首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Lysyl tRNA synthetases facilitate amino acylation and play a crucial role in the essential cellular process of translation. They are grouped into two distinct classes (class I and class II). Class I lysyl tRNA synthetase is considered as a drug target for syphilis caused by Treponema pallidum. Comparative genome analysis shows the absence of its sequence homolog in eukaryotes. The structure of class I lysyl tRNA synthetase from Treponema pallidum is unknown and the difficulties in the in vitro culturing of Treponema makes it non-trivial. We used the structural template of class I lysyl tRNA synthetase from the archaea Pyrococcus horikoshii for modeling the Treponema pallidum lysyl tRNA synthetase structure. Thus, we propose the usefulness of the modeled class I lysyl tRNA synthetase for the design of suitable inhibitors towards the treatment of syphilis.  相似文献   

2.
Aminoacyl tRNA synthetases (aaRS) are grouped into Class I and II based on primary and tertiary structure and enzyme properties suggesting two independent phylogenetic lineages. Analogously, tRNA molecules can also form two respective classes, based on the class membership of their corresponding aaRS. Although some aaRS-tRNA interactions are not extremely specific and require editing mechanisms to avoid misaminoacylation, most aaRS-tRNA interactions are rather stereospecific. Thus, class-specific aaRS features could be mirrored by class-specific tRNA features. However, previous investigations failed to detect conserved class-specific nucleotides. Here we introduce a discrete mathematical approach that evaluates not only class-specific 'strictly present', but also 'strictly absent' nucleotides. The disjoint subsets of these elements compose a unique partition, named extended consensus partition (ECP). By analyzing the ECP for both Class I and II tDNA sets from 50 (13 archaeal, 30 bacterial and 7 eukaryotic) species, we could demonstrate that class-specific tRNA sequence features do exist, although not in terms of strictly conserved nucleotides as it had previously been anticipated. This finding demonstrates that important information was hidden in tRNA sequences inaccessible for traditional statistical methods. The ECP analysis might contribute to the understanding of tRNA evolution and could enrich the sequence analysis tool repertoire.  相似文献   

3.
In the present work we report, for the first time, a novel difference in the molecular mechanism of the activation step of aminoacylation reaction between the class I and class II aminoacyl tRNA synthetases (aaRSs). The observed difference is in the mode of nucleophilic attack by the oxygen atom of the carboxylic group of the substrate amino acid (AA) to the αP atom of adenosine triphosphate (ATP). The syn oxygen atom of the carboxylic group attacks the α-phosphorous atom (αP) of ATP in all class I aaRSs (except TrpRS) investigated, while the anti oxygen atom attacks in the case of class II aaRSs. The class I aaRSs investigated are GluRS, GlnRS, TyrRS, TrpRS, LeuRS, ValRS, IleRS, CysRS, and MetRS and class II aaRSs investigated are HisRS, LysRS, ProRS, AspRS, AsnRS, AlaRS, GlyRS, PheRS, and ThrRS. The variation of the electron density at bond critical points as a function of the conformation of the attacking oxygen atom measured by the dihedral angle ψ (C(α)-C') conclusively proves this. The result shows that the strength of the interaction of syn oxygen and αP is stronger than the interaction with the anti oxygen for class I aaRSs. This indicates that the syn oxygen is the most probable candidate for the nucleophilic attack in class I aaRSs. The result is further supported by the computation of the variation of the nonbonded interaction energies between αP atom and anti oxygen as well as syn oxygen in class I and II aaRSs, respectively. The difference in mechanism is explained based on the analysis of the electrostatic potential of the AA and ATP which shows that the relative arrangement of the ATP with respect to the AA is opposite in class I and class II aaRSs, which is correlated with the organization of the active site in respective aaRSs. A comparative study of the reaction mechanisms of the activation step in a class I aaRS (Glutaminyl tRNA synthetase) and in a class II aaRS (Histidyl tRNA synthetase) is carried out by the transition state analysis. The atoms in molecule analysis of the interaction between active site residues or ions and substrates are carried out in the reactant state and the transition state. The result shows that the observed novel difference in the mechanism is correlated with the organizations of the active sites of the respective aaRSs. The result has implication in understanding the experimentally observed different modes of tRNA binding in the two classes of aaRSs.  相似文献   

