首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
The CH2Cl2 and MeOH extracts from leaves of Piper caldense were subjected to chromatographic separation procedures to afford the new prenylated benzoic acid, caldensinic acid (3-[(2′E,6′E,10′E)-11′-carboxy-3′,7′,15′-trimethylhexadeca-2′,6′,10′,14′-tetraenyl]-4,5-dihydroxybenzoic acid) whose structure was determined by spectral analysis, mainly NMR (1H, 13C, HSQC, HMBC) and ESI-MS. The natural compound and derivatives displayed antifungal activity against the phytopathogenic fungi Cladosporium cladosporioides and C. sphaerospermum by direct bioautography.  相似文献   

2.
Croton kerrii; Euphorbiaceae; acyclic diterpenes; anti-reserpine ulcer; (E,E,Z)-11- hydroxymethyl-3,7,15-trimethyl-2,6,10,14-hexadecatetraen-1-ol; (E,E,E)-11-formyl-3,7,15-trimethyl-2,6,10,14-hexadecatetraen-1-ol.  相似文献   

3.
Chemical studies on the constituents of Eranthis cilicica led to isolation of ten chromone derivatives, two of which were previously known. Comprehensive spectroscopic analysis, including extensive 1D and 2D NMR data, and the results of enzymatic hydrolysis allowed the chemical structures of the compounds to be assigned as 8,11-dihydro-5-hydroxy-2,9-dihydroxymethyl-4H-pyrano[2,3-g][1]benzoxepin-4-one, 5,7-dihydroxy-8-[(2E)-4-hydroxy-3-methylbut-2-enyl]-2-methyl-4H-1-benzopyran-4-one, 5,7-dihydroxy-2-hydroxymethyl-8-[(2E)-4-hydroxy-3-methylbut-2-enyl]-4H-1-benzopyran-4-one, 7-[(β-d-glucopyranosyl)oxy]-5-hydroxy-8-[(2E)-4-hydroxy-3-methylbut-2-enyl]-2-methyl-4H-1-benzopyran-4-one, 7-[(β-d-glucopyranosyl)oxy]-5-hydroxy-2-hydroxymethyl-8-[(2E)-4-hydroxy-3-methylbut-2-enyl]-4H-1-benzopyran-4-one, 9-[(O-β-d-glucopyranosyl-(1→6)-β-d-glucopyranosyl)oxy]methyl-8,11-dihydro-5,9-dihydroxy-2-methyl-4H-pyrano[2,3-g][1]benzoxepin-4-one, 8,11-dihydro-5,9-dihydroxy-9-hydroxymethyl-2-methyl-4H-pyrano[2,3-g][1]benzoxepin-4-one, and 7-[(O-β-d-glucopyranosyl-(1→6)-β-d-glucopyranosyl)oxy]methyl-4-hydroxy-5H-furo[3,2-g][1]benzopyran-5-one, respectively. The isolated compounds were evaluated for their antioxidant activity.  相似文献   

4.
Tanaka N  Takaishi Y 《Phytochemistry》2006,67(19):2146-2151
Six xanthones, 1,3,7-trihydroxy-2-(2-hydroxy-3-methyl-3-butenyl)-xanthone (1), 1,7-dihydroxy-2,3-[2'-(1-hydroxy-1-methylethyl)-dihydrofurano]-xanthone (2), 1,3,7-trihydroxy-5-methoxyxanthone (3), 1,7-dihydroxy-5,6-dimethoxyxanthone (4), 4,5-dihydroxy-2,3-dimethoxyxanthone (5), 1,3-dihydroxy-2,4-dimethoxyxanthone (6) and 21 known xanthones were isolated from the leaves and stems of Hypericum chinense. Their structures were established based on spectroscopic studies.  相似文献   

5.
Two new isomeric coumarins were isolated from leaves of Boenninghausenia albiflora Reichb. Their structures were elucidated as (E)-7-hydroxy-6-(3-hydroxy-3-methyl-1-butenyl)-2(H)-1-benzpyran-2-one and (Z)-7-hydorxy-6-(3-hydroxy-3-methyl-1-butenyl)-2(H)-1-benzopyran-2-one.  相似文献   

