首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A group of 1-(4-methane(amino)sulfonylphenyl)-5-(4-substituted-aminomethylphenyl)-3-trifluoromethyl-1H-pyrazoles (12af) was synthesized and evaluated as anti-inflammatory agents. While all the compounds (20 mg/kg) showed significant anti-inflammatory activity after 3 h of inflammation induction (69–89%) as compared to celecoxib (80%), 1-(4-methanesulfonylphenyl)-5-(4-methylaminomethylphenyl)-3-trifluoromethyl-1H-pyrazole (12a) was found to be the most effective one (89%). The synthesis of model hybrid nitric oxide donor N-diazen-1-ium-1,2-diolate derivatives of 1-(4-methanesulfonylphenyl)-5-(4-substituted-aminomethylphenyl)-3-trifluoromethyl-1H-pyrazoles (10af) requires further investigation since the reaction of N-(4-(1-(4-(methylsulfonyl)phenyl)-3-(trifluoromethyl)-1H-pyrazol-5-yl)benzyl)ethanamine (12b) or 1-(4-(1-(4-(methylsulfonyl)phenyl)-3-(trifluoromethyl)-1H-pyrazol-5-yl)benzyl)piperazine (12c) with nitric oxide furnished N-nitroso derivatives (13 and 14), respectively, rather than the desired N-diazen-1-ium-1,2-diolate derivatives (10b and 10c).  相似文献   

2.
A series of novel 2, 5-disubstituted 1, 3, 4-Oxadiazole derivatives as a potential anti-inflammatory, and anti-oxidant agent were synthesized via cyclisation. Hydrazide molecule treated with substituted acids in the presence of phosphorus oxychloride (POCl3) as an efficient reagent as well as solvent by conventional method with shorter reaction time and excellent yield. The newly synthesized 1, 3, 4- oxadiazole derivatives exhibited excellent to good anti-inflammatory and anti-oxidant activities compaired to the standard drugs. Molecular docking study on the crucial anti-inflammatory target–cyclooxygenase-2 (COX-2) revealed the ability of the scaffold to correctly recognize the active site and achieve significant bonded and non-bonded interactions with key residues therein. This study could identify potential compounds which can be pertinent starting points for structure-based drug design to obtain newer anti-inflammatory agents.  相似文献   

3.
In a search for novel compounds with analgesic and anti-inflammatory activity, a series of regioisomeric 1-(3-pyridazinyl)-3-arylpyrazole (5af, 6af) and 1-(3-pyridazinyl)-5-arylpyrazole (7af, 8af) derivatives were synthesized. The structure of these regioisomers was confirmed by spectral techniques. The compounds were preliminarily screened at 8 μM concentration for their inhibitory activity against cyclooxygenase enzymes, COX-1 and COX-2, using a human whole blood test. The tested derivatives showed inhibitory activity for both enzymes and are worthy of further investigation for developing better leads.  相似文献   

4.
A new series of 2-substituted-4-(benzo[d][1,3]dioxol-5-yl)-6-phenylpyridazin-3(2H)-one derivatives has been synthesized and studied. The in vivo anti-inflammatory and analgesic activities of the synthesized compounds were evaluated using carrageen rat paw edema model and acetic acid induced writhing model, respectively. Side effect profile of the newly synthesized pyridazinones was assessed by gastric ulcerogenic and anti-platelet activity. The compounds were further evaluated for their inhibitory activity against cyclooxygenase enzyme (COX-1/COX-2) by in vitro colorimetric COX (ovine) inhibitor screening assay method. The p-flourophenylpiperazine substituted analogue 14 exhibited most potent anti-inflammatory and analgesic activities with lower ulcer index and extremely good selectivity towards COX-2 versus COX-1 enzyme with a selectivity index of 10. Molecular docking studies showed appreciable binding of new pyridazinone analogues with the amino acids present at the active site of hCOX-2 enzyme.  相似文献   

5.
A series of 3-(4,6-disubtituted-2-thioxo-1,2,3,4-tetrahydropyrimidin-5-yl) propanoic acid derivatives has been synthesized by condensation of thiourea, 5-(4-subtituted phenyl)-5-oxopentanoic acid and substituted aldehyde. The synthesized compounds were screened for their anti-inflammatory activity using rat paw edema method. Most of the compounds from the series showed significant (p <0.05) anti-inflammatory activity.  相似文献   

