首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Stichopus japonicus arginine kinase (AK) is a significant dimeric enzyme. Its modification and inactivation course with 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) and the reactivation course of DTNB-modified AK by dithiothreitol were investigated on the basis of the kinetic theory of the substrate reaction during the modification of enzyme activity. The results show that the modification is a biphasic course while the inactivation is monophasic, with one essential reactive cysteine per subunit. The Cys274 (numbering from the Stichopus sequence) is exposed to DTNB and is near the ATP binding site. The modified AK can be reactivated by an excess concentration of dithiothreitol in a monophasic kinetic course. The presence of ATP or the transition-state analog markedly slows the apparent reactivation rate constant. The analog components, arginine-ADP-Mg2+ can induce conformational changes of the modified enzyme, but adding NO3- cannot induce further changes that occur with the native enzyme. The reactive cysteines' location and its role in the catalysis of AK are discussed. The results suggest that the cysteine may be located in the hinge area of the two domains of AK. The reactive cysteine of AK, which was proposed to be Cys274, may play an important role not in the binding of the transition-state analog but in the conformational changes caused by the transition-state analog.  相似文献   

2.
Arginine kinase (AK) is a key enzyme for cellular energy metabolism, catalyzing the reversible phosphoryl transfer from phosphoarginine to ADP in invertebrates. In this study, the inter-subunit hydrogen bonds between the Q53 and D200 and between D57 and D200 were disrupted to explore their roles in the activity and structural stability of Stichopus japonicus (S. japonicus) AK. Mutating Q53 and/or D57 to alanine (A) can cause pronounced loss of activity and substrate synergism, and cause distinct conformational changes. Spectroscopic experiments indicated that mutations destroying the inter-subunit hydrogen bonds impaired the structure of dimer AK, and resulted in a partially unfolded state. The inability to fold to the functional compact state made the mutants prone to be inactivated and aggregate under environmental stresses. Restoring hydrogen bonds in Q53E and D57E mutants could rescue the loss of activity and substrate synergism, and conformational changes. All those results suggested that the inter-subunit interactions played a key role in keeping the activity, substrate synergism and structural stability of dimer AK. The result herein may provide a clue in understanding the folding and self-assembly processes of oligomeric proteins.  相似文献   

3.
P-glycoprotein (ABCB1), a member of the ABC superfamily, functions as an ATP-driven multidrug efflux pump. The catalytic cycle of ABC proteins is believed to involve formation of a sandwich dimer in which two ATP molecules are bound at the interface of the nucleotide binding domains (NBDs). However, such dimers have only been observed in isolated NBD subunits and catalytically arrested mutants, and it is still not understood how ATP hydrolysis is coordinated between the two NBDs. We report for the first time the characterization of an asymmetric state of catalytically active native P-glycoprotein with two bound molecules of adenosine 5′-(γ-thio)triphosphate (ATPγS), one of low affinity (Kd 0.74 mm), and one “occluded” nucleotide of 120-fold higher affinity (Kd 6 μm). ATPγS also interacts with P-glycoprotein with high affinity as assessed by inhibition of ATP hydrolysis and protection from covalent labeling of a Walker A Cys residue, whereas other non-hydrolyzable ATP analogues do not. Binding of ATPγS (but not ATP) causes Trp residue heterogeneity, as indicated by collisional quenching, suggesting that it may induce conformational asymmetry. Asymmetric ATPγS-bound P-glycoprotein does not display reduced binding affinity for drugs, implying that transport is not driven by ATP binding and likely takes place at a later stage of the catalytic cycle. We propose that this asymmetric state with two bound nucleotides represents the next intermediate on the path toward ATP hydrolysis after nucleotide binding, and an alternating sites mode of action is achieved by simultaneous switching of the two active sites between high and low affinity states.  相似文献   