6.
Wang Y  Xu K  Lin L  Pan Y  Zheng X 《Phytochemistry》2007,68(9):1300-1306
Five geranyl dihydrochalcones, 1-(2,4-dihydroxyphenyl)-3-{4-hydroxy-6,6,9-trimethyl-6a,7,8,10a-tetrahydro-6H-dibenzo[b,d]pyran-5-yl}-1-propanone (2), 1-(2,4-dihydroxyphenyl)-3-[3,4-dihydro-3,8-dihydroxy-2-methyl-2-(4-methyl-3-pentenyl)-2H-1-benzopyran-5-yl]-1-propanone (4), 1-(2,4-dihydroxyphenyl)-3-[8-hydroxy-2-methyl-2-(3,4-epoxy-4-methyl-1-pentenyl)-2H-1-benzopyran-5-yl]-1-propanone (5), 1-(2,4-dihydroxyphenyl)-3-[8-hydroxy-2-methyl-2-(4-hydroxy-4-methyl-2-pentenyl)-2H-1-benzopyran-5-yl]-1-propanone (8), and 2-[6-hydroxy-3,7-dimethylocta-2(E),7-dienyl]-2',3,4,4'-tetrahydroxydihydrochalcone (9), along with four known geranyl flavonoids (1, 3, 6, 7), were isolated from the leaves of Artocarpus altilis. Their structures were established by spectroscopic means and by comparison with the literature values. Compounds 2, 4, and 9 exhibited moderate cytotoxicity against SPC-A-1, SW-480, and SMMC-7721 human cancer cells.  相似文献   

7.
A series of 2-(chloromethyl)-3-(4-methyl-6-oxo-5-[(E)-phenyldiazenyl]-2-thioxo-5,6-dihydropyrimidine-1(2H)-yl)quinazoline-4(3H)-ones 9a-j was synthesized by treating 2-(chloroacetyl)amino benzoic acid with 3-amino-6-methyl-5-[(E)-phenyldiazenyl]-2-thioxo-2,5-dihydropyrimidine-4(3H)-one 8a-j and was screened for in vitro antibacterial activities against a representative panel of Gram-positive and Gram-negative bacteria. The compounds were synthesized in excellent yields and the structures were corroborated on the basis of IR, 1H NMR, Mass and elemental analysis data. All the synthesized compounds elicited the potent inhibitory action against all the tested bacterial stains. Furthermore, in order to explore the antioxidant potential of newly synthesized compounds, the free radical scavenging activity measurement were performed by the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) assay method. It is revealed from the antioxidant screening results that the compounds 9c and f manifested profound antioxidant potential.  相似文献   

8.
Ratios of volatile phytochemicals potentially offer a means for insects to recognise their host-plant species. However, for this to occur ratios of volatiles would need to be sufficiently consistent between plants and over time to constitute a host-characteristic cue. In this context we collected headspace samples from Vicia faba plants to determine how consistent ratios of key volatile phytochemicals used in host location by one of its insect pests, the black bean aphid, Aphis fabae, were. These were (E)-2-hexenal, (Z)-3-hexen-1-ol, 1-hexanol, benzaldehyde, 6-methyl-5-hepten-2-one, octanal, (Z)-3-hexen-1-yl acetate, (R)-linalool, methyl salicylate, decanal, undecanal, (E)-caryophyllene, (E)-β-farnesene, (S)-germacrene D, and (EE)-4,8,12-trimethyl-1,3,7,11-tridecatetraene, which had previously been found to be electrophysiologically and behaviourally active to A. fabae. Although the quantities of volatiles produced by V. faba showed large between plant and diurnal variation, correlations between quantities of compounds indicated that the ratios of certain pairs of volatiles were very consistent. This suggests that there is a host-characteristic cue available to A. fabae in the form of ratios of volatiles.  相似文献   

