首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A series of novel 1-benzyl-2-butyl-4-chloroimidazole embodied 4-azafluorenone hybrids, designed via molecular hybridization approach, were synthesized in very good yields using one pot condensation of 1-benzyl-2-butyl-4-chloroimidazole-5-carboxaldehyde, 1,3-indanedione, aryl/heteroaryl methyl ketones and ammonium acetate. All the synthetic derivatives were fully characterized by spectral data and evaluated for antimicrobial activity by disc diffusion method against selected bacteria and fungal strains. Among the 15 new compounds screened, 4-(1-benzyl-2-butyl-4-chloro-1H-imidazol-5-yl)-2-(furan-2-yl)-5H-indeno[1,2-b]pyridin-5-one(10k) has pronounced activity with higher zone of inhibition (ZoI) against Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Aspergillus flavus and Candida albicans. Also 4-(1-benzyl-2-butyl-4-chloro-1H-imidazol-5-yl)-2-(dibenzo[b,d]thiophen-2-yl)-5H-indeno [1,2-b]pyridin-5-one (10n) and 4-(1-benzyl-2-butyl-4-chloro-1H-imidazol-5-yl)-2-(3-tosyl-3H-inden-1-yl)-5H-indeno[1,2-b]pyridin-5-one (10o) showed selective higher inhibitory activity against Aspergillus flavus and Candida albicans. The results demonstrated potential importance of molecular hybridization in the development of 10k as potential antimicrobial agent.  相似文献   

2.
Carbon-11-labeled serotonin (5-hydroxytryptamine) 6 receptor (5-HT6R) antagonists, 1-[(2-bromophenyl)sulfonyl]-5-[11C]methoxy-3-[(4-methyl-1-piperazinyl)methyl]-1H-indole (O-[11C]2a) and 1-[(2-bromophenyl)sulfonyl]-5-methoxy-3-[(4-[11C]methyl-1-piperazinyl)methyl]-1H-indole (N-[11C]2a), 5-[11C]methoxy-3-((4-methylpiperazin-1-yl)methyl)-1-(phenylsulfonyl)-1H-indole (O-[11C]2b) and 5-methoxy-3-((4-[11C]methylpiperazin-1-yl)methyl)-1-(phenylsulfonyl)-1H-indole (N-[11C]2b), 1-((4-isopropylphenyl)sulfonyl)-5-[11C]methoxy-3-((4-methylpiperazin-1-yl)methyl)-1H-indole (O-[11C]2c) and 1-((4-isopropylphenyl)sulfonyl)-5-methoxy-3-((4-[11C]methylpiperazin-1-yl)methyl)-1H-indole (N-[11C]2c), 1-((4-fluorophenyl)sulfonyl)-5-[11C]methoxy-3-((4-methylpiperazin-1-yl)methyl)-1H-indole (O-[11C]2d) and 1-((4-fluorophenyl)sulfonyl)-5-methoxy-3-((4-[11C]methylpiperazin-1-yl)methyl)-1H-indole (N-[11C]2d), were prepared from their O- or N-desmethylated precursors with [11C]CH3OTf through O- or N-[11C]methylation and isolated by HPLC combined with SPE in 40–50% radiochemical yield, based on [11C]CO2 and decay corrected to end of bombardment (EOB). The radiochemical purity was >99%, and the molar activity (MA) at EOB was 370–740?GBq/μmol with a total synthesis time of ~40-min from EOB.  相似文献   

3.
A series of novel indole-pyrazoline hybrid derivatives were designed, synthesized, and evaluated for topoisomerase 1 (Top1) inhibitory activity. Top1-mediated relaxation assays showed that our synthesized compounds had variable Top1 inhibitory activity. Among these compounds, 3-(5-(naphthalen-1-yl)-1-phenyl-4,5-dihydro-1H-pyrazol-3-yl)-1-(phenylsulfonyl)-1H-indole (6n) was found to be a strong Top1 inhibitor with better inhibitory activity than CPT and hit compounds. Our further experiments rationalized the mode of action for this new type of inhibitors, which showed no significant binding to supercoiled DNA.  相似文献   