4.
Transfer RNAs (tRNAs) are grouped into two classes based on the structure of their variable loop. In Escherichia coli, tRNAs from three isoaccepting groups are classified as type II. Leucine tRNAs comprise one such group. We used both in vivo and in vitro approaches to determine the nucleotides that are required for tRNA(Leu) function. In addition, to investigate the role of the tRNA fold, we compared the in vivo and in vitro characteristics of type I tRNA(Leu) variants with their type II counterparts.A minimum of six conserved tRNA(Leu) nucleotides were required to change the amino acid identity and recognition of a type II tRNA(Ser) amber suppressor from a serine to a leucine residue. Five of these nucleotides affect tRNA tertiary structure; the G15-C48 tertiary "Levitt base-pair" in tRNA(Ser) was changed to A15-U48; the number of nucleotides in the alpha and beta regions of the D-loop was changed to achieve the positioning of G18 and G19 that is found in all tRNA(Leu); a base was inserted at position 47n between the base-paired extra stem and the T-stem; in addition the G73 "discriminator" base of tRNA(Ser) was changed to A73. This minimally altered tRNA(Ser) exclusively inserted leucine residues and was an excellent in vitro substrate for LeuRS. In a parallel experiment, nucleotide substitutions were made in a glutamine-inserting type I tRNA (RNA(SerDelta); an amber suppressor in which the tRNA(Ser) type II extra-stem-loop is replaced by a consensus type I loop). This "type I" swap experiment was successful both in vivo and in vitro but required more nucleotide substitutions than did the type II swap. The type I and II swaps revealed differences in the contributions of the tRNA(Leu) acceptor stem base-pairs to tRNA(Leu) function: in the type I, but not the type II fold, leucine specificity was contingent on the presence of the tRNA(Leu) acceptor stem sequence. The type I and II tRNAs used in this study differed only in the sequence and structure of the variable loop. By altering this loop, and thereby possibly introducing subtle changes into the overall tRNA fold, it became possible to detect otherwise cryptic contributions of the acceptor stem sequence to recognition by LeuRS. Possible reasons for this effect are discussed.  相似文献   

5.
Seth M  Thurlow DL  Hou YM 《Biochemistry》2002,41(14):4521-4532
The CCA-adding enzymes [ATP(CTP):tRNA nucleotidyl transferases], which catalyze synthesis of the conserved CCA sequence to the tRNA 3' end, are divided into two classes. Recent studies show that the class II Escherichia coli CCA-adding enzyme synthesizes poly(C) when incubated with CTP alone, but switches to synthesize CCA when incubated with both CTP and ATP. Because the poly(C) activity can shed important light on the mechanism of the untemplated synthesis of CCA, it is important to determine if this activity is also present in the class I CCA enzymes, which differ from the class II enzymes by significant sequence divergence. We show here that two members of the class I family, the archaeal Sulfolobus shibatae and Methanococcus jannaschii CCA-adding enzymes, are also capable of poly(C) synthesis. These two class I enzymes catalyze poly(C) synthesis and display a response of kinetic parameters to the presence of ATP similar to that of the class II E. coli enzyme. Thus, despite extensive sequence diversification, members of both classes employ common strategies of nucleotide addition, suggesting conservation of a mechanism in the development of specificity for CCA. For the E. coli enzyme, discrimination of poly(C) from CCA synthesis in the intact tRNA and in the acceptor-TPsiC domain is achieved by the same kinetic strategy, and a mutation that preferentially affects addition of A76 but not poly(C) has been identified. Additionally, we show that enzymes of both classes exhibit a processing activity that removes nucleotides in the 3' to 5' direction to as far as position 74.  相似文献   

6.
Bacterial tyrosyl-tRNA synthetases (TyrRS) possess a flexibly linked C-terminal domain of approximately 80 residues, which has hitherto been disordered in crystal structures of the enzyme. We have determined the structure of Thermus thermophilus TyrRS at 2.0 A resolution in a crystal form in which the C-terminal domain is ordered, and confirm that the fold is similar to part of the C-terminal domain of ribosomal protein S4. We have also determined the structure at 2.9 A resolution of the complex of T.thermophilus TyrRS with cognate tRNA(tyr)(G Psi A). In this structure, the C-terminal domain binds between the characteristic long variable arm of the tRNA and the anti-codon stem, thus recognizing the unique shape of the tRNA. The anticodon bases have a novel conformation with A-36 stacked on G-34, and both G-34 and Psi-35 are base-specifically recognized. The tRNA binds across the two subunits of the dimeric enzyme and, remarkably, the mode of recognition of the class I TyrRS for its cognate tRNA resembles that of a class II synthetase in being from the major groove side of the acceptor stem.  相似文献   