6.
Human mPGES-1 has emerged as a promising target in exploring a next generation of anti-inflammatory drugs, as selective mPGES-1 inhibitors are expected to discriminatively suppress the production of induced PGE2 without blocking the normal biosynthesis of other prostanoids including homeostatic PGE2. Therefore, this therapeutic approach is believed to reduce the adverse effects associated with the application of traditional non-steroidal anti-inflammatory drugs (tNSAIDs) and selective COX-2 inhibitors (coxibs). Identified from structure-based virtue screening, the compound with (Z)-5-benzylidene-2-iminothiazolidin-4-one scaffold was used as lead in rational design of novel inhibitors. Besides, we further designed, synthesized, and evaluated 5-((1,3-diphenyl-1H-pyrazol-4-yl)methylene)pyrimidine-2,4,6(1H,3H,5H)-triones and structurally related derivatives for their in vitro inhibitory activities. According to in vitro activity assays, a number of these compounds were capable of inhibiting human mPGES-1, with the desirable selectivity for mPGES-1 over COX isozymes.  相似文献   

7.
A series of (R)-3-amino-1-((3aS,7aS)-octahydro-1H-indol-1-yl)-4-(2,4,5-trifluorophenyl)butan-1-one derivatives was designed, synthesized, and evaluated as novel inhibitors of dipeptidyl peptidase-4 (DPP-4) for the treatment of type 2 diabetes. Most of the synthesized compounds demonstrated good inhibition activities against DPP-4. Among these, compounds 3e, 4c, 4l, and 4n exhibited prominent inhibition activities against DPP-4, with IC50s of 0.07, 0.07, 0.14, and 0.17 μM, respectively. The possible binding modes of compounds 3e and 4n with dipeptidyl peptidase-4 were also explored by molecular docking simulation. These potent DPP-4 inhibitors were optimized for the absorption, distribution, metabolism, and excretion (ADME) properties, and compound 4n displayed an attractive pharmacokinetic profile (F = 96.3%, t1/2 = 10.5 h).  相似文献   

8.
A series of (Z)-5-((N-benzyl-1H-indol-3-yl)methylene)imidazolidine-2,4-dione (9a9m) and 5-((N-benzyl-1H-indol-3-yl)methylene)pyrimidine-2,4,6(1H,3H,5H)-trione (10a10i) derivatives that incorporate a variety of aromatic substituents in both the indole and N-benzyl moieties have been synthesized. These analogs were evaluated for their radiosensitization activity against the HT-29 cell line. Three analogs, 10a, 10b, and 10c were identified as the most potent radiosensitizing agents.  相似文献   

9.
A new series of antimicrobial derivatives [3-(4,5-diaryl-1H-imidazol-2-yl)-1H-indole)] have been synthesized with potent activity against strains of Staphylococcus aureus, including methicillin-resistant strains (MRSA). Compound 17 [3-(4,5-bis(4-fluorophenyl)-1H-imidazol-2-yl)-5-bromo-1H-indole], the most active derivative was shown to inhibit the growth of all Gram-positive strains tested, including vancomycin resistant Enterococcus faecalis and Enterococcus faecium with no activity against Gram-negative bacteria.  相似文献   

10.
A series of new N-substituted (S)-5-[1-(2-methoxymethylpyrrolidinyl)sulfonyl]isatin derivatives has been synthesized and tested as inhibitors of caspases-3 and -7, which are known to be downstream enzymes critical in the execution of apoptosis. N-Propyl- and N-butyl isatins, as well as the corresponding terminal alcohols and regioisomeric fluorobutyl derivatives were shown to be excellent inhibitors having different binding potencies for caspases-3 and -7. In contrast, the corresponding fluoroethyl and fluoropropyl compounds were about 100–1000 times less active. Fluorinated N-benzyl isatins as well as trifluoroalkyl and difluoroalkyl derivatives were moderate inhibitors. However, isatins bearing different alkylether groups at N-1 are very weak or not active as inhibitors of caspases-3 and -7.  相似文献   

11.
A series of N-benzyl-1-heteroaryl-3-(trifluoromethyl)-1H-pyrazole-5-carboxamides targeting co-activator associated arginine methyltransferase 1 (CARM1) have been designed and synthesized. The potency of these inhibitors was influenced by the nature of the heteroaryl fragment with the thiophene analogues being superior to thiazole, pyridine, isoindoline and benzofuran based inhibitors.  相似文献   