4.
H+-FOF1-ATP synthase (F-ATPase, F-type ATPase, FOF1 complex) catalyzes ATP synthesis from ADP and inorganic phosphate in eubacteria, mitochondria, chloroplasts, and some archaea. ATP synthesis is powered by the transmembrane proton transport driven by the proton motive force (PMF) generated by the respiratory or photosynthetic electron transport chains. When the PMF is decreased or absent, ATP synthase catalyzes the reverse reaction, working as an ATP-dependent proton pump. The ATPase activity of the enzyme is regulated by several mechanisms, of which the most conserved is the non-competitive inhibition by the MgADP complex (ADP-inhibition). When ADP binds to the catalytic site without phosphate, the enzyme may undergo conformational changes that lock bound ADP, resulting in enzyme inactivation. PMF can induce release of inhibitory ADP and reactivate ATP synthase; the threshold PMF value required for enzyme reactivation might exceed the PMF for ATP synthesis. Moreover, membrane energization increases the catalytic site affinity to phosphate, thereby reducing the probability of ADP binding without phosphate and preventing enzyme transition to the ADP-inhibited state. Besides phosphate, oxyanions (e.g., sulfite and bicarbonate), alcohols, lauryldimethylamine oxide, and a number of other detergents can weaken ADP-inhibition and increase ATPase activity of the enzyme. In this paper, we review the data on ADP-inhibition of ATP synthases from different organisms and discuss the in vivo role of this phenomenon and its relationship with other regulatory mechanisms, such as ATPase activity inhibition by subunit ε and nucleotide binding in the noncatalytic sites of the enzyme. It should be noted that in Escherichia coli enzyme, ADP-inhibition is relatively weak and rather enhanced than prevented by phosphate.  相似文献   

5.
Free methionine-R-sulfoxide reductase (fRMsr) reduces free methionine R-sulfoxide back to methionine, but its catalytic mechanism is poorly understood. Here, we have determined the crystal structures of the reduced, substrate-bound, and oxidized forms of fRMsr from Staphylococcus aureus. Our structural and biochemical analyses suggest the catalytic mechanism of fRMsr in which Cys102 functions as the catalytic residue and Cys68 as the resolving Cys that forms a disulfide bond with Cys102. Cys78, previously thought to be a catalytic Cys, is a non-essential residue for catalytic function. Additionally, our structures provide insights into the enzyme-substrate interaction and the role of active site residues in substrate binding. Structural comparison reveals that conformational changes occur in the active site during catalysis, particularly in the loop of residues 97–106 containing the catalytic Cys102. We have also crystallized a complex between fRMsr and isopropyl alcohol, which acts as a competitive inhibitor for the enzyme. This isopropyl alcohol-bound structure helps us to understand the inhibitory mechanism of fRMsr. Our structural and enzymatic analyses suggest that a branched methyl group in alcohol seems important for competitive inhibition of the fRMsr due to its ability to bind to the active site.  相似文献   

6.
Arginine kinase plays a vital role in invertebrate homeostasis by buffering ATP concentrations. Arginine kinase might serve as a target for environmentally friendly insect-selective pesticides, because it differs notably from its counterpart in vertebrates, creatine kinase. In this study, two members of the flavonoid family, quercetin (QU) and luteolin (LU), were identified as novel noncompetitive inhibitors of locust arginine kinase. They were found to have inhibition parameters (Ki) of 11.2 and 23.9 μM, respectively. By comparing changes in the activity and intrinsic fluorescence of AK, the inhibition mechanisms of these flavonoids were found to involve binding to Trp residues in the active site. This was determined by examination of the static quenching parameter Ksv. The main binding forces between flavonoids and AK were found to be hydrophobic based on the thermodynamic parameters of changes in enthalpy (ΔH), entropy (ΔS), and free energy (ΔG) and on docking simulation results. Molecular docking analyses also suggested that flavonoids could bind to the active site of AK and were close to the Trp 221 in active site. Molecular simulation results mimic the experimental results, indicated that QU had a lower binding energy and a stronger inhibitory effect on AK than LU, suggesting that the extra hydroxyl group in QU might increase binding ability.  相似文献   