4.
V-RAF murine sarcoma viral oncogene homolog B1 (BRAF) is a serine/threonine-specific protein kinase that is mutated with high frequency in cutaneous melanoma, and many other cancers. Inhibition of mutant BRAF is an attractive therapeutic approach for the treatment of melanoma. A triarylimidazole BRAF inhibitor bearing a phenylpyrazole group (dimethyl-[2-(4-{5-[4-(1H-pyrazol-3-yl)-phenyl]-4-pyridin-4-yl-1H-imidazol-2-yl}-phenoxy)-ethyl]-amine, 1a) was identified as an active BRAF inhibitor. Based on this starting point, we synthesized a series of analogues leading to the discovery of 6-{2-[4-(4-methyl-piperazin-1-yl)-phenyl]-5-pyridin-4-yl-3H-imidazol-4-yl}-2,4-dihydro-indeno[1,2-c]pyrazole (1j), with nanomolar activity in three assays: inhibition of purified mutant BRAF activity in vitro; inhibition of oncogenic BRAF-driven extracellular regulated kinase (ERK) activation in BRAF mutant melanoma cell lines; and inhibition of proliferation in these cells.  相似文献   

5.
Here a series of 2-butyl-4-chloroimidazole based substituted piperazine-thiosemicarbazone hybrids were designed by combining three different pharmacophoric fragments in single molecular architecture. 2-Butyl-4-chloro-1-(3-(4-substituted)piperazin-1-yl)propyl)-1H-imidazole-5-carbaldehydes (4ap) prepared by reacting carboxaldehyde 2 with N-alkyl piperazines 3ap which were condensed with thiosemicarbazine to give desired compounds 5ap in very good yields. Among all sixteen compounds screened for in vitro antimycobacterial activity against Mycobacterium tuberculosis H37Rv (MTB), two compounds (E)-2-((2-butyl-4-chloro-1-(3-(4-(o-tolyl) piperazin-1-yl)propyl)-1H-imidazol-5-yl)methylene)hydrazinecarbothioamide 5e and (E)-2-((2-butyl-4-chloro-1-(3-(4-(2-methoxyphenyl)piperazin-1-yl)propyl)-1H-imidazol-5-yl)methylene) hydrazine carbothioamide 5f were found to be the most potent antitubercular agents (MIC: 3.13 μg/mL) with low toxicity profile.  相似文献   

6.
Our earlier studies indicate that (1E,4E)-1,5-bis(1-alkyl-1H-imidazol-2-yl)penta-1,4-diene-3-ones and (1E,4E)-1,5-bis(1-alkyl-1H-benzo[d]imidazol-2-yl)penta-1,4-diene-3-ones exhibit up to 121-fold greater antiproliferative potency than curcumin in human prostate cancer cell models, but only 2–10 fold increase in mouse plasma concentrations. The present study aims to further optimize them as anti-prostate cancer agents with both good potency and bioavailability. (1E,4E)-1,5-Bis(1H-imidazol-2-yl)penta-1,4-diene-3-one, the potential metabolic product of (1E,4E)-1,5-bis(1-alkyl-1H-imidazol-2-yl)penta-1,4-diene-3-ones, was synthesized and evaluated for its anti-proliferative activity. The promising potency of 1,5-bis(1-alkyl-1H-imidazol-2-yl)penta-1,4-diene-3-ones was completely abolished by removing the 1-alkyl group, suggesting the critical role of an appropriate group on the N1 position. We then envisioned that N-aryl substitution to exclude the C–H bond on the carbon adjacent to the N1 position (α-H) may increase the metabolic stability. Consequently, seven (1E,4E)-1,5-bis(1-aryl-1H-imidazol-2-yl)penta-1,4-dien-3-ones and three (1E,4E)-1,5-bis(1-aryl-1H-benzo[d]imidazol-2-yl)penta-1,4-dien-3-ones, as well as three (1E,4E)-1,5-bis(1-aryl-1H-pyrrolo[3,2-b]pyridine-2-yl)penta-1,4-dien-3-ones, were synthesized through a three-step transformation, including N-arylation via Ullmann condensation, formylation, and Horner-Wadsworth-Emmons reaction. Six optimal (1E,4E)-1,5-bis(1-aryl-1H-imidazol-2-yl)penta-1,4-dien-3-ones exhibit 24- to 375-fold improved potency as compared with curcumin. Replacement of the imidazole with bulkier benzoimidazole and 4-azaindole results in a substantial decrease in the potency. (1E,4E)-1,5-Bis(1-(2-methoxyphenyl)-1H-imidazol-2-yl)penta-1,4-dien-3-one (17d) was established as an optimal compound with both superior potency and good bioavailability that is sufficient to provide the therapeutic efficacy necessary to suppress in vivo tumor growth.  相似文献   