12.
Novel N-(1-(4-(dibenzo[b,f][1,4]thiazepin-11-yl)piperazin-1-yl)-1-oxo-3-phenylpropan-2-yl derivatives were designed, synthesized and their chemical structures were confirmed by 1H NMR, 13C NMR and Mass spectra. The anticancer activities of the newly synthesized compounds were evaluated in vitro against three human cancer cell lines including K562, Colo-205 and MDA-MB 231 by MTT assay. The screening results showed that five compounds (16b, 16d, 16i, 16p and 16q) exhibited potent cytotoxic activities with IC50 values between 20 and 40 μM. Further in vitro studies revealed that inhibition of sirtuins could be the possible mechanism of action of these molecules.  相似文献   

13.
Novel (E)-1-aryl-3-(3-aryl-1-phenyl-1H-pyrazol-4-yl)prop-2-en-1-ones 5/6 (pyrazolic chalcones) were synthesized from a Claisen–Schmidt reaction of 3-aryl-1-phenylpyrazol-4-carboxaldehydes 4 with several acetophenone derivatives 1. Subsequently, the microwave-assisted cyclocondensation reaction of chalcones 5/6 with hydrazine afforded the new racemic 3-aryl-4-(3-aryl-4,5-dihydro-1H-pyrazol-5-yl)-1-phenyl-1H-pyrazoles 7 or their N-acetyl derivatives 8 and 9 when reactions where carried out in DMF or acetic acid, respectively. Several of these compounds were screened by the US National Cancer Institute (NCI) for their ability to inhibit 60 different human tumor cell lines, where 5c and 9g showed remarkable activity mainly against leukemia (K-562 and SR), renal cancer (UO-31) and non-small cell lung cancer (HOP-92) cell lines, with the most important GI50 values ranging from 0.04 to 11.4 μM, from the in vitro assays.  相似文献   

14.
(Z)-2-((1H-Indazol-3-yl)methylene)-6-methoxy-7-(piperazin-1-ylmethyl)benzofuran-3(2H)-one is a potent and selective proviral integration site in moloney murine leukemia virus kinase 1 (PIM1) inhibitor with an IC50 value of 3 nM. (Z)-2-((1H-Indazol-3-yl)methylene)-6-[11C]methoxy-7-(piperazin-1-ylmethyl)benzofuran-3(2H)-one, a new potential PET probe for imaging of the enzyme PIM1, was first designed and synthesized in 20–30% decay corrected radiochemical yield and 370–740 GBq/μmol specific activity at end of bombardment (EOB). The synthetic strategy was to prepare a carbon-11-labeled Boc-protected intermediate followed by a quick acidic de-protection.  相似文献   

15.
Hypolipidemic effects of the newly synthesized 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione-based fibrates were evaluated in Triton WR-1339 and high-fat diet (HFD)-induced hyperlipidemic mice. Preliminary screening of all the synthesized compounds was done by using an acute model (Triton WR-1339 model), in which compound 6 shown more significant antidyslipidemic activity than fenofibrate (FF). The compound 6 was also found to reduce serum triglyceride (TG), total cholesterol (TC) and low density lipoprotein cholesterin (LDL) in HFD-induced hyperlipidemic mice. Moreover, compound 6 displayed hepatoprotective effect, a significant amelioration in hepatic indices (AST and ALT) toxicity was observed and the histological examination showed that compound 6 inhibited the development of hepatic lipid accumulation and ameliorated the damage in hepatic tissue compared to model mice. Additional effects such as the potent antioxidant and anti-inflammatory action confirmed and reinforced the efficacy of compound 6 as a new agent of dual-effect hypolipidemic and hepatoprotective activities.  相似文献   