9.
Feng Gao  Tom J. Mabry 《Phytochemistry》1985,24(12):3061-3063
A new geranylgeraniol type diterpene, named viguieric acid, was isolated from the dichloromethane extracts of V. deltoidea. Its structure was assigned to be (2Z,6Z,10E)-3,15-dimethyl-7-carboxy-11-formyl-2,6,10,14-hexadecatetraen-1-ol.  相似文献   

10.
Bioassay-guided extraction of the stem bark of Knema laurina showed the acetylcholinesterase (AChE) inhibitory activity of DCM and hexane fractions. Further repeated column chromatography of hexane and DCM fractions resulted in the isolation and purification of five alkenyl phenol and salicylic acid derivatives. New compounds, (+)-2-hydroxy-6-(10′-hydroxypentadec-8′(E)-enyl)benzoic acid (1) and 3-pentadec-10′(Z)-enylphenol (2), along with known 3-heptadec-10′(Z)-enylphenol (3), 2-hydroxy-6-(pentadec-10′(Z)-enyl)benzoic acid (4), and 2-hydroxy-6-(10′(Z)-heptadecenyl)benzoic acid (5) were isolated from the stem bark of this plant. Compounds (1-5) were tested for their acetylcholinesterase inhibitory activity. The structures of these compounds were elucidated by the 1D and 2D NMR spectroscopy, mass spectrometry and chemical derivatizations. Compound 5 showed strong acetylcholinesterase inhibitory activity with IC50 of 0.573 ± 0.0260 μM. Docking studies of compound 5 indicated that the phenolic compound with an elongated side chain could possibly penetrate deep into the active site of the enzyme and arrange itself through π-π interaction, H-bonding, and hydrophobic contacts with some critical residues along the complex geometry of the active gorge.  相似文献   

11.
Two diastereoisomers of 4-carboxy-4-hydroxy-2-aminoadipic acid have been isolated from leaves and inflorescences of Caylusea abyssinica. Green parts of the plant also contain appreciable amounts of the two diastereoisomers of 4-hydroxy-4-methylglutamic acid, 3-(3-carboxyphenyl)alanine, (3-carboxyphenyl)glycine, 3-(3-carboxy-4-hydroxyphenyl)alanine, (3-carboxy-4-hydroxyphenyl)glycine and in low concentration 2-aminoadipic acid, saccharopine [(2S, 2′S)-N6-(2-glutaryl)lysine] and some γ-glutamyl peptides. The acidic amino acids were separated from other amino acids on an Ecteola ion exchange column with M pyridine as eluant.  相似文献   

12.
Vanillic acid (4-hydroxy-3-methoxybenzoic acid) supported the anaerobic (nitrate respiration) but not the aerobic growth of Pseudomonas sp. strain PN-1. Cells grown anaerobically on vanillate oxidized vanillate, p-hydroxybenzoate, and protocatechuic acid (3,4-dihydroxybenzoic acid) with O2 or nitrate. Veratric acid (3,4-dimethoxybenzoic acid) but not isovanillic acid (3-hydroxy-4-methoxybenzoic acid) induced cells for the oxic and anoxic utilization of vanillate, and protocatechuate was detected as an intermediate of vanillate breakdown under either condition. Aerobic catabolism of protocatechuate proceeded via 4,5-meta cleavage, whereas anaerobically it was probably dehydroxylated to benzoic acid. Formaldehyde was identified as a product of aerobic demethylation, indicating a monooxygenase mechanism, but was not detected during anaerobic demethylation. The aerobic and anaerobic systems had similar but not identical substrate specificities. Both utilized m-anisic acid (3-methoxybenzoic acid) and veratrate but not o- or p-anisate and isovanillate. Syringic acid (4-hydroxy-3,5-dimethoxybenzoic acid), 3-O-methylgallic acid (3-methoxy-4,5-dihydroxybenzoic acid), and 3,5-dimethoxybenzoic acid were attacked under either condition, and formaldehyde was liberated from these substrates in the presence of O2. The anaerobic demethylating system but not the aerobic enzyme was also active upon guaiacol (2-methoxyphenol), ferulic acid (3-[4-hydroxy-3-methoxyphenyl]-2-propenoic acid), 3,4,5-trimethoxycinnamic acid (3-[3,4,5-trimethoxyphenyl]-2-propenoic acid), and 3,4,5-trimethoxybenzoic acid. The broad specificity of the anaerobic demethylation system suggests that it probably is significant in the degradation of lignoaromatic molecules in anaerobic environments.  相似文献   

