首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 184 毫秒
1.
Cardiolipin (CL) is an anionic phospholipid at the inner mitochondrial membrane (IMM) that facilitates the formation of transient non-bilayer (non-lamellar) structures to maintain mitochondrial integrity. CL modulates mitochondrial functions including ATP synthesis. However, the biophysical mechanisms by which CL generates non-lamellar structures and the extent to which these structures contribute to ATP synthesis remain unknown. We hypothesized that CL and ATP synthase facilitate the formation of non-bilayer structures at the IMM to stimulate ATP synthesis. By using 1H NMR and 31P NMR techniques, we observed that increasing the temperature (8 °C to 37 °C), lowering the pH (3.0), or incubating intact mitochondria with CTII - an IMM-targeted toxin that increases the formation of immobilized non-bilayer structures - elevated the formation of non-bilayer structures to stimulate ATP synthesis. The F0 sector of the ATP synthase complex can facilitate the formation of non-bilayer structures as incubating model membranes enriched with IMM-specific phospholipids with exogenous DCCD-binding protein of the F0 sector (DCCD-BPF) elevated the formation of immobilized non-bilayer structures to a similar manner as CTII. Native PAGE assays revealed that CL, but not other anionic phospholipids, specifically binds to DCCD-BPF to promote the formation of stable lipid-protein complexes. Mechanistically, molecular docking studies identified two lipid binding sites for CL in DCCD-BPF. We propose a new model of ATP synthase regulation in which CL mediates the formation of non-bilayer structures that serve to cluster protons and ATP synthase complexes as a mechanism to enhance proton translocation to the F0 sector, and thereby increase ATP synthesis.  相似文献   

2.
Alavian and colleagues recently provided further evidence in support of the notion that the c subunit of the mitochondrial F1FO ATP synthase constitutes the long-sought pore-forming unit of the supramolecular complex responsible for the so-called ‘mitochondrial permeability transition’ (MPT). Besides shedding new light on the molecular mechanisms that underlie the MPT, these findings corroborate the notion that several components of the cell death machinery, including cytochrome c and the F1FO ATP synthase, mediate critical metabolic activities.  相似文献   

3.
Over the past few years, several reports have described the presence of F0F1 ATP synthase subunits at the surface of hepatocytes, where the hydrolytic activity of F1 sector faces outside and triggers HDL endocytosis. An intriguing question is whether the ectopic enzyme has same subunit composition and molecular mass as that of the mitochondrial ATP synthase. Also due to the polar nature of hepatocytes, the enzyme may be localized to a particular cell boundary. Using different methods to prepare rat liver plasma membranes, which have been subjected to digitonin extraction, hr CN PAGE, immunoblotting, and mass spectrometry analysis, we demonstrate the presence of ecto-F0F1 complexes which have a similar molecular weight to the monomeric form of the mitochondrial complexes, containing both nuclear and mitochondrially-encoded subunits. This finding makes it unlikely that the enzyme assembles on the plasma membranes, but suggest it to be transported whole after being assembled in mitochondria by still unknown pathways. Moreover, the plasma membrane preparation enriched in basolateral proteins contains much higher amounts of complete and active F0F1 complexes, consistent with their specific function to modulate the HDL uptake on hepatocyte surface.  相似文献   

