首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Supravalvular aortic stenosis (SVAS) is associated with decreased elastin and altered arterial mechanics. Mice with a single deletion in the elastin gene (ELN(+/-)) are models for SVAS. Previous studies have shown that elastin haploinsufficiency in these mice causes hypertension, decreased arterial compliance, and changes in arterial wall structure. Despite these differences, ELN(+/-) mice have a normal life span, suggesting that the arteries remodel and adapt to the decreased amount of elastin. To test this hypothesis, we performed in vitro mechanical tests on abdominal aorta, ascending aorta, and left common carotid artery from ELN(+/-) and wild-type (C57BL/6J) mice. We compared the circumferential and longitudinal stress-stretch relationships and residual strains. The circumferential stress-stretch relationship is similar between genotypes and changes <3% with longitudinal stretch at lengths within 10% of the in vivo value. At mean arterial pressure, the circumferential stress in the ascending aorta is higher in ELN(+/-) than in wild type. Although arterial pressures are higher, the increased number of elastic lamellae in ELN(+/-) arteries results in similar tension/lamellae compared with wild type. The longitudinal stress-stretch relationship is similar between genotypes for most arteries. Compared with wild type, the in vivo longitudinal stretch is lower in ELN(+/-) abdominal and carotid arteries and the circumferential residual strain is higher in ELN(+/-) ascending aorta. The increased circumferential residual strain brings the transmural strain distribution in ELN(+/-) ascending aorta close to wild-type values. The mechanical behavior of ELN(+/-) arteries is likely due to the reduced elastin content combined with adaptive remodeling during vascular development.  相似文献   

2.
RationaleAbdominal aortic aneurysm (AAA) is a complex disease that leads to a localized dilation of the infrarenal aorta, the rupture of which is associated with significant morbidity and mortality. Animal models of AAA can be used to study how changes in the microstructural and biomechanical behavior of aortic tissues develop as disease progresses in these animals. We chose here to investigate the effect of angiotensin II (AngII) in C57BL/6 mice as a first step towards understanding how such changes occur in the established ApoE?/? AngII infused mouse model of AAA.ObjectiveThe objective of this study was to utilize a recently developed device in our laboratory to determine how the microstructural and biomechanical properties of AngII-infused C57BL/6 wildtype mouse aorta change following 14 days of AngII infusion.MethodsC57BL/6 wildtype mice were infused with either saline or AngII for 14 day. Aortas were excised and tested using a device capable of simultaneously characterizing the biaxial mechanical response and load-dependent (unfixed, unfrozen) extracellular matrix organization of mouse aorta (using multiphoton microscopy). Peak strains and stiffness values were compared across experimental groups, and both datasets were fit to a Fung-type constitutive model. The mean mode and full width at half maximum (FWHM) of fiber histograms from two photon microscopy were quantified in order to assess the preferred fiber distribution and degree of fiber splay, respectively.ResultsThe axial stiffness of all mouse aorta was found to be an order of magnitude larger than the circumferential stiffness. The aortic diameter was found to be significantly increased for the AngII infused mice as compared to saline infused control (p=0.026). Aneurysm, defined as a percent increase in maximum diameter of 30% (defined with respect to saline control), was found in 3 of the 6 AngII infused mice. These three mice displayed adventitial collagen that lacked characteristic fiber crimp. The biomechanical response in the AngII infused mice showed significantly reduced circumferential compliance. We also noticed that the ability of the adventitial collagen fibers in AngII infused mice to disperse in reaction to circumferential loading was suppressed.ConclusionsCollagen remodeling is present following 14 days of AngII infusion in C57BL/6 mice. Aneurysmal development occurred in 50% of our AngII infused mice, and these dilatations were accompanied with adventitial collagen remodeling and decreased circumferential compliance.  相似文献   