7.
The chloroplast enzyme phosphoribulokinase is reversibly deactivated by oxidation of Cys16 and Cys55 to a disulfide. Although not required for catalysis, Cys16 is an active-site residue positioned at the nucleotide-binding domain (Porter and Hartman, 1988). The hyperreactivity of Cys16 has heretofore limited further active-site characterization by chemical modification. To overcome this limitation, the partially active enzyme,S-methylated at Cys16, has been probed with a potential affinity reagent. Treatment of methylated enzyme with bromoacetylethanolamine phosphate results in essentially complete loss of catalytic activity. Inactivation follows pseudo-first-order kinetics and exhibits a rate saturation with an apparentK d of 3–4 mM. ATP, but not ribulose 5-phosphate, affords substantial protection. Complete inactivation correlates with incorporation of 1 mol of [14C]reagent per mole of enzyme subunit. Amino acid analysis of the [14C]-labeled enzyme demonstrates that only cysteine is modified, and mapping of tryptic digests shows that Cys55 is a major site of alkylation. These results indicate that Cys55 is also located in the ATP-binding domain of the active-site.  相似文献   

8.
Chemical modification was used to elucidate the essential amino acids in the catalytic activity of arginine kinase (AK) from Migratoria manilensis. Among six cysteine (Cys) residues only one Cys residue was determined to be essential in the active site by Tsou's method. Furthermore, the AK modified by DTNB can be fully reactivated by dithiothreitol (DTT) in a monophasic kinetic course. At the same time, this reactivation can be slowed down in the presence of ATP, suggesting that the essential Cys is located near the ATP binding site. The ionizing groups at the AK active site were studied and the standard dissociation enthalpy (ΔH°) was 12.38 kcal/mol, showing that the dissociation group may be the guanidino of arginine (Arg). Using the specific chemical modifier phenylglyoxal (PG) demonstrated that only one Arg, located near the ATP binding site, is essential for the activity of AK.  相似文献   

9.
The purpose of this study is to clarify that the amino acid residues (Asp62 and Arg193) are responsible for the activity and stability of arginine kinase (AK). The amino acid residues Asp62 (D62) and Arg193 (R193) are strictly conserved in monomeric AKs and form an ion pair in the transition state analogue complex. In this research, we replaced D62 with glutamate (E) or glycine (G) and R193 with lysine (K) or glycine (G). The mutants of D62E and R193K retained almost 90% of the wild-type activity, whereas D62G and R193G had a pronounced loss in activity. A detailed comparison was made between the physic-chemical properties and conformational changes of wild-type AK and the mutants by means of ultraviolet (UV) difference and fluorescence spectra. The results indicated that the conformation of all of the mutants had been changed and the stability in a urea solution was also reduced. We speculated that the hydrogen bond and electrostatic interactions formed between residues 62 and 193 play a key role in stabilizing the structure and mediating the synergism in substrate binding of arginine kinase from greasyback shrimp (Metapenaeus ensis).  相似文献   

10.
The kinetic properties of partially purified kidney cortex, liver and muscle isozymes of rat pyruvate kinase (EC 2.7.1.40) were compared. The liver and kidney cortex enzymes were isolated in forms which were homotropically activated by phosphoenolpyruvate and heterotropically activated by fructose-1,6-diphosphate. In the absence of added modulators, the liver enzyme was less active, but both isozymes were fruther inactivated by l-alanine, l-phenylalanine or ATP. The liver enzyme was relatively more sensitive to ATP, but less sensitive to l-phenylalanine. The muscle enzyme, on the other hand, was isolated in a more active form which was insensitive to ATP or l-alanine inhibition and of intermediate sensitivity to l-phenylalanine inhibition. In the presence of l-phenylalanine, muscle enzyme also underwent homotropic and heterotropic activation. Not any of the isozymes were inhibited by NADH.All three isozymes were activated by K+ or NH4+. NH4+ was the more effective activator for the kidney cortex or liver enzymes, in the former case because of a greater affinity, the latter because of a higher catalytic efficiency. Of the divalent cations tested only Mg2+ and Mn2+ activated. All three isozymes had lower maximal rates when activated by Mn2+, but this ion also consistently acted as a typical K-type activator.Evidence also was obtained which suggested that the change from one conformational form to another might take minutes and therefore, measured kinetic parameters could reflect conformational as well as catalytic phenomena. This observation, plus suggested independent subunit interactions, were considered to be evidence favoring a sequential rather than a concerted mechanism of conformational transition.  相似文献   