4.
The F1F0-adenosine triphosphate (ATP) synthase rotational motor synthesizes most of the ATP required for living from adenosine diphosphate, Pi, and a proton electrochemical gradient across energy-transducing membranes of bacteria, chloroplasts, and mitochondria. However, as a reversible nanomotor, it also hydrolyzes ATP during de-energized conditions in all energy-transducing systems. Thus, different subunits and mechanisms have emerged in nature to control the intrinsic rotation of the enzyme to favor the ATP synthase activity over its opposite and commonly wasteful ATPase turnover. Recent advances in the structural analysis of the bacterial and mitochondrial ATP synthases are summarized to review the distribution and mechanism of the subunits that are part of the central rotor and regulate its gyration. In eubacteria, the ε subunit works as a ratchet to favor the rotation of the central stalk in the ATP synthase direction by extending and contracting two α-helixes of its C-terminal side and also by binding ATP with low affinity in thermophilic bacteria. On the other hand, in bovine heart mitochondria, the so-called inhibitor protein (IF1) interferes with the intrinsic rotational mechanism of the central γ subunit and with the opening and closing of the catalytic β-subunits to inhibit its ATPase activity. Besides its inhibitory role, the IF1 protein also promotes the dimerization of the bovine and rat mitochondrial enzymes, albeit it is not essential for dimerization of the yeast F1F0 mitochondrial complex. High-resolution electron microscopy of the dimeric enzyme in its bovine and yeast forms shows a conical shape that is compatible with the role of the ATP synthase dimer in the formation of tubular the cristae membrane of mitochondria after further oligomerization. Dimerization of the mitochondrial ATP synthase diminishes the rotational drag of the central rotor that would decrease the coupling efficiency between rotation of the central stalk and ATP synthesis taking place at the F1 portion. In addition, F1F0 dimerization and its further oligomerization also increase the stability of the enzyme to natural or experimentally induced destabilizing conditions.  相似文献   

5.
Neurons experience high metabolic demand during such processes as synaptic vesicle recycling, membrane potential maintenance and Ca2+ exchange/extrusion. The energy needs of these events are met in large part by mitochondrial production of ATP through the process of oxidative phosphorylation. The job of ATP production by the mitochondria is performed by the F1FO ATP synthase, a multi-protein enzyme that contains a membrane-inserted portion, an extra-membranous enzymatic portion and an extensive regulatory complex. Although required for ATP production by mitochondria, recent findings have confirmed that the membrane-confined portion of the c-subunit of the ATP synthase also houses a large conductance uncoupling channel, the mitochondrial permeability transition pore (mPTP), the persistent opening of which produces osmotic dysregulation of the inner mitochondrial membrane, uncoupling of oxidative phosphorylation and cell death. Recent advances in understanding the molecular components of mPTP and its regulatory mechanisms have determined that decreased uncoupling occurs in states of enhanced mitochondrial efficiency; relative closure of mPTP therefore contributes to cellular functions as diverse as cardiac development and synaptic efficacy.  相似文献   

6.
Abstract

Of the two main sectors of the F-type ATP synthase, the membrane-intrinsic FO domain is the one which, during evolution, has undergone the highest structural variations and changes in subunit composition. The FO complexity in mitochondria is apparently related to additional enzyme functions that lack in bacterial and thylakoid complexes. Indeed, the F-type ATP synthase has the main bioenergetic role to synthesize ATP by exploiting the electrochemical gradient built by respiratory complexes. The FO membrane domain, essential in the enzyme machinery, also participates in the bioenergetic cost of synthesizing ATP and in the formation of the cristae, thus contributing to mitochondrial morphology. The recent enzyme involvement in a high-conductance channel, which forms in the inner mitochondrial membrane and promotes the mitochondrial permeability transition, highlights a new F-type ATP synthase role. Point mutations which cause amino acid substitutions in FO subunits produce mitochondrial dysfunctions and lead to severe pathologies. The FO variability in different species, pointed out by cryo-EM analysis, mirrors the multiple enzyme functions and opens a new scenario in mitochondrial biology.  相似文献   

7.
A phosphorylated polypeptide (ScIRP) from the inner membrane of rat liver mitochondria with an apparent molecular mass of 3.5 kDa was found to be immunoreactive with specific antibodies against subunit c of F0F1-ATPase/ATP synthase (Azarashvily, T. S., Tyynelä, J., Baumann, M., Evtodienko, Yu. V., and Saris, N.-E. L. (2000). Biochem. Biophys. Res. Commun. 270, 741–744. In the present paper we show that the dephosphorylation of ScIRP was promoted by the Ca2+-induced mitochondrial permeability transition (MPT) and prevented by cyclosporin A. Preincubation of ScIRP isolated in its dephosphorylated form with the mitochondrial suspension decreased the membrane potential (M) and the Ca2+-uptake capacity by promoting MPT. Incorporation of ScIRP into black-lipid membranes increased the membrane conductivity by inducing channel formation that was also suppressed by antibodies to subunit c. These data indicate that the phosphorylation level of ScIRP is influenced by the MPT pore state, presumably by stimulation of calcineurin phosphatase by the Ca2+ used to induce MPT. The possibility of ScIRP being part of the MPT pore assembly is discussed in view of its capability to induced channel activity.  相似文献   