7.
A series of fluorine containing 4-(substituted-2-hydroxybenzoyl) pyrazoles and pyrazolyl benzo[d]oxazoles were synthesized and evaluated for their antibacterial activity against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis and antifungal activity against Candida albicans. The antibacterial activities were expressed as the minimum inhibitory concentration (MIC50) in μg/ml. The compounds 1-(3,4-difluorophenyl)-4-(5-fluoro-2-hydroxybenzoyl)-1H-pyrazole (4b), oxime derivatives such as 1-(3,4-difluorophenyl)-1H-pyrazol-4-yl)(2-hydroxy-4-methylphenyl)methanone oxime (5b) and (5-chloro-2-hydroxyphenyl)(1-(3,4-difluorophenyl)-1H-pyrazol-4-yl)methanone oxime (5e) exhibited promising activities against tested bacterial strains. Except compound 1-(3,4-difluorophenyl)-4-(2-hydroxybenzoyl)-1H-pyrazole (4d), none of the other compounds showed promising antifungal activity.  相似文献   

8.
A series of new 2-(1-(2-(substituted-phenyl)-5-methyloxazol-4-yl)-3-(2-substitued-phenyl)-4,5-dihydro-1H-pyrazol-5-yl)-7-substitued-1,2,3,4-tetrahydroisoquinoline derivatives were synthesized. The results showed that compounds 9q and 10q can strongly inhibit Staphylococcus aureus DNA gyrase and Bacillus subtilis DNA gyrase (with IC50s of 0.125 and 0.25 μg/mL against S. aureus DNA gyrase, 0.25 and 0.125 μg/mL against B. subtilis DNA gyrase). On the basis of the biological results, structure–activity relationships were also discussed.  相似文献   

9.
Herein we report the identification and evaluation of a novel series of (E)-3-(1-cyclohexyl-1H-pyrazol-3-yl)-2-methylacrylic acid derivatives identified from a deannulation study performed on the reported benzimidazole NS5B inhibitor, 1. This resulted in the identification of (E)-3-(2-(4-((4′-cyano-4-(4-hydroxypiperidine-1-carbonyl)biphenyl-2-yl)methoxy)phenyl)-1-cyclohexyl-1H-imidazol-4-yl)-2-methylacrylic acid (11) as a potent inhibitor of NS5B. Potential pathways for the further optimization of this series are suggested.  相似文献   

10.
A novel synthesis of the translocator protein (TSPO) ligand 7-chloro-N,N,5-trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide (SSR180575, 3) was achieved in four steps from commercially available starting materials. Focused structure–activity relationship development about the pyridazinoindole ring at the N3 position led to the discovery of 7-chloro-N,N,5-trimethyl-4-oxo-3(6-fluoropyridin-2-yl)-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide (14), a novel ligand of comparable affinity. Radiolabeling with fluorine-18 (18F) yielded 7-chloro-N,N,5-trimethyl-4-oxo-3(6-[18F]fluoropyridin-2-yl)-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide ([18F]-14) in high radiochemical yield and specific activity. In vivo studies of [18F]-14 revealed this agent as a promising probe for molecular imaging of glioma.  相似文献   

11.
A series of novel small-molecule pan-genotypic hepatitis C virus (HCV) NS5A inhibitors with picomolar activity containing 2-[(2S)-pyrrolidin-2-yl]-5-[4-(4-{2-[(2S)-pyrrolidin-2-yl]-1H-imidazol-5-yl}buta-1,3-diyn-1-yl)phenyl]-1H-imidazole core was designed based on molecular modeling study and SAR analysis. The constructed in silico model and docking study provide a deep insight into the binding mode of this type of NS5A inhibitors. Based on the predicted binding interface we have prioritized the most crucial diversity points responsible for improving antiviral activity. The synthesized molecules were tested in a cell-based assay, and compound 1.12 showed an EC50 value in the range of 2.9–34 pM against six genotypes of NS5A HCV, including gT3a, and demonstrated favorable pharmacokinetic profile in rats. This lead compound can be considered as an attractive candidate for further clinical evaluation.  相似文献   