11.
CopA, a thermophilic ATPase from Archaeoglobus fulgidus, drives the outward movement of Cu+ across the cell membrane. Millimolar concentration of Cys dramatically increases (≅ 800%) the activity of CopA and other PIB-type ATPases (Escherichia coli ZntA and Arabidopsis thaliana HMA2). The high affinity of CopA for metal (≅ 1 μM) together with the low Cu+-Cys KD (< 10− 10M) suggested a multifaceted interaction of Cys with CopA, perhaps acting as a substitute for the Cu+ chaperone protein present in vivo. To explain the activation by the amino acid and further understand the mechanism of metal delivery to transport ATPases, Cys effects on the turnover and partial reactions of CopA were studied. 2-20 mM Cys accelerates enzyme turnover with little effect on CopA affinity for Cu+, suggesting a metal independent activation. Furthermore, Cys activates the p-nitrophenyl phosphatase activity of CopA, even though this activity is metal independent. Cys accelerates enzyme phosphorylation and the forward dephosphorylation rates yielding higher steady state phosphoenzyme levels. The faster dephosphorylation would explain the higher enzyme turnover in the presence of Cys. The amino acid has no significant effect on low affinity ATP Km suggesting no changes in the E1 ↔ E2 equilibrium. Characterization of Cu+ transport into sealed vesicles indicates that Cys acts on the cytoplasmic side of the enzyme. However, the Cys activation of truncated CopA lacking the N-terminal metal binding domain (N-MBD) indicates that activation by Cys is independent of the regulatory N-MBD. These results suggest that Cys is a non-essential activator of CopA, interacting with the cytoplasmic side of the enzyme while this is in an E1 form. Interestingly, these effects also point out that Cu+ can reach the cytoplasmic opening of the access path into the transmembrane transport sites either as a free metal or a Cu+-Cys complex.  相似文献   

12.
Ca2+ (sarco-endoplasmic reticulum Ca2+ ATPase (SERCA)) and Cu+ (ATP7A/B) ATPases utilize ATP through formation of a phosphoenzyme intermediate (E-P) whereby phosphorylation potential affects affinity and orientation of bound cation. SERCA E-P formation is rate-limited by enzyme activation by Ca2+, demonstrated by the addition of ATP and Ca2+ to SERCA deprived of Ca2+ (E2) as compared with ATP to Ca2+-activated enzyme (E1·2Ca2+). Activation by Ca2+ is slower at low pH (2H+·E2 to E1·2Ca2+) and little sensitive to temperature-dependent activation energy. On the other hand, subsequent (forward or reverse) phosphoenzyme processing is sensitive to activation energy, which relieves conformational constraints limiting Ca2+ translocation. A “H+-gated pathway,” demonstrated by experiments on pH variations, charge transfer, and Glu-309 mutation allows luminal Ca2+ release by H+/Ca2+ exchange. As compared with SERCA, initial utilization of ATP by ATP7A/B is much slower and highly sensitive to temperature-dependent activation energy, suggesting conformational constraints of the headpiece domains. Contrary to SERCA, ATP7B phosphoenzyme cleavage shows much lower temperature dependence than EP formation. ATP-dependent charge transfer in ATP7A and -B is observed, with no variation of net charge upon pH changes and no evidence of Cu+/H+ exchange. As opposed to SERCA after Ca2+ chelation, ATP7A/B does not undergo reverse phosphorylation with Pi after copper chelation unless a large N-metal binding extension segment is deleted. This is attributed to the inactivating interaction of the copper-deprived N-metal binding extension with the headpiece domains. We conclude that in addition to common (P-type) phosphoenzyme intermediate formation, SERCA and ATP7A/B possess distinctive features of catalytic and transport mechanisms.  相似文献   