3.
The hemodynamic conditions of aorta are relatively uniform prenatally and become more heterogeneous postnatally. Our objective was to quantify the heterogeneity of geometry and mechanical properties during growth and development. To accomplish this objective, we obtained a systematic set of data on the geometry and mechanical properties along the length of mouse aorta during postnatal development. C57BL/6 mice of ages 1-33 days were studied. The ascending aorta was cannulated in situ and preconditioned with several cyclic changes in pressure. We investigated the axial variations of geometry (diameter and length) and mechanical properties (stress-stain relation, elastic modulus and compliance) of the mouse aorta from the aortic valve to the common iliac. Our results show that the arterial blood pressure of mice increased from approximately 30 to 80 mmHg during the first 2 wk of life. The stretch ratio, diameter, wall (intima-media) thickness, and total lumen volume of mouse aorta increased with age. The aorta was transformed from a cylindrical tube at birth to a tapered structure during growth. Furthermore, we found the mechanical properties were fairly uniform along the length of the aorta at birth and become more nonuniform with age. We conclude that the rapid change of blood pressure and blood flow after birth alter the geometric and mechanical properties differentially along the length of the aorta. Hence, the axial nonuniformity of the aorta increases as the organ becomes more specialized during growth and development.  相似文献   

4.
Aortic aneurysm is predominantly found in the ascending aorta in patients with Marfan syndrome (MFS). However, descending aortic disease has emerged as a problem since people are living longer because of improved medical and surgical management of the ascending aorta. Diagnostic procedures before disease onset and the mechanisms involved in the transition of normal aortic tissue to aneurysm remain unclear. We determined signs of descending aortic disease before disease onset in mice with a mutation in the fibrillin 1 gene (Fbn1(+/C1039G)), a validated mouse model of disease susceptibility and progression of aortic aneurysm of MFS. We analyzed a tubular unfixed non-aneurysmal descending thoracic aorta from 8-month-old wild-type and Fbn1(+/C1039G) mice by a tubular biaxial tester that works in conjunction with a two-photon nonlinear microscope. Fbn1(+/C1039G) mouse aorta was more compliant in the circumferential direction. Two-photon imaging showed defective organization of adventitial collagen fibers in the pressurized aortas of Fbn1(+/C1039G) mice. Moreover, disruption in the elastic lamina was noted in the absence of aneurysms in pressurized aortas but not unpressurized aortas of Fbn1(+/C1039G) mice. At the molecular level, this altered tissue behavior in non-aneurysmal descending aortas of Fbn1(+/C1039G) mice was accompanied by an increasing trend of canonical but not noncanonical, transforming growth factor-β (TGFβ) signaling. Finally, assays of in vitro collagen lattice formation in mouse wild-type and TGFβ1-deficient embryonic fibroblasts indicate that TGFβ1 can regulate collagen organization. The ability to reveal the presence of altered biomechanics and microstructure coupled with subtle changes in TGFβ signaling provides a novel surrogate measure of tissue susceptibility to aneurysm before disease onset.  相似文献   

5.
Marfan syndrome (MFS) is a connective tissue disorder that results in aortic root aneurysm formation. Reactive oxygen species (ROS) seem to play a role in aortic wall remodelling in MFS, although the mechanism remains unknown. MFS Fbn1C1039G/+ mouse root/ascending (AS) and descending (DES) aortic samples were examined using DHE staining, lucigenin‐enhanced chemiluminescence (LGCL), Verhoeff's elastin‐Van Gieson staining (elastin breakdown) and in situ zymography for protease activity. Fbn1C1039G/+ AS‐ or DES‐derived smooth muscle cells (SMC) were treated with anti‐TGF‐β antibody, angiotensin II (AngII), anti‐TGF‐β antibody + AngII, or isotype control. ROS were detected during early aneurysm formation in the Fbn1C1039G/+ AS aorta, but absent in normal‐sized DES aorta. Fbn1C1039G/+ mice treated with the unspecific NADPH oxidase inhibitor, apocynin reduced AS aneurysm formation, with attenuated elastin fragmentation. In situ zymography revealed apocynin treatment decreased protease activity. In vitro SMC studies showed Fbn1C1039G/+‐derived AS SMC had increased NADPH activity compared to DES‐derived SMC. AS SMC NADPH activity increased with AngII treatment and appeared TGF‐β dependent. In conclusion, ROS play a role in MFS aneurysm development and correspond anatomically with aneurysmal aortic segments. ROS inhibition via apocynin treatment attenuates MFS aneurysm progression. AngII enhances ROS production in MFS AS SMCs and is likely TGF‐β dependent.  相似文献   