16.
In the present study, a series of 3-hydroxy-N-(2-(substituted phenyl)-4-oxothiazolidin-3-yl)-2-napthamide derivatives were synthesized, characterized and evaluated for theirin vitroactivity, i. e., antimicrobial, antioxidant and anti-inflammatory. The target compounds were synthesized by condensation reaction of 3-hydroxy-2-naphthoic acid hydrazide with substituted benzaldehydes which were subjected to cyclization reaction with thioglycolic acid and ZnCl2 to get target compounds. The synthesized 3-hydroxy-N-(2-(substituted phenyl)-4-oxothiazolidin-3-yl)-2-napthamide derivatives were examined for their antimicrobial activity and 3-hydroxy-N-(4-oxo-2-(3,4,5-trimethoxyphenyl)thiazolidin-3-yl)-2-naphthamide ( S20 ) exhibited the highest antimicrobial potential. The N′-(2,3-dichlorobenzylidene)-3-hydroxy-2-naphthohydrazide ( S5 ) displayed good antifungal potential against Rhizopus oryzae, whereas N′-(2,3-dichlorobenzylidene)-3-hydroxy-2-naphthohydrazide ( S20 ) showed the highest antioxidant potential and N-(2-(2,6-dichlorophenyl)-4-oxothiazolidin-3-yl)-3-hydroxy-2-naphthamide ( S16 ) displayed the highest anti-inflammatory activity. The results of molecular docking studies revealed that existence of hydrogen bonding and hydrophobic interactions with their respective proteins. In silico ADMET studies were carried out by Molinspiration, Pre-ADMET and OSIRIS property explorer to predict the pharmacokinetic behaviour of synthesized 3-hydroxy-N-(2-(substituted phenyl)-4-oxothiazolidin-3-yl)-2-napthamide derivatives.  相似文献   

17.
A series of new 2-(1-(2-(substituted-phenyl)-5-methyloxazol-4-yl)-3-(2-substitued-phenyl)-4,5-dihydro-1H-pyrazol-5-yl)-7-substitued-1,2,3,4-tetrahydroisoquinoline derivatives were synthesized. The results showed that compounds 9q and 10q can strongly inhibit Staphylococcus aureus DNA gyrase and Bacillus subtilis DNA gyrase (with IC50s of 0.125 and 0.25 μg/mL against S. aureus DNA gyrase, 0.25 and 0.125 μg/mL against B. subtilis DNA gyrase). On the basis of the biological results, structure–activity relationships were also discussed.  相似文献   

18.
Gene duplication and alternative splicing (AS) are two evolutionary mechanisms that can increase functional diversification of genes. Here, we found that a previously uncharacterized ZmMPK4 (ZmMPK3-1b in this research) is a splicing variant. ZmMPK3-1 can undergo AS by retaining the third intron (90 nucleotides) to generate an atypical mitogen-activated protein kinase (MAPK) gene: ZmMPK3-1b. Furthermore, we found that ZmMPK3-1 and ZmMPK3-2 were segmentally duplicated genes in the maize genome, located on chromosomes 9 and 1, respectively. ZmMPK3-1 and ZmMPK3-2 were expressed differentially in maize root, stem, and leaf. ZmMPK3-1 was expressed predominantly in roots under normal growth conditions, whereas ZmMPK3-2 accumulated predominantly in stem and leaf. In leaf, both ZmMPK3-1 and ZmMPK3-2 were regulated by ABA (100 μM) or NaCl (200 mM). AS of ZmMPK3-1 occurred mainly in leaves in our tested organs. In leaves, splicing variant ZmMPK3-1a, but not ZmMPK3-1b, is regulated by ABA (100 μM) or NaCl (200 mM).  相似文献   

19.
N-Aryl-3-(indol-3-yl)propanamides were synthesized and their immunosuppressive activities were evaluated. This study highlighted the promising potency of 3-[1-(4-chlorobenzyl)-1H-indol-3-yl]-N-(4-nitrophenyl)propanamide 15 which exhibited a significant inhibitory activity on murine splenocytes proliferation assay in vitro and on mice delayed-type hypersensitivity (DTH) assay in vivo.  相似文献   

20.
A series of 3(R)-aminopyrrolidine derivatives were designed and synthesized for JAK1-selective inhibitors through the modification of tofacitinib’s core structure, (3R,4R)-3-amino-4-methylpiperidine. From the new core structures, we selected (R)-N-methyl-N-(pyrrolidin-3-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine as a scaffold for further SAR studies. From biochemical enzyme assays and liver microsomal stability tests, (R)-3-(3-(methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)pyrrolidin-1-yl)-3-oxopropanenitrile (6) was chosen for further in vivo test through oral administration. Compound 6 showed improved selectivity for JAK1 compared to that of tofacitinib (IC50 11, 2.4?×?102, 2.8?×?103, and 1.1?×?102?nM for JAK1, JAK2, JAK3, and TYK2, respectively). In CIA and AIA model tests, compound 6 exhibited similar efficacy to tofacitinib citrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号