12.
As a part of systematic investigation of synthesis and biological activities of indole analogues linked to various heterocyclic systems, we have synthesized new compounds viz., 2-amino-4-(5′-substituted 2′-phenyl-1H-indol-3′-yl)-6-aryl-4H-pyran-3-carbonitriles (2ai), 4,5-diamino-6-(5′-substituted 2′-phenyl-1H-indol-3′-yl)-8-aryl-2-oxo-2,6-dihydrodipyrano [2,3-b:3,2-e]pyridine-3-carbonitriles (3ai), 4-amino-5-(5′-substituted 2′-phenyl-1H-indol-3-yl)-7-aryl-1H-pyrano[2,3-d]pyrimidin-2(5H)-ones (4ai), 4-amino-5-(5′-substituted 2′-phenyl-1H-indol-3′-yl)-7-aryl-1H-pyrano[2,3-d]pyrimidin-2(5H)-thiones (5ai), 4-(5′-subtituted 2′-phenyl-1H-indol-3′-yl)-6-aryl-1,4-dihydropyrano[2,3-c]pyrazol-3-amines (6ai) and 5-(5′-substituted 2′-phenyl-1H-indol-3′-yl)-7-aryl-3H-pyrano[2,3-d]pyrimidin-4(5H)-ones (7ai). Antibacterial activity results revealed that, compound 6a showed promising activity versus Escherichia coli, Staphylococcus aureus and Klebsiella pneumoniae. Compound 6d exhibited good activity against S. aureus, K. pneumoniae and Pseudomonas aeruginosa. Antifungal activity results indicated that, compound 4d exhibited maximum zone of inhibition against Aspergillus oryzae and Aspergillus flavus. In case of antioxidant activity, compound 4a showed promising radical scavenging activity, ferric ions (Fe3+) reducing antioxidant power (FRAP) and metal chelating activity.  相似文献   

13.
The synthesis of several novel substituted (Z)-2-amino-5-(1-benzyl-1H-indol-3-yl)methylene-1-methyl-1H-imidazol-4(5H)-ones structurally related to aplysinopsin have been carried out under microwave irradiation and conventional heating methods. The analogs 3a, 3b, 3d3g, 3k and 3l were evaluated for their in vitro cytotoxic activity against an NCI 60 human tumor cell line panel. Compound 3f exhibited good growth inhibitory properties against all but four of the human cancer cell lines examined, and afforded LC50 values <10 μM for 30% of the cell lines in the panel. Compound 3e was an effective inhibitor of leukemia, CNS, melanoma, and breast cancer cell growth, but generally less effective as a cytotoxic agent. Thus, the aplysinopsin analog 3f was regarded as a useful lead compound for further structural optimization.  相似文献   

14.
Carbon-11-labeled aminoalkylindole derivatives (1-butyl-7-[11C]methoxy-1H-indol-3-yl)(naphthalene-1-yl)methanone ([11C]3), 1-butyl-7-[11C]methoxy-3-(naphthalene-1-ylmethyl)-1H-indole ([11C]5), and 1-butyl-7-[11C]methoxy-3-(naphthalene-2-yl)-1H-indole ([11C]8) were prepared by O-[11C]methylation of their corresponding precursors with [11C]CH3OTf under basic condition (2 N NaOH) and isolated by a simplified solid-phase extraction (SPE) method in 50–60% radiochemical yields based on [11C]CO2 and decay corrected to end of bombardment (EOB). The overall synthesis time from EOB was 23 min, the radiochemical purity was >99%, and the specific activity at end of synthesis (EOS) was 185–555 GBq/μmol.  相似文献   

15.
Novel 1-phenyl-4-((4-(1,4,5-triphenyl-1H-imidazol-2-yl)phenoxy)methyl)-1H-1,2,3-triazole derivatives were synthesized by click chemistry reaction and screened for antimicrobial activity against grampositive and gram-negative bacterial and fungal species. All the compounds were characterized by 1H and 13C NMR, IR, and mass spectral data. The results of antibacterial study indicated that 1-(4-nitrophenyl)-4-((4-(1,4,5-triphenyl-1H-imidazol-2-yl)phenoxy)methyl)-1H-1,2,3-triazole, 1-(4-(4-((4-(1,4,5-triphenyl-1H-imidazol-2-yl)phenoxy)methyl)-1H-1,2,3-triazol-1-yl)phenyl)ethanone, 1-(2,6-dichloro-4-nitrophenyl)-4-((4-(1,4,5-triphenyl-1H-imidazol-2-yl)phenoxy)methyl)-1H-1,2,3-triazole, and 1-(2-methoxy-4-nitrophenyl)-4-((4-(1,4,5-triphenyl-1H-imidazol-2-yl)phenoxy)methyl)-1H-1,2,3-triazole showed appreciable antibacterial activity while 1-(4-fluorophenyl)-4-((4-(1,4,5-triphenyl-1H-imidazol-2-yl)phenoxy) methyl)-1H-1,2,3-triazole, 1-(2,6-dichloro-4-nitrophenyl)-4-((4-(1,4,5-triphenyl-1H-imidazol-2-yl)phenoxy)methyl)-1H-1,2,3-triazole, and 1-(4-methoxyphenyl)-4-((4-(1,4,5-triphenyl-1H-imidazol-2-yl)phenoxy)methyl)-1H-1,2,3-triazole emerged as the most potential antifungal agents.  相似文献   