6.
Recent studies have suggested that inflammation actively participates in ascending aortic aneurysm formation. The aim of the present study was to evaluate the expression changes of adhesion molecules and MMPs in an experimental model of ascending aortic aneurysm induced by ascending aorta banding in Wistar rats. Twelve rats developed aortic dilation after ascending aorta banding treatment, while nine normal animals underwent surgery without banding were used as controls. Light microscope and scanning electron microscope showed that the wall of the ascending aorta became disorganized as well as infiltration by inflammatory cells in aneurysmal rats. By using immunohistochemical techniques, a significant increase in the immunostaining of MCP-1 was observed in the aneurysmal wall as compared to the normal aortic wall. Under similar experimental conditions, we also found that the immunostaining of ICAM-1 and VCAM-1 was markedly increased in the aneurysmal wall. In addition, gelatin zymographic analysis showed that the expression and activities of MMP-2 and MMP-9 were remarkably enhanced in the ascending aorta of ascending aortic aneurysmal rats as compared to normal rats. These results demonstrate that MCP-1, ICAM-1 and VCAM-1 are involved in the pathogenesis of ascending aortic aneurysm and an increase in the immunostaining and activity of MMP-2 and MMP-9 may promote the progression of ascending aortic aneurysm.  相似文献   

7.

The compliance of the proximal aortic wall is a major determinant of cardiac afterload. Aortic compliance is often estimated based on cross-sectional area changes over the pulse pressure, under the assumption of a negligible longitudinal stretch during the pulse. However, the proximal aorta is subjected to significant axial stretch during cardiac contraction. In the present study, we sought to evaluate the importance of axial stretch on compliance estimation by undertaking both an in silico and an in vivo approach. In the computational analysis, we developed a 3-D finite element model of the proximal aorta and investigated the discrepancy between the actual wall compliance to the value estimated after neglecting the longitudinal stretch of the aorta. A parameter sensitivity analysis was further conducted to show how increased material stiffness and increased aortic root motion might amplify the estimation errors (discrepancies between actual and estimated distensibility ranging from − 20 to − 62%). Axial and circumferential aortic deformation during ventricular contraction was also evaluated in vivo based on MR images of the aorta of 3 healthy young volunteers. The in vivo results were in good qualitative agreement with the computational analysis (underestimation errors ranging from − 26 to − 44%, with increased errors reflecting higher aortic root displacement). Both the in silico and in vivo findings suggest that neglecting the longitudinal strain during contraction might lead to severe underestimation of local aortic compliance, particularly in the case of women who tend to have higher aortic root motion or in subjects with stiff aortas.