7.
8.
Functional and comparative genomic studies have previously shown that the essential protein lysyl-tRNA synthetase (LysRS) exists in two unrelated forms. Most prokaryotes and all eukaryotes contain a class II LysRS, whereas most archaea and a few bacteria contain a less common class I LysRS. In bacteria the class I LysRS is only found in the alpha-proteobacteria and a scattering of other groups, including the spirochetes, while the class I protein is by far the most common form of LysRS in archaea. To investigate this unusual distribution we functionally annotated a representative phylogenetic sampling of LysRS proteins. Class I LysRS proteins from a variety of bacteria and archaea were characterized in vitro by their ability to recognize Escherichia coli tRNA(Lys) anticodon mutants. Class I LysRS proteins were found to fall into two distinct groups, those that preferentially recognize the third anticodon nucleotide of tRNA(Lys) (U36) and those that recognize both the second and third positions (U35 and U36). Strong recognition of U35 and U36 was confined to the pyrococcus-spirochete grouping within the archaeal branch of the class I LysRS phylogenetic tree, while U36 recognition was seen in other archaea and an example from the alpha-proteobacteria. Together with the corresponding phylogenetic relationships, these results suggest that despite its comparative rarity the distribution of class I LysRS conforms to the canonical archaeal-bacterial division. The only exception, suggested from both functional and phylogenetic data, appears to be the horizontal transfer of class I LysRS from a pyrococcal progenitor to a limited number of bacteria.  相似文献   

9.
tRNAs are aminoacylated with the correct amino acid by the cognate aminoacyl-tRNA synthetase. The tRNA/synthetase systems can be divided into two classes: class I and class II. Within class I, the tRNA identity elements that enable the specificity consist of complex sequence and structure motifs, whereas in class II the identity elements are assured by few and simple determinants, which are mostly located in the tRNA acceptor stem. The tRNA(Gly)/glycyl-tRNA-synthetase (GlyRS) system is a special case regarding evolutionary aspects. There exist two different types of GlyRS, namely an archaebacterial/human type and an eubacterial type, reflecting the evolutionary divergence within this system. We previously reported the crystal structures of an Escherichia coli and of a human tRNA(Gly) acceptor stem microhelix. Here we present the crystal structure of a thermophilic tRNA(Gly) aminoacyl stem from Thermus thermophilus at 1.6? resolution and provide insight into the RNA geometry and hydration.  相似文献   

10.
Editing of misactivated amino acids by class I tRNA synthetases is encoded by a specialized internal domain specific to class I enzymes. In contrast, little is known about editing activities of the structurally distinct class II enzymes. Here we show that the class II alanyl-tRNA synthetase (AlaRS) has a specialized internal domain that appears weakly related to an appended domain of threonyl-tRNA synthetase (ThrRS), but is unrelated to that found in class I enzymes. Editing of misactivated glycine or serine was shown to require a tRNA cofactor. Specific mutations in the aforementioned domain disrupt editing and lead to production of mischarged tRNA. This class-specific editing domain was found to be essential for cell growth, in the presence of elevated concentrations of glycine or serine. In contrast to ThrRS, where the editing domain is not found in all three kingdoms of living organisms, it was incorporated early into AlaRSs and is present throughout evolution. Thus, tRNA-dependent editing by AlaRS may have been critical for making the genetic code sufficiently accurate to generate the tree of life.  相似文献   

11.
Eight class I tRNA species have been purified to homogeneity and their proton nuclear magnetic resonance (NMR) spectra in the low-field region (-11 to -15 ppm) have been studied at 360 MHz. The low-field spectra contain only one low-field resonance from each base pair (the ring NH hydrogen bond) and hence directly monitor the number of long-lived secondary and tertiary base pairs in solution. The tRNA species were chosen on the basis of their sequence homology with yeast phenylalanine tRNA in the regions which form tertiary base pairs in the crystal structure of this tRNA. All of the spectra show 26 or 27 low-field resonances approximately 7 of which are derived from tertiary base pairs. These results are contrary to previous claims that the NMR spectra indicate the presence of resonances from secondary base pairs only, as well as more recent claims of only 1-3 tertiary resonances, but are in good agreement with the number of tertiary base pairs expected in solution based on the crystal structure. The tertiary base pair resonances are stable up to at least 46 degrees C. Removal of magnesium ions causes structural changes in the tRNA but does not result in the loss of any secondary or tertiary base pairs.  相似文献   