8.
The mitochondrial ATP synthase is a molecular motor that drives the phosphorylation ofADP to ATP. The yeast mitochondrial ATP synthase is composed of at least 19 differentpeptides, which comprise the F1 catalytic domain, the F0 proton pore, and two stalks, oneof which is thought to act as a stator to link and hold F1 to F0, and the other as a rotor.Genetic studies using yeast Saccharomyces cerevisiae have suggested the hypothesis thatthe yeast mitochondrial ATP synthase can be assembled in the absence of 1, and even 2, ofthe polypeptides that are thought to comprise the rotor. However, the enzyme complexassembled in the absence of the rotor is thought to be uncoupled, allowing protons to freelyflow through F0 into the mitochondrial matrix. Left uncontrolled, this is a lethal process andthe cell must eliminate this leak if it is to survive. In yeast, the cell is thought to lose ordelete its mitochondrial DNA (the petite mutation) thereby eliminating the genes encodingessential components of F0. Recent biochemical studies in yeast, and prior studies in E. coli,have provided support for the assembly of a partial ATP synthase in which the ATP synthaseis no longer coupled to proton translocation.  相似文献   

9.
Bacteriorhodopsin-F1·F0 (mitochondrial oligomycin-sensitive ATPase complex) proteoliposomes have poor proton pumping and photophosphorylation activities when reconstituted by cholate dialysis. A considerable proportion of the bacteriorhodopsin is not incorporated by cholate dialysis, the particles being too large to be combined into liposomes. Much better reconstitution is achieved where the purple membranes are first fragmented by sonication. Optimal incorporation occurs where bacteriorhodopsin and the phospholipids are sonicated together, suggesting that some perturbation of the liposomes is necessary for successful integration. Since F1·F0 is denatured by sonication a two-step reconstitution procedure has been developed wherein bacteriorhodopsin is first incorporated by sonication, then F1·F0 by cholate dialysis. The vesicles have high phosphorylation rates and also catalyze postillumination [32P]ATP formation where pyridine is present during first stage illumination.F1·F0 can also be incorporated into sonicated bacteriorhodopsin vesicles by “direct incorporation.” This depends on the presence of negatively charged amphiphiles such as cholate or phosphatidylserine in the membranes, and is stimulated by divalent metal cations. Optimum conditions for the various reconstitution procedures are described.  相似文献   

10.
The impact of the mitochondrial permeability transition (MPT) on cellular physiology is well characterized. In contrast, the composition and mode of action of the permeability transition pore complex (PTPC), the supramolecular entity that initiates MPT, remain to be elucidated. Specifically, the precise contribution of the mitochondrial F1FO ATP synthase (or subunits thereof) to MPT is a matter of debate. We demonstrate that F1FO ATP synthase dimers dissociate as the PTPC opens upon MPT induction. Stabilizing F1FO ATP synthase dimers by genetic approaches inhibits PTPC opening and MPT. Specific mutations in the F1FO ATP synthase c subunit that alter C‐ring conformation sensitize cells to MPT induction, which can be reverted by stabilizing F1FO ATP synthase dimers. Destabilizing F1FO ATP synthase dimers fails to trigger PTPC opening in the presence of mutants of the c subunit that inhibit MPT. The current study does not provide direct evidence that the C‐ring is the long‐sought pore‐forming subunit of the PTPC, but reveals that PTPC opening requires the dissociation of F1FO ATP synthase dimers and involves the C‐ring.  相似文献   