13.
Magnetic resonance and kinetic studies of the catalytic subunit of a Type II cAMP-dependent protein kinase from bovine heart have established the active complex to be an enzyme-ATP-metal bridge. The metal ion is β,γ coordinated with Δ chirality at the β-phosphorous atom. The binding of a second metal ion at the active site which bridges the enzyme to the three phosphoryl groups of ATP, partially inhibits the reaction. Binding of the metal-ATP substrate to the enzyme occurs in a diffusion-controlled reaction followed by a 40 ° change in the glycosidic torsional angle. This conformational change results from strong interaction of the nucleotide base with the enzyme. NMR studies of four ATP-utilizing enzymes show a correlation between such conformational changes and high nucleotide base specificity. Heptapeptide substrates and substrate analogs bind to the active site of the catalytic subunit at a rate significantly lower than collision frequency indicating conformational selection by the enzyme or a subsequent slow conformational change. NMR studies of the conformation of the enzyme-bound peptide substrates have ruled out α-helical and β-pleated sheet structures. The results of kinetic studies of peptide substrates in which the amino acid sequence was systematically varied were used to rule out the obligatory requirement for all possible β-turn conformations within the heptapeptide although an enzymatic preference for a β2–5 or β3–6 turn could not be excluded. Hence if protein kinase has an absolute requirement for a specific secondary structure, then this structure must be a coil. In the enzyme-substrate complex the distance along the reaction coordinate between the γ-P of ATP and the serine oxygen of the peptide substrate (5.3 ± 0.7 Å) allows room for a metaphosphate intermediate. This finding together with kinetic observations as well as the location of the inhibitory metal suggest a dissociative mechanism for protein kinase, although a mechanism with some associative character remains possible. Regulation of protein kinase is accomplished by competition between the regulatory subunit and peptide or protein substrates at the active site of the catalytic subunit. Thus, the regulatory subunit is found by NMR to block the binding of the peptide substrate to the active site of protein kinase but allows the binding of the nucleotide substrate and divalent cations. The dissociation constant of the regulatory subunit from the active site (10?10m) is increased ~10-fold by phosphorylation and ~104-fold by the binding of cAMP, to a value (10?5m) which exceeds the intracellular concentration of the R2C2 holoenzyme complex (10?6m). The resulting dissociation of the holoenzyme releases the catalytic subunit, permitting the active site binding of peptide or protein substrates.  相似文献   

14.
Arsenic (III) methyltransferase (AS3MT) catalyzes the process of arsenic methylation. Each arsenite (iAs3+) binds to three cysteine residues, methylarsenite (MMA3+) binds to two, and dimethylarsenite (DMA3+) binds to one. However, only two As-binding sites (Cys156 and Cys206) have been confirmed on human AS3MT (hAS3MT). The third As-binding site is still undefined. Residue Cys72 in Cyanidioschyzon merolae arsenite S-adenosylmethyltransferase (CmArsM) may be the third As-binding site. The corresponding residue in hAS3MT is Cys61. Functions of Cys32, Cys61, and Cys85 in hAS3MT are unclear though Cys32, Cys61, and Cys85 in rat AS3MT have no effect on the enzyme activity. This is why the functions of Cys32, Cys61, and Cys85 in hAS3MT merit investigation. Here, three mutants were designed, C32S, C61S, and C85S. Their catalytic activities and conformations were determined, and the catalytic capacities of C156S and C206S were studied. Unlike C85S, mutants C32S and C61S were completely inactive in the methylation of iAs3+ and active in the methylation of MMA3+. The catalytic activity of C85S was also less pronounced than that of WT-hAS3MT. All these findings suggest that Cys32 and Cys61 markedly influence the catalytic activity of hAS3MT. Cys32 and Cys61 are necessary to the first step of methylation but not to the second. Cys156 and Cys206 are required for both the first and second steps of methylation. The SC32 is located far from arsenic in the WT-hAS3MT-SAM-As model. The distances between SC61 and arsenic in WT-hAS3MT-As and WT-hAS3MT-SAM-As models are 7.5 Å and 4.1 Å, respectively. This indicates that SAM-binding to hAS3MT shortens the distance between SC61 and arsenic and promotes As-binding to hAS3MT. This is consistent with the fact that SAM is the first substrate to bind to hAS3MT and iAs is the second. Model of WT-hAS3MT-SAM-As and the experimental results indicate that Cys61 is the third As-binding site.  相似文献   