12.
We explored the specificity and nature of the nucleotide-binding pocket of the CCA-adding enzyme (tRNA nucleotidyltransferase) by using CTP and ATP analogs as substrates for a panel of class I and class II enzymes. Overall, class I and class II enzymes displayed remarkably similar substrate requirements, implying that the mechanism of CCA addition is conserved between enzyme classes despite the absence of obvious sequence homology outside the active site signature sequence. CTP substrates are more tolerant of base modifications than ATP substrates, but sugar modifications prevent incorporation of both CTP and ATP analogs by class I and class II enzymes. Use of CTP analogs (zebularine, pseudoisocytidine, 6-azacytidine, but not 6-azauridine) suggests that base modifications generally do not interfere with recognition or incorporation of CTP analogs by either class I or class II enzymes, and that UTP is excluded because N-3 is a positive determinant and/or O-4 is an antideterminant. Use of ATP analogs (N6-methyladenosine, diaminopurine, purine, 2-aminopurine, and 7-deaza-adenosine, but not guanosine, deoxyadenosine, 2'-O-methyladenosine, 2'-deoxy-2'-fluoroadenosine, or inosine) suggests that base modifications generally do not interfere with recognition or incorporation of ATP analogs by either class I or class II enzymes, and that GTP is excluded because N-1 is a positive determinant and/or the 2-amino and 6-keto groups are antideterminants. We also found that the 3'-terminal sequence of the growing tRNA substrate can affect the efficiency or specificity of subsequent nucleotide addition. Our data set should allow rigorous evaluation of structural hypotheses for nucleotide selection based on existing and future crystal structures.  相似文献   

13.
The structural requirements for assembly of functional class II transfer RNA core regions have been examined by sequence analysis and tested by reconstruction of alternative folds into the tertiary domain of Escherichia coli tRNA(2)Gln. At least four distinct designs have been identified that permit stable folding and efficient synthetase recognition, as assessed by thermal melting profiles and glutaminylation kinetics. Although most large variable-arm tRNAs found in nature possess an enlarged D-loop, lack of this feature can be compensated for by insertion of nucleotides either 3' to the variable loop or within the short acceptor/D-stem connector region. Rare pyrimidines at nt 9 in the core region can be accommodated in the class II framework, but only if specific nucleotides are present either in the D-loop or 3' to the variable arm. Glutaminyl-tRNA synthetase requires one or two unpaired uridines 3' to the variable arm to efficiently aminoacylate several of the class II frameworks. Because there are no specific enzyme contacts in the tRNAGln core region, these data suggest that tRNA discrimination by GlnRS depends in part on indirect readout of RNA sequence information.  相似文献   

14.
Xiong Y  Li F  Wang J  Weiner AM  Steitz TA 《Molecular cell》2003,12(5):1165-1172
CCA-adding enzymes catalyze the addition of CCA onto the 3' terminus of immature tRNAs without using a nucleic acid template and have been divided into two classes based on their amino acid sequences. We have determined the crystal structures of a class I CCA-adding enzyme from Archeoglobus fulgidus (AfCCA) and its complexes with ATP, CTP, or UTP. Although it and the class II bacterial Bacillus stearothermophilus CCA enzyme (BstCCA) have similar dimensions and domain architectures (head, neck, body, and tail), only the polymerase domain is structurally homologous. Moreover, the relative orientation of the head domain with respect to the body and tail domains, which appear likely to bind tRNA, differs significantly between the two enzyme classes. Unlike the class II BstCCA, this enzyme binds nucleotides nonspecifically in the absence of bound tRNA. The shape and electrostatic charge distribution of the AfCCA enzyme suggests a model for tRNA binding that accounts for the phosphates that are protected from chemical modification by tRNA binding to AfCCA. The structures of the AfCCA enzyme and the eukaryotic poly(A) polymerase are very similar, implying a close evolutionary relationship between them.  相似文献   