  相似文献   

8.
Decreased elastin in mice (Eln+/?) yields a functioning vascular system with elevated blood pressure and increased arterial stiffness that is morphologically distinct from wild-type mice (WT). Yet, function is retained enough that there is no appreciable effect on life span and some mechanical properties are maintained constant. It is not understood how the mouse modifies the normal developmental process to produce a functioning vascular system despite a deficiency in elastin. To quantify changes in mechanical properties, we have applied a fiber-based constitutive model to mechanical data from the ascending aorta during postnatal development of WT and Eln+/? mice. Results indicate that the fiber-based constitutive model is capable of distinguishing elastin amounts and identifying trends during development. We observe an increase in predicted circumferential stress contribution from elastin with age, which correlates with increased elastin amounts from protein quantification data. The model also predicts changes in the unloaded collagen fiber orientation with age, which must be verified in future work. In Eln+/? mice, elastin amounts are decreased at each age, along with the predicted circumferential stress contribution of elastin. Collagen amounts in Eln+/? aorta are comparable to WT, but the predicted circumferential stress contribution of collagen is increased. This may be due to altered organization or structure of the collagen fibers. Relating quantifiable changes in arterial mechanics with changes in extracellular matrix (ECM) protein amounts will help in understanding developmental remodeling and in producing treatments for human diseases affecting ECM proteins.  相似文献   

9.
Thoracic aortic dissection (TAD) is an aortic disease associated with dysregulated extracellular matrix composition and de-differentiation of vascular smooth muscle cells (SMCs). Growth Differentiation Factor 11 (GDF11) is a member of transforming growth factor β (TGF-β) superfamily associated with cardiovascular diseases. The present study attempted to investigate the expression of GDF11 in TAD and its effects on aortic SMC phenotype transition. GDF11 level was found lower in the ascending thoracic aortas of TAD patients than healthy aortas. The mouse model of TAD was established by β-aminopropionitrile monofumarate (BAPN) combined with angiotensin II (Ang II). The expression of GDF11 was also decreased in thoracic aortic tissues accompanied with increased inflammation, arteriectasis and elastin degradation in TAD mice. Administration of GDF11 mitigated these aortic lesions and improved the survival rate of mice. Exogenous GDF11 and adeno-associated virus type 2 (AAV-2)-mediated GDF11 overexpression increased the expression of contractile proteins including ACTA2, SM22α and myosin heavy chain 11 (MYH11) and decreased synthetic markers including osteopontin and fibronectin 1 (FN1), indicating that GDF11 might inhibit SMC phenotype transition and maintain its contractile state. Moreover, GDF11 inhibited the production of matrix metalloproteinase (MMP)-2, 3, 9 in aortic SMCs. The canonical TGF-β (Smad2/3) signalling was enhanced by GDF11, while its inhibition suppressed the inhibitory effects of GDF11 on SMC de-differentiation and MMP production in vitro. Therefore, we demonstrate that GDF11 may contribute to TAD alleviation via inhibiting inflammation and MMP activity, and promoting the transition of aortic SMCs towards a contractile phenotype, which provides a therapeutic target for TAD.  相似文献   

10.
Aortic root aneurysm formation is a cardinal feature of Marfan syndrome (MFS) and likely TGF‐β driven via Smad (canonical) and ERK (non‐canonical) signalling. The current study assesses human MFS vascular smooth muscle cell (SMC) phenotype, focusing on individual contributions by Smad and ERK, with Notch3 signalling identified as a novel compensatory mechanism against TGF‐β‐driven pathology. Although significant ERK activation and mixed contractile gene expression patterns were observed by traditional analysis, this did not directly correlate with the anatomic site of the aneurysm. Smooth muscle cell phenotypic changes were TGF‐β‐dependent and opposed by ERK in vitro, implicating the canonical Smad pathway. Bulk SMC RNA sequencing after ERK inhibition showed that ERK modulates cell proliferation, apoptosis, inflammation, and Notch signalling via Notch3 in MFS. Reversing Notch3 overexpression with siRNA demonstrated that Notch3 promotes several protective remodelling pathways, including increased SMC proliferation, decreased apoptosis and reduced matrix metalloproteinase activity, in vitro. In conclusion, in human MFS aortic SMCs: (a) ERK activation is enhanced but not specific to the site of aneurysm formation; (b) ERK opposes TGF‐β‐dependent negative effects on SMC phenotype; (c) multiple distinct SMC subtypes contribute to a ‘mixed’ contractile‐synthetic phenotype in MFS aortic aneurysm; and (d) ERK drives Notch3 overexpression, a potential pathway for tissue remodelling in response to aneurysm formation.  相似文献   