13.
Chemical investigation of the methanol extract of the viscous secretion on the surface of immature fruits of Paulownia tomentosa furnished nine geranylated flavanones, 6-geranyl-5,7-dihydroxy-3',4'-dimethoxyflavanone (1), 6-geranyl-3',5,7-trihydroxy-4'-methoxyflavanone (2), 6-geranyl-4',5,7-trihydroxy-3',5'-dimethoxyflavanone (3), 6-geranyl-4',5,5',7-tetrahydroxy-3'-methoxyflavanone (4), 6-geranyl-3,3',5,7-tetrahydroxy-4'-methoxyflavanone (5), 4',5,5',7-tetrahydroxy-6-[6-hydroxy-3,7-dimethyl-2(E),7-octadienyl]-3'-methoxyflavanone (6), 3,3',4',5,7-pentahydroxy-6-[6-hydroxy-3,7-dimethyl-2(E),7-octadienyl]flavanone (7), 3,3',4',5,7-pentahydroxy-6-[7-hydroxy-3,7-dimethyl-2(E)-octenyl]flavanone (8), and 3,4',5,5',7-pentahydroxy-3'-methoxy-6-(3-methyl-2-butenyl)flavanone (9), along with six known geranylated flavanones. Among these, compounds 4, 6-9 and the known 6-geranyl-3',4',5,7-tetraahydroxyflavanone (diplacone), 6-geranyl-3,3',4',5,7-pentahydroxyflavanone (diplacol) and 3',4',5,7-pentahydroxy-6-[7-hydroxy-3,7-dimethyl-2(E)-octenyl]flavanone showed potent radical scavenging effects towards DPPH radicals.  相似文献   

14.
Isotopic labeling of the C-6 of a model glycosphingolipid (2S, 3R, 4E)-2-(1-adamantanacetamido)-3-hydroxy-4-octadecenyl-β-d-galactopyranoside, GalCAda, is described. Oxidation of (2S, 3R, 4E)-2-(1-adamantanacetamido)-3-(benzoyloxy)-4-octadecenyl-2,3,4-tri-O-benzoyl-β-d-galactopyranoside with o-iodoxybenzoic acid gave the dialdoside derivative in good yield. Reduction of the dialdoside with sodium borodeuteride gave the deuterium labeled d-GalCAda, with a cumulative yield of 35%.  相似文献   

15.
The formation of furoquinoline alkaloids and of edulinine, elaborated by cell suspension cultures of Ruta graveolens, was found to occur by way of 4-hydroxy-2-quinolone. Other substrates transformed to furoquinolines included 4-hydroxy- and 4-methoxy-3-(3-methyl-2-butenyl)-2-quinolone, known earlier as natural precursors in studies with whole plants. Involvement of dictamnine as a natural precursor of 8-methoxydictamnine (γ-fagarine) and skimmianine was proved using 14C-labelled compounds. Edulinine in the cell suspensions was formed from such substrates as 4-hydroxy-N-methyl-2-quinolone, 4-hydroxy-3-(3-methyl-2-butenyl)-N-methyl-2-quinolone and its 4- methyl ether; this is probably the natural biosynthetic sequence. Changes in alkaloid yields were noted upon prolonged subculturing.  相似文献   