11.
Mitochondrial F1Fo-ATP synthase catalyzes the formation of ATP from ADP and inorganic phosphate. The enzyme is found in monomeric, dimeric and higher oligomeric forms in the inner mitochondrial membrane. Dimerization of ATP synthase complexes is a prerequisite for the generation of larger oligomers that promote membrane bending and formation of tubular cristae membranes. Two small proteins of the membrane-embedded Fo-domain, subunit e (Su e; Atp21) and Su g (Atp20), were identified as dimer-specific subunits of yeast ATP synthase and shown to be required for stabilization of the dimers. We have identified two distinct monomeric forms of yeast ATP synthase. Su e and Su g are present not only in the dimer but also in one of the monomeric forms. We demonstrate that Su e and Su g sequentially assemble with monomeric ATP synthase to form a dimerization-competent primed monomer. We conclude that association of Su e and Su g with monomeric F1Fo-ATP synthase represents an initial step of oligomer formation.  相似文献   

12.
(i) The method of preparing the oligomycin-insensitive F1-ATPase by chloroform treatment of mitochondrial membranes (Beechey et al., 1975, Biochem. J.148, 533–537) has been modified such that a five-subunit protein is obtained from yeast with an activity of 140 μmol of ATP hydrolyzed/min/mg of protein. Repetition of this procedure in the presence of protease inhibitors (in particular, p-aminobenzamidine) allows isolation of a four-subunit protein with an activity of 243 μmol of ATP hydrolyzed/min/ mg of protein, (ii) A modified procedure is described for the preparation of the yeast oligomycin-sensitive F1-F0 ATPase complex, making use of protease inhibitors throughout and solubilization of the ATPase from mitochondrial membranes using Triton X-100 and sodium deoxycholate simultaneously. Two polypeptides Of 42,000 and 29,000 molecular weight are eliminated, the largest corresponding to the missing band of the F1 sector. The complex retains oligomycin- and uncoupler-sensitive ATP-32Pi exchange and ATP-driven proton uptake, indicating the retention of a complete coupling mechanism. (iii) F1-ATPase is released from the F1-F0 complex by brief heating at 50 °C in the presence of ATP. The remaining hydrophobic polypeptides aggregate and are isolated by centrifugation. The F1 sector can be isolated containing either four or five subunits depending on whether the starting F1-F0 complex contained the 42,000 and 29,000 molecular weight polypeptides. (iv) Sensitivity of the F1-F0 ATPase complex to oligomycin and dicyclohexylcarbodiimide varies considerably depending on the activity measured and whether the complex was first reconstituted with phospholipids. The degree of inhibitor sensitivity is considered a poor guide to intactness of the complex.  相似文献   

13.
The permeability transition pore (PTP) is a Ca2+‐dependent mitochondrial channel whose opening causes a permeability increase in the inner membrane to ions and solutes. The most potent inhibitors are matrix protons, with channel block at pH 6.5. Inhibition is reversible, mediated by histidyl residue(s), and prevented by their carbethoxylation by diethylpyrocarbonate (DPC), but their assignment is unsolved. We show that PTP inhibition by H+ is mediated by the highly conserved histidyl residue (H112 in the human mature protein) of oligomycin sensitivity conferral protein (OSCP) subunit of mitochondrial F1FO (F)‐ATP synthase, which we also show to undergo carbethoxylation after reaction of mitochondria with DPC. Mitochondrial PTP‐dependent swelling cannot be inhibited by acidic pH in H112Q and H112Y OSCP mutants, and the corresponding megachannels (the electrophysiological counterpart of the PTP) are insensitive to inhibition by acidic pH in patch‐clamp recordings of mitoplasts. Cells harboring the H112Q and H112Y mutations are sensitized to anoxic cell death at acidic pH. These results demonstrate that PTP channel formation and its inhibition by H+ are mediated by the F‐ATP synthase.  相似文献   