11.
This study was undertaken to understand elastin's role in the mechanical homeostasis of the arterial wall. The mechanical properties of elastin vary along the aorta, and we hypothesized this maintained a uniform mechanical environment for the elastin, despite regional variation in loading. Elastin's physiological loading was determined by comparing the inflation response of intact and autoclave purified elastin aortas from the proximal and distal thoracic aorta. Elastin's stretch and stress depend on collagen recruitment. Collagen recruitment started in the proximal aorta at systolic pressures (13.3 to 14.6 kPa) and in the distal at sub-diastolic pressures (9.3 to 10.6 kPa). In the proximal aorta collagen did not contribute significantly to the stress or stiffness, indicating that elastin determined the vessel properties. In the distal aorta, the circumferential incremental modulus was 70% higher than in the proximal aorta, half of which (37%) was due to a stiffening of the elastin. Compared to the elastin tissue in the proximal aorta, the distal elastin suffered higher physiological circumferential stretch (29%, P=0.03), circumferential stress (39%, P=0.02), and circumferential stiffness (37%, P=0.006). Elastin's physiological axial stresses were also higher (67%, P=0.003). These findings do not support the hypothesis that the loading on elastin is constant along the aorta as we expected from homeostasis.  相似文献   

12.
The causality of the associations between cellular and mechanical mechanisms of abdominal aortic aneurysm (AAA) formation has not been completely defined. Because reactive oxygen species are established mediators of AAA growth and remodeling, our objective was to investigate oxidative stress-induced alterations in aortic biomechanics and microstructure during subclinical AAA development. We investigated the mechanisms of AAA in an angiotensin II (ANG II) infusion model of AAA in apolipoprotein E-deficient (apoE(-/-)) mice that overexpress catalase in vascular smooth muscle cells (apoE(-/-)xTg(SMC-Cat)). At baseline, aortas from apoE(-/-)xTg(SMC-Cat) exhibited increased stiffness and the microstructure was characterized by 50% more collagen content and less elastin fragmentation. ANG II treatment for 7 days in apoE(-/-) mice altered the transmural distribution of suprarenal aortic circumferential strain (quantified by opening angle, which increased from 130 ± 1° at baseline to 198 ± 8° after 7 days of ANG II treatment) without obvious changes in the aortic microstructure. No differences in aortic mechanical behavior or suprarenal opening angle were observed in apoE(-/-)xTg(SMC-Cat) after 7 days of ANG II treatment. These data suggest that at the earliest stages of AAA development H(2)O(2) is functionally important and is involved in the control of local variations in remodeling across the vessel wall. They further suggest that reduced elastin integrity at baseline may predispose the abdominal aorta to aneurysmal mechanical remodeling.  相似文献   

13.
The objective of the present study is to obtain a systematic set of data on the mechanical properties along the entire length of the mouse aorta. The ascending aorta of seven mice was cannulated near the aortic valve, and the aorta was preconditioned with several cyclic changes in pressure. The perfusion pressure was then increased in 30-mmHg increments from 0 to 150 mmHg. Cab-O-Sil, colloidal silica, was mixed into the perfusate to prevent flow through the microvessels and hence attain zero-flow distensions. Our results show that the residual circumferential strain leads to a uniformity of transmural strain of the aorta in the loaded state along the entire length of the aorta. This uniformity is attained in the range of 60-120 mmHg. At pressures <60 mmHg, the outer strain is greater than the inner strain, whereas at pressures >120 mmHg, the converse is true. Furthermore, we found that the circumferential and longitudinal stress-strain relationships are linear in the pressure range of 30-120 mmHg. Finally, the circumferential modulus is greatest (most rigid) near the diaphragm, and the majority of volume compliance (85%) is in the thoracic compared with the abdominal aorta. These findings are important for an understanding of the hemodynamics of the cardiovascular system of the normal mouse and will serve as a reference state for the study of various diseases in knock-in and knock-out models of this species.  相似文献   