15.
16.
R E Hurd  G T Robillard  B R Reid 《Biochemistry》1977,16(10):2095-2100
The number of base pairs in the solution structure of several class III D3VN tRNA species from E. coli has been determined by analyzing the number of low-field (-15 to -11 ppm) proton resonances in their nuclear magnetic resonance spectra at 360 MHz. Contrary to previous reports indicating the absence of tertiary resonances, all the spectra exhibit the expected number of secondary base pair resonances plus approximately ten extra resonances derived from tertiary base pairs in the three-dimensional folding of these molecules. The possible origins of some of these tertiary resonances are discussed; none of the spectra exhibits the characteristic resonance of the 8-14 tertiary base pair seen in class I D4V5 tRNA spectra.  相似文献   

17.
A structure is proposed for the type II tRNA molecules containing the long variable loop and the tertiary base interactions here are compared with type I tRNAs having the short variable loop. The type II tRNAs are similar to the type I tRNAs in their tertiary base pairing interactions but differ from them generally by not having the tertiary base triples. The long variable loop, which is comprised of a helical stem and a loop at the end of it, emerges from the deep groove side of the dihydrouridine helix, and is tilted roughly 30° to the plane formed by the amino acid-pseudouridine and anticodon-dihydrouridine helices found in yeast tRNAPhe. The fact that many of the type I tRNAs also lack the full compliment of base triples suggests that the tertiary base pairs may alone suffice to sustain the tRNA fold required for its biological function. The base triples and the variable loop appear to have little functional significance. The base type at position 9 is correlated with the number of base triples and G-C base pairs in the dihydrouridine stem.  相似文献   

18.
Aspartyl-tRNA synthetase is a class II tRNA synthetase and occurs in a multisynthetase complex in mammalian cells. Human Asp-tRNA synthetase contains a short 32-residue amino-terminal extension that can control the release of charged tRNA and its direct transfer to elongation factor 1 alpha; however, whether the extension binds to tRNA directly or interacts with the synthetase active site is not known. Full-length human AspRS, but not amino-terminal 32 residue-deleted, fully active AspRS, was found to bind to noncognate tRNA(fMet) in the presence of Mg(2+). Synthetic amino-terminal peptides bound similarly to tRNA(fMet), whereas little or no binding of polynucleotides, poly(dA-dT), or polyphosphate to the peptides was found. The apparent binding constants to tRNA by the peptide increased with increasing concentrations of Mg(2+), suggesting Mg(2+) mediates the binding as a new mode of RNA.peptide interactions. The binding of tRNA(fMet) to amino-terminal peptides was also observed using fluorescence-labeled tRNAs and circular dichroism. These results suggest that a small peptide can bind to tRNA selectively and that evolution of class II tRNA synthetases may involve structural changes of amino-terminal extensions for enhanced selective binding of tRNA.  相似文献   

19.
Ambrogelly A  Frugier M  Ibba M  Söll D  Giegé R 《FEBS letters》2005,579(12):2629-2634
Borrelia burgdorferi and other spirochetes contain a class I lysyl-tRNA synthetase (LysRS), in contrast to most eubacteria that have a canonical class II LysRS. We analyzed tRNA(Lys) recognition by B. burgdorferi LysRS, using two complementary approaches. First, the nucleotides of B. burgdorferi tRNA(Lys) in contact with B. burgdorferi LysRS were determined by enzymatic footprinting experiments. Second, the kinetic parameters for a series of variants of the B. burgdorferi tRNA(Lys) were then determined during aminoacylation by B. burgdorferi LysRS. The identity elements were found to be mostly located in the anticodon and in the acceptor stem. Transplantation of the identified identity elements into the Escherichia coli tRNA(Asp) scaffold endowed lysylation activity on the resulting chimera, indicating that a functional B. burgdorferi lysine tRNA identity set had been determined.  相似文献   

20.
Ribosomal 5S RNA is present in all eubacterial and eukaryotic ribosomes. Despite a large amount of experimental data on the primary and secondary structures of these types of molecules, details of their tertiary structure and their precise function in protein biosynthesis are still not known. Recently we have proposed a new model for the tertiary structure of plant 5S rRNA. In this study we applied the Fe(II)-mediated cleavage reaction to test the model. The data presented here provide experimental evidence that in the 5S rRNA molecule only a few nucleotides are buried in the tertiary structure. Similar experiments performed with methionine initiator tRNA gave results which imply the difference in its structure when compared with the X-ray structure of yeast tRNAPhe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号