16.
A germination stimulant, fabacyl acetate, was purified from root exudates of pea (Pisum sativum L.) and its structure was determined as ent-2′-epi-4a,8a-epoxyorobanchyl acetate [(3aR,4R,4aR,8bS,E)-4a,8a-epoxy-8,8-dimethyl-3-(((R)-4-methyl-5-oxo-2,5-dihydrofuran-2-yloxy)methylene)-2-oxo-3,3a,4,5,6,7,8,8b-decahydro-2H-indeno[1,2-b]furan-4-yl acetate], by 1D and 2D NMR spectroscopic, ESI- and EI-MS spectrometric, X-ray crystallographic analyses, and by comparing the 1H NMR spectroscopic data and relative retention times (RRt) in LC-MS and GC-MS with those of synthetic standards prepared from (+)-orobanchol and (+)-2′-epiorobanchol. The 1H NMR spectroscopic data and RRt of fabacyl acetate were identical with those of an isomer prepared from (+)-2′-epiorobanchol except for the opposite sign in CD spectra. This is the first natural ent-strigolactone containing an epoxide group. Fabacyl acetate was previously detected in root exudates of other Fabaceae plants including faba bean (Vicia faba L.) and alfalfa (Medicago sativa L.).  相似文献   

17.
The novel hydroquinone, (E)-2-(4-hydroxy-3-methyl-2-butenyl)-hydroquinone, and known compound, polyporenic acid C, were isolated as matrix metallo-proteinase inhibitors from the mushroom, Piptoporus betulinus.  相似文献   

18.
Three further derivatives of 5,7,2',4'-tetrahydroxy-6-methyl isoflavanone have been isolated from the root extract of Desmodium canum and assigned the structures 2,3-dihydro-5,7-dihydroxy-6-methyl-3-(1a,2,3,3a,8b,8c-hexahydro-6-hydroxy-1,1,3a-trimethyl-1H-4-oxabenzo[f]cyclobut[c,d]inden-7-yl)-4H-1-benzopyran-4-one (1) 2,3-dihydro-5,7-dihydroxy-6-methyl-3-(6a,7,8,10a-tetrahydro-3-hydroxy-6,6,9-trimethyl-6H-dibenzo[b,d]pyran-2-yl)-4H-1-benzopyran-4-one (2) 2,3-dihydro-5,7-dihydroxy-6-methyl-3-(3-hydroxy-6,6,9-trimethyl-6H-dibenzo[b,d]pyran-2-yl) 4H-1-benzopyran-4-one (3). The three compounds and the previously isolated chromene 4 all derive from the geranylated precursor 5 by a series of cannabinoid-like oxidative rearrangements.  相似文献   

19.
Chemical investigation of the combined dichloromethane and ethyl acetate extracts of the fruits of Artocarpus nobilis, furnished four new geranylated phenolic constituents, 2,4,4'-trihydroxy-3-[(2E)-5-methoxy-3,7-dimethylocta-2,6-dienyl]chalcone (4), 1-(3,4-dihydro-3,5-dihydroxy-2-methyl-2-(3-methyl-2-butenyl)-2H-1-benzopyran-6-yl-3-(4-hydroxyphenyl)-2(E)-propen-1-one (5), 8-geranyl-3',4',7-trihydroxyflavone (8), 3'-geranyl-4',5,7-trihydroxyflavanone (9), together with known related compounds, xanthoangelol (1), xanthoangelol B (2), 3-geranyl-2,3',4,4'-tetrahydroxychalcone (3), lespeol (6), 8-geranyl-4',7-dihydroxyflavanone (7), and isonymphaeol-B (10). Compounds 3, 8 and 10 showed strong antioxidant activity against DPPH radical by spectrophotometric method.  相似文献   

20.
Antifungal activity guided fractionation of the n-butanol extract from the methanol extract of the leaves of Artocarpus nobilis furnished 2',4',4-trihydroxy-3'-geranylchalcone (1), 2 ',4',4-trihydroxy-3'-[6-hydroxy-3,7-dimethyl-2(E),7-octadienyl]chalcone (2), 2',4',4-trihydroxy-3'-[2-hydroxy-7-methyl-3-methylene-6-octaenyl]chalcone (3), 2',3,4,4'-tetrahydroxy-3'-geranylchalcone (4), 2',3,4,4'-tetrahydroxy-3'-[6-hydroxy-3,7-dimethyl-2(E),7-octadienyl]chalcone (5). The chalcones 3 and 5 are new natural products whereas 1 and 2 are reported first time from the family Moraceae. All these compounds showed good fungicidal activity against Cladosporium cladosporioides and high radical scavenging activity towards the 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical in TLC bio-autography method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号