14.
目的探讨基质金属蛋白酶3、9(MMP-3、MMP-9)在升主动脉瘤发病机制中的作用.方法将40只幼年Wistar大鼠随机分为对照组和实验组,制备升主动脉缩窄鼠模型.于术后3-5个月取升主动脉,采用HE染色和免疫组化技术,观察升主动脉形态学变化及MMP-3、MMP-9的蛋白表达.结果升主动脉瘤中MMP-3、MMP-9表达强阳性.结论 MMP-3、MMP-9在升主动脉瘤成因中有可能有重要作用.  相似文献   

15.
Administration of recombinant human relaxin (rhRLX) to conscious rats increases global arterial compliance, and small renal arteries (SRA) isolated from these rats demonstrate increased passive compliance. Here we characterize relaxin-induced vascular remodeling and examine its functional relevance. SRA and external iliac arteries (EIA) were examined in rhRLX-treated (1.0 μg/h for 5 days) and relaxin knockout mice. Arterial geometric remodeling and compositional remodeling were quantified using immunohistochemical and biochemical techniques. Vascular mechanical properties were quantified using an ex vivo preparation wherein pressure-diameter data were obtained at various axial lengths. Compared with vehicle-treated mice, SRA from rhRLX-treated mice showed outward geometric remodeling (increased unstressed wall area and wall-to-lumen area ratio), increased smooth muscle cell (SMC) density, reduction in collagen-to-total protein ratio, and unchanged elastin-to-tissue dry weight ratio. Compared with wild-type mice, relaxin knockout mice exhibited the opposite pattern: decreased unstressed wall area and wall-to-lumen area ratio, decreased SMC density, and increased collagen-to-total protein ratio. Although tissue biaxial strain energy of SRA was not different between rhRLX- and vehicle-treated groups at low-to-physiological circumferential and axial strains, it was lower for the rhRLX-treated group at the highest circumferential strain. In contrast to SRA, relaxin administration was not associated with any vascular remodeling or changes in passive mechanics of EIA. Thus relaxin induces both geometric and compositional remodeling in vessel-specific manner. Relaxin-induced geometric remodeling of SRA is responsible for the increase in passive compliance under low-to-physiological levels of circumferential and axial strains, and compositional remodeling becomes functionally relevant only under high circumferential strain.  相似文献   

16.
Segments of fresh human ascending, thoracic descending and abdominal aortas from eight male sexagenarians were pressurized under closed-end and free extension conditions. The median unpressurized inner radii for the ascending, thoracic and abdominal locations were 14.21, 9.67 and 7.16 mm, respectively. The median thickness was similar in the ascending and thoracic regions, at about 1.6 mm, while it was 1.2 mm in the abdominal region. The opening angle was not statistically different between regions, with a median of ?38°. Under 13.3 kPa pressure, the median circumferential stretch ratio was about 1.26 in all three aortic locations; the median longitudinal stretch ratio was similar in the ascending and thoracic regions, at about 1.13, while it was 1.05 in the abdominal region. Material constants for a three-dimensional hyperelastic anisotropic constitutive model were determined. Experimental, analytical and finite element results showed excellent agreement, validating the novel experimental approach and the numerical methods used. When residual stress was not taken into account, stresses were highest on the inside of the aorta, with a gradient across the wall of about 200 and 50 kPa in the circumferential and longitudinal directions, respectively. When residual stress was included as described by negative opening angles, stresses were highest on the outside of the aorta, with a gradient across the wall in excess of 400 kPa for the circumferential direction, and on the order of 150 kPa for the longitudinal direction. The mechanical consequences of negative opening angles had not been appreciated so far, and deserve further investigation.  相似文献   