14.
The mitochondrial F1F0-ATP synthase adopts supramolecular structures. The interaction domains between monomers involve components belonging to the F0 domains. In Saccharomyces cerevisiae, alteration of these components destabilizes the oligomeric structures, leading concomitantly to the appearance of monomeric species of ATP synthase and anomalous mitochondrial morphologies in the form of onion-like structures. The mitochondrial ultrastructure at the cristae level is thus modified. Electron microscopy on cross-sections of wild type mitochondria display many short cristae with narrowed intra-cristae space, whereas yeast mutants defected in supramolecular ATP synthases assembly present a low number of large lamellar cristae of constant thickness and traversing the whole organelle. The growth of these internal structures leads finally to mitochondria with sphere-like structures with a mean diameter of 1 μm that are easily identified by epifluorescence microscopy. As a result, ATP synthase is an actor of the mitochondrial ultrastructure in yeast. This paper reviews the ATP synthase components whose modifications lead to anomalous mitochondrial morphology and also provides a schema showing the formation of the so-called onion-like structures.  相似文献   

15.
Dimethylsulfoxide [Me2SO, 30% (v/v)] promotes the formation of ATP from ADP and phosphate catalyzed by soluble mitochondrial F1-ATPase. The effects of this solvent on the interaction of beef-heart mitochondrial F1 with the immobilized ATP of Agarose-hexane-ATP were studied. In the presence of Me2SO, F1 bound less readily to the immobilized ATP, but once bound was more difficult to elute with exogenous ATP. This suggests that not only was the binding affinity for adenine nucleotide at the first binding site affected but that adenine nucleotide binding affinity at the second and/or third sites, which interact cooperatively with the first site to release bound nucleotide, was also affected. A reduction in the binding of [3H]ADP to these sites was shown. A change in the conformation of F1 in 30% (v/v) Me2SO was demonstrated by crosslinking and by the increased resistance of the enzyme to cold denaturation.  相似文献   

16.
The identity of the mitochondrial permeability transition (mPT) pore, a megachannel embedded in the inner membrane opened by Ca2+, is fiercely debated. Unraveling the components structuring this pore is critical for combating diseases as diverse as neurodegeneration, cancer, autoimmunity, and myopathies in which this phenomenon is implicated. Current consensus is that the pore is formed within, or in‐between F0F1 ATP synthase dimers, but not through their c‐subunit ring. Two recent studies in this issue of EMBO Reports throw more light on these aspects, one by Giorgio et al 1 showing that the β subunit of the ATP synthase harbors a Ca2+‐binding site responsible for triggering mPT, and the other by Bonora et al 2 demonstrating that permeability transition requires dissociation of F0F1 ATP synthase dimers, albeit in a manner involving the c‐subunit ring.  相似文献   

17.
ATP provided by oxidative phosphorylation supports highly complex and energetically expensive cellular processes. Yet, in several pathological settings, mitochondria could revert to ATP consumption, aggravating an existing cellular pathology. Here we review (i) the pathological conditions leading to ATP hydrolysis by the reverse operation of the mitochondrial FoF1-ATPase, (ii) molecular and thermodynamic factors influencing the directionality of the FoF1-ATPase, (iii) the role of the adenine nucleotide translocase as the intermediary adenine nucleotide flux pathway between the cytosol and the mitochondrial matrix when mitochondria become ATP consumers, (iv) the role of the permeability transition pore in bypassing the ANT, thereby allowing the flux of ATP directly to the hydrolyzing FoF1-ATPase, (v) the impact of the permeability transition pore on glycolytic ATP production, and (vi) endogenous and exogenous interventions for limiting ATP hydrolysis by the mitochondrial FoF1-ATPase.  相似文献   