16.
Novel (E)-1-aryl-3-(3-aryl-1-phenyl-1H-pyrazol-4-yl)prop-2-en-1-ones 5/6 (pyrazolic chalcones) were synthesized from a Claisen–Schmidt reaction of 3-aryl-1-phenylpyrazol-4-carboxaldehydes 4 with several acetophenone derivatives 1. Subsequently, the microwave-assisted cyclocondensation reaction of chalcones 5/6 with hydrazine afforded the new racemic 3-aryl-4-(3-aryl-4,5-dihydro-1H-pyrazol-5-yl)-1-phenyl-1H-pyrazoles 7 or their N-acetyl derivatives 8 and 9 when reactions where carried out in DMF or acetic acid, respectively. Several of these compounds were screened by the US National Cancer Institute (NCI) for their ability to inhibit 60 different human tumor cell lines, where 5c and 9g showed remarkable activity mainly against leukemia (K-562 and SR), renal cancer (UO-31) and non-small cell lung cancer (HOP-92) cell lines, with the most important GI50 values ranging from 0.04 to 11.4 μM, from the in vitro assays.  相似文献   

17.
Treatment of racemic 2-hydroxy-3-(1H-indol-3yl)propionic acid methyl ester (5) with isopropyl magnesium chloride provided the title compound 1 and its isomer, 3-hydroxy-1-(indol-3-yl)-4-methylpentan-2-one (9). Both enantiomers (>96% ee) of each component were obtained via semi-preparative chiral supercritical fluid chromatography (SFC). In contrast to previous reports, these compounds, as well as their acetate derivatives, were not active or very weakly active against 16 bacterial strains, including Escherichia coli, Bacillus subtilis and Staphylococcus aureus.  相似文献   

18.
A series of N-(2-(1H-imidazol-1-yl)-2-phenylethyl)arylamides were prepared, using an efficient three- to five-step synthesis, and evaluated for their inhibitory activity against human cytochrome P450C24A1 (CYP24A1) hydroxylase. Inhibition ranged from IC50 0.3–72 μM compared with the standard ketoconazole IC50 0.52 μM, with the styryl derivative (11c) displaying enhanced activity (IC50 = 0.3 μM) compared with the standard, providing a useful preliminary lead for drug development.  相似文献   

19.
Protoporphyrinogen oxidase (PPO, E.C. 1.3.3.4) is the action target for several structurally diverse herbicides. A series of novel 4-(difluoromethyl)-1-(6-halo-2-substituted-benzothiazol-5-yl)-3-methyl-1H-1,2,4-triazol-5(4H)-ones 2az were designed and synthesized via the ring-closure of two ortho-substituents. The in vitro bioassay results indicated that the 26 newly synthesized compounds exhibited good PPO inhibition effects with Ki values ranging from 0.06 to 17.79 μM. Compound 2e, ethyl 2-{[5-(4-(difluoromethyl)-3-methyl-5-oxo-4,5-dihydro-1H-1,2,4-triazol-1-yl)-6-fluorobenzo-thiazol-2-yl]thio}acetate, was the most potent inhibitor with Ki value of 0.06 μM against mtPPO, comparable to (Ki = 0.03 μM) sulfentrazone. Further green house assays showed that compound 2f (Ki = 0.24 μM, mtPPO), ethyl 2-{[5-(4-(difluoromethyl)-3-methyl-5-oxo-4,5-dihydro-1H-1,2,4-triazol-1-yl)-6-fluorobenzothiazol-2-yl]thio}propanoate, showed the most promising post-emergence herbicidal activity with broad spectrum even at concentrations as low as 37.5 g ai/ha. Soybean exhibited tolerance to compound 2f at the dosages of 150 g ai/ha, whereas they are susceptible to sulfentrazone even at 75 g ai/ha. Thus, compound 2f might be a potential candidate as a new herbicide for soybean fields.  相似文献   

20.
A series of 2-pyridone-containing imidazoline derivatives was synthesized and evaluated as neuropeptide Y Y5 receptor antagonists. Optimization of the 2-pyridone structure on the 2-position of the imidazoline ring led to identification of 1-(difluoromethyl)-5-[(4S,5S)-4-(4-fluorophenyl)-4-(6-fluoropyridin-3-yl)-5-methyl-4,5-dihydro-1H-imidazol-2-yl]pyridin-2(1H)-one (7m). Compound 7m displayed statistically significant inhibition of food intake in an agonist-induced food intake model in SD rats and no adverse cardiovascular effects in anesthetized dogs. In addition, markedly higher brain penetrability and a lower plasma Occ90 value were observed in P-gp-deficient mdr1a (?/?) mice compared to mdr1a (+/+) mice after oral administration of 7m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号