17.
While it is known that the aorta stiffens with location and age, little is known about the underlying mechanisms that govern these alterations. The purpose of this study was to investigate the relationship between the anisotropic biomechanical behavior and extracellular matrix microstructure of the human aorta and quantify how each changes with location and age. A total of 207 specimens were harvested from 5 locations (ascending n = 33, arch n = 38, descending n = 54, suprarenal n = 52, and abdominal n = 30) of 31 autopsy donor aortas (aged 3 days to 93 years). Each specimen underwent planar biaxial testing in order to derive quantitative biomechanical endpoints of anisotropic stiffness and compliance. Quantitative measures of fiber alignment and degree of fiber alignment were also generated on the same samples using a small-angle light scattering (SALS) technique. Circumferential and axial stiffening occurred with age and increased from the proximal to distal aorta, and the abdominal region was found to be more stiff than all others (p ≤ 0.006). Specimens from donors aged 61 and above were drastically more stiff than younger specimens (p < 0.001) and demonstrated greater circumferential compliance and axial stiffening (p < 0.001). Fiber direction for all ages and locations was predominantly circumferential (p < 0.001), and the degree of fiber alignment was found to increase with age (p < 0.001). Our results demonstrate that the aorta becomes more biomechanically and structurally anisotropic after age 60; with significant changes occurring preferentially in the abdominal aorta, these changes may play an important role in the predisposition of disease formation (e.g., aneurysm) in this region with age.  相似文献   

18.
We studied whether combined pressure and transesophageal ultrasound monitoring is feasible in the intensive care unit (ICU) setting for global cardiovascular hemodynamic monitoring [systemic vascular resistance (SVR) and total arterial compliance (C(PPM))] and direct estimation of local ascending and descending aortic mechanical properties, i.e., distensibility and compliance coefficients (DC and CC). Pressure-area data were fitted to the arctangent Langewouters model, with aortic cross-sectional area obtained via automated border detection. Data were measured in 19 subjects at baseline, during infusion of sodium nitroprusside (SNP), and after washout. SNP infusion lowered SVR from 1.15 +/- 0.40 to 0.80 +/- 0.32 mmHg.ml(-1).s (P < 0.05), whereas C(PPM) increased from 0.87 +/- 0.46 to 1.02 +/- 0.42 ml/mmHg (P < 0.05). DC and CC increased from 0.0018 +/- 0.0007 to 0.0025 +/- 0.0009 l/mmHg (P < 0.05) and from 0.0066 +/- 0.0028 to 0.0083 +/- 0.0026 cm2/mmHg (P < 0.05), respectively, at the descending, but not ascending, aorta. The Langewouters model fitted the descending aorta data reasonably well. Assessment of local mechanical properties of the human ascending aorta in a clinical setting by automated border detection remains technically challenging.  相似文献   

19.
A pipette aspiration technique was proposed for the measurement of nonlinear mechanical properties of arteries under biaxial stretching. A cross-shaped specimen of porcine thoracic aorta whose principal axes corresponded with the axial and circumferential directions of the aortic walls was excised. The intraluminal surface of the specimen was aspirated with a circular cross-sectioned glass pipette while the specimen was stretching in the axial and circumferential directions in 10% increments. The elastic modulus agreed with the incremental elastic modulus obtained through a conventional pressure-diameter test of the same specimen to within an error of 30% at a circumferential stretch ratio below 1.3 and an axial stretch ratio of 1.0, 1.1 or 1.2, which represent lower range of physiological stretch ratios for the porcine aorta. A rectangular cross-sectioned pipette was utilized to measure anisotropic properties of the specimen under biaxial stretching. When aspirated with such a pipette, the specimens' elastic properties along the length of the rectangular pipette cross section can be neglected. The elastic modulus was found to increase rapidly when the specimen was stretched in the direction of the pipette's width. Thus, pipette aspiration should have many advantages such as well measurement of the local nonlinear and anisotropic mechanical properties of blood vessel walls.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号