15.
ATP synthase (F-ATPase) function depends upon catalytic and rotation cycles of the F1 sector. Previously, we found that F1 ATPase activity is inhibited by the dietary polyphenols, curcumin, quercetin, and piceatannol, but that the inhibitory kinetics of curcumin differs from that of the other two polyphenols (Sekiya et al., 2012, 2014). In the present study, we analyzed Escherichia coli F1 ATPase rotational catalysis to identify differences in the inhibitory mechanism of curcumin versus quercetin and piceatannol. These compounds did not affect the 120° rotation step for ATP binding and ADP release, though they significantly increased the catalytic dwell duration for ATP hydrolysis. Analysis of wild-type F1 and a mutant lacking part of the piceatannol binding site (γΔ277–286) indicates that curcumin binds to F1 differently from piceatannol and quercetin. The unique inhibitory mechanism of curcumin is also suggested from its effect on F1 mutants with defective β–γ subunit interactions (γMet23 to Lys) or β conformational changes (βSer174 to Phe). These results confirm that smooth interaction between each β subunit and entire γ subunit in F1 is pertinent for rotational catalysis.  相似文献   

16.
The α-kinases are a widely expressed family of serine/threonine protein kinases that exhibit no sequence identity with conventional eukaryotic protein kinases. In this report, we provide new information on the catalytic properties of the α-kinase domain of Dictyostelium myosin-II heavy chain kinase-A (termed A-CAT). Crystallization of A-CAT in the presence of MgATP yielded structures with AMP or adenosine in the catalytic cleft together with a phosphorylated Asp-766 residue. The results show that the β- and α-phosphoryl groups are transferred either directly or indirectly to the catalytically essential Asp-766. Biochemical assays confirmed that A-CAT hydrolyzed ATP, ADP, and AMP with kcat values of 1.9, 0.6, and 0.32 min−1, respectively, and showed that A-CAT can use ADP to phosphorylate peptides and proteins. Binding assays using fluorescent 2′/3′-O-(N-methylanthraniloyl) analogs of ATP and ADP yielded Kd values for ATP, ADP, AMP, and adenosine of 20 ± 3, 60 ± 20, 160 ± 60, and 45 ± 15 μm, respectively. Site-directed mutagenesis showed that Glu-713, Leu-716, and Lys-645, all of which interact with the adenine base, were critical for nucleotide binding. Mutation of the highly conserved Gln-758, which chelates a nucleotide-associated Mg2+ ion, eliminated catalytic activity, whereas loss of the highly conserved Lys-722 and Arg-592 decreased kcat values for kinase and ATPase activities by 3–6-fold. Mutation of Asp-663 impaired kinase activity to a much greater extent than ATPase, indicating a specific role in peptide substrate binding, whereas mutation of Gln-768 doubled ATPase activity, suggesting that it may act to exclude water from the active site.  相似文献   