18.
Cobra venom cytotoxins are basic three-fingered, amphipathic, non-enzymatic proteins that constitute a major fraction of cobra venom. While cytotoxins cause mitochondrial dysfunction in different cell types, the mechanisms by which cytotoxins bind to mitochondria remain unknown. We analyzed the abilities of CTI and CTII, S-type and P-type cytotoxins from Naja naja oxiana respectively, to associate with isolated mitochondrial fractions or with model membranes that simulate the mitochondrial lipid environment by using a myriad of biophysical techniques. Phosphorus-31 nuclear magnetic resonance (31P-NMR) spectroscopy data suggest that both cytotoxins bind to isolated mitochondrial fractions and promote the formation of aberrant non-bilayer structures. We then hypothesized that CTI and CTII bind to cardiolipin (CL) to disrupt mitochondrial membranes. Collectively, 31P-NMR, electron paramagnetic resonance (EPR), proton NMR (1H-NMR), deuterium NMR (2H-NMR) spectroscopy, differential scanning calorimetry, and erythrosine phosphorescence assays suggest that CTI and CTII bind to CL to generate non-bilayer structures and promote the permeabilization, dehydration and fusion of large unilamellar phosphatidylcholine (PC) liposomes enriched with CL. On the other hand, CTII but not CTI caused biophysical alterations of large unilamellar PC liposomes enriched with phosphatidylserine (PS). Mechanistically, single molecule docking simulations identified putative CL, PS and PC binding sites in CTI and CTII. While the predicted binding sites for PS and PC share a high number of interactive amino acid residues in CTI and CTII, the CL biding sites in CTII and CTI are more divergent as it contains additional interactive amino acid residues. Overall, our data suggest that cytotoxins physically associate with mitochondrial membranes by binding to CL to disrupt mitochondrial structural integrity.  相似文献   

19.
A new assay has been developed to measure mitochondrial ATP synthesis of cultured mammalian cells. Cells in a microplate are exposed to streptolysin O to make plasma membranes permeable without damaging mitochondrial function and ATP synthesis is monitored by luciferase. Addition of inhibitors of FoF1-ATP synthase (FoF1), respiratory chain, TCA cycle and ATP/ADP translocator, as well as knockdown of β-subunit of FoF1, resulted in loss of ATP synthesis. Compared with the conventional procedures that need mitochondria fractionation and detergent, this assay is simple, sensitive and suitable for high-throughput analysis of genes and drugs that could affect mitochondrial functional integrity as represented by ATP synthesis activity.  相似文献   

20.
《BBA》2022,1863(5):148544
Proton-translocating FOF1 ATP synthase (F-ATPase) couples ATP synthesis or hydrolysis to transmembrane proton transport in bacteria, chloroplasts, and mitochondria. The primary function of the mitochondrial FOF1 is ATP synthesis driven by protonmotive force (pmf) generated by the respiratory chain. However, when pmf is low or absent (e.g. during anoxia), FOF1 consumes ATP and functions as a proton-pumping ATPase.Several regulatory mechanisms suppress the ATPase activity of FOF1 at low pmf. In yeast mitochondria they include special inhibitory proteins Inh1p and Stf1p, and non-competitive inhibition of ATP hydrolysis by MgADP (ADP-inhibition). Presumably, these mechanisms help the cell to preserve the ATP pool upon membrane de-energization. However, no direct evidence was presented to support this hypothesis so far.Here we report that a point mutation Q263L in subunit beta of Saccharomyces cerevisiae ATP synthase significantly attenuated ADP-inhibition of the enzyme without major effect on the rate of ATP production by mitochondria. The mutation also decreased the sensitivity of the enzyme ATPase activity to azide. Similar effects of the corresponding mutations were observed in earlier studies in bacterial enzymes. This observation indicates that the molecular mechanism of ADP-inhibition is probably the same in mitochondrial and in bacterial FOF1.The mutant yeast strain had lower growth rate and had a longer lag period preceding exponential growth phase when starved cells were transferred to fresh growth medium. However, upon the loss of mitochondrial DNA (ρ0) the βQ263L mutation effect was reversed: the βQ263L ρ0 mutant grew faster than the wild-type ρ0 yeast. The results suggest that ADP-inhibition might play a role in prevention of wasteful ATP hydrolysis in the mitochondrial matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号