilitating stands, suggesting that rehabilitating communities, in terms of species composition and relative densities, are developing towards the status of unmined communities. Rehabilitation based on RBM's management program of limited interference is occurring and may result in the reestablishment of a coastal dune forest ecosystem. But rehabilitation resulting from succession depends on the availability of species sources from which colonization can take place. In the Richards Bay mining operation the present mining path is laid out so that such refuges are present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号