17.
Freshwater crayfish, Orconectes virilis, can experience periodic exposures to hypoxia or anoxia due to low water flow (in summer) or ice cover (in winter) in their natural habitat. Hypoxia/anoxia disrupts energy metabolism and triggers mechanisms that to support ATP levels while often also suppressing ATP use. Arginine kinase (AK) (E.C. 2.7.3.3) is a crucial enzyme involved in energy metabolism in muscle, gating the use of phosphagen stores to buffer ATP levels. The present study investigated AK from tail muscle of O. virilis identifying changes to kinetic properties, phosphorylation state and structural stability between the enzyme from aerobic control and 20 h anoxic crayfish. Muscle AK from anoxia-exposed crayfish showed a significantly higher (by 59%) K m for l-arginine and a lower I50 value for urea than the aerobic form. Several lines of evidence indicated that AK was converted to a high phosphate form under anoxia: (a) aerobic and anoxic forms of AK showed well-separated elution peaks on DEAE ion exchange chromatography, (b) ProQ Diamond phosphoprotein staining showed a 64% higher bound phosphate content on anoxic AK compared with the aerobic form, and (c) treatment of anoxic AK with alkaline phosphatase reduced K m l-arginine to aerobic levels whereas incubation of aerobic AK with protein kinase A catalytic subunit raised the K m to anoxic levels. The physiological consequence of anoxia-induced AK phosphorylation may be to suppress AK activity in the phosphagen-synthesizing direction and, together with reduced cellular pH and ATP levels, promote the phosphagen-catabolizing direction under anoxic conditions. This is first time that AK has been shown to be regulated by reversible phosphorylation.  相似文献   

18.
Methanol at 35% (vv) overcomes the latency of spinach thylakoid ATPase. Activation is immediate and reversible involving changes in the Vmax, not the Km of the enzyme, MgATP is a much better substrate than CaATP; free Mg2+ noncompetitively inhibits activity. This inhibition can be overcome by the addition of Na2SO3. While both MgATP and MgGTP act as substrates, free ATP and GTP both inhibit activity. ADP and MgADP are also inhibitory. Insensitivity to certain inhibitors indicates that methanol neither induces the same conformational changes in CF1 as illumination does, nor does it lead to coupling between H+ movement through CF0 and ATP hydrolysis. Methanol activation provides a much improved method for assaying thylakoid ATPase.  相似文献   

19.
The effects of temperature and the membrane-active protein CTII on the formation of nonbilayer structures in mitochondrial membranes were studied by 31P-NMR. An increase in ATP synthase activity was found for the first time to accompany the formation of nonbilayer packed phospholipids with immobilized molecular mobility in mitochondrial membranes. Computer modeling was additionally employed in studying the interaction of important phospholipids found in mitochondrial membranes with the molecular surface of CTII, which behaves like a dicyclohexylcarbodiimide-binding protein (DCCD-BP) of the F0 group in a lipid phase. Proton permeability toroidal pores were assumed to form in mitochondrial membranes from nonbilayer-packed phospholipids immobilized via interactions with DCCD-BP. Proton transport along a concentration gradient through the transit toroidal permeability pores may induce conformational changes necessary for mediating the catalytic activity of ATP synthase in the subunits of the F0–F1 complex.  相似文献   

20.
Arginine kinase (AK) is a key enzyme for energetic balance in invertebrates. Although AK is a well-studied system that provides fast energy to invertebrates using the phosphagen phospho-arginine, the structural details on the AK-arginine binary complex interaction remain unclear. Herein, we determined two crystal structures of the Pacific whiteleg shrimp (Litopenaeus vannamei) arginine kinase, one in binary complex with arginine (LvAK-Arg) and a ternary transition state analog complex (TSAC). We found that the arginine guanidinium group makes ionic contacts with Glu225, Cys271 and a network of ordered water molecules. On the zwitterionic side of the amino acid, the backbone amide nitrogens of Gly64 and Val65 coordinate the arginine carboxylate. Glu314, one of proposed acid–base catalytic residues, did not interact with arginine in the binary complex. This residue is located in the flexible loop 310–320 that covers the active site and only stabilizes in the LvAK-TSAC. This is the first binary complex crystal structure of a guanidine kinase in complex with the guanidine substrate and could give insights into the nature of the early steps of phosphagen biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号