首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
CD154 is transiently expressed by activated T cells and interacts with CD40 on B cells, dendritic cells, macrophages, and monocytes. This costimulatory receptor-ligand couple seems decisive in Ag-driven immune responses but may be differentially involved in type 1 vs type 2 responses. We studied the importance of CD40-CD154 in both responses using the reporter Ag popliteal lymph node assay in which selectively acting drugs generate clearly polarized type 1 (streptozotocin) or type 2 (D-penicillamine, diphenylhydantoin) responses to a constant coinjected Ag in the same mouse strain. Treatment of mice with anti-CD154 reduced characteristic immunological parameters in type 2 responses (B and CD4(+) T cell proliferation, IgG1 and IgE Abs, and IL-4 secretion) and only slightly affected the type 1 response (small decrease in IFN-gamma production, influx of CD11c(+) and F4/80(+) cells, and prevention of architectural disruption of the lymph node, but no effect on IgG2a Ab and TNF-alpha secretion or B and CD4(+) T cell proliferation). The findings indicate that the CD40-CD154 costimulatory interaction is a prerequisite in drug-induced type 2 responses and is only marginally involved in type 1 responses. The observed expression patterns of CD80 and CD86 on different APC (B cells in type 2 and dendritic cells in type 1) may be responsible for this discrepancy.  相似文献   

2.
Dendritic cells are believed to play an essential role in regulating the balance between immunogenic and tolerogenic responses to mucosal Ags by controlling T cell differentiation and activation via costimulatory and coinhibitory signals. The CD28/CTLA-4-CD80/CD86 signaling pathway appears to be one of the most important regulators of T cell responses but its exact role in responses to orally administered proteins remains to be elucidated. In the present study, the involvement of the CD28/CTLA-4-CD80/CD86 costimulatory pathway in the induction of allergic sensitization and oral tolerance to peanut proteins was investigated. In both an established C3H/HeOuJ mouse model of peanut hypersensitivity and an oral tolerance model to peanut, CD28/CTLA-4-CD80/CD86 interactions were blocked using the fusion protein CTLA-4Ig. To examine the relative contribution of CD80- and CD86-mediated costimulation in these models, anti-CD80 and anti-CD86 blocking Abs were used. In the hypersensitivity model, CTLA-4Ig treatment prevented the development of peanut extract-induced cytokine responses, peanut extract-specific IgG1, IgG2a, and IgE production and peanut extract-induced challenge responses. Blocking of CD80 reduced, whereas anti-CD86 treatment completely inhibited, the induction of peanut extract-specific IgE. Normal tolerance induction to peanut extract was found following CTLA-4Ig, anti-CD86, or anti-CD80 plus anti-CD86 treatment, whereas blockade of CD80 impaired the induction of oral tolerance. We show that CD28/CTLA-4-CD80/CD86 signaling is essential for the development of allergic responses to peanut and that CD86 interaction is most important in inducing peanut extract-specific IgE responses. Additionally, our data suggest that CD80 but not CD86 interaction with CTLA-4 is crucial for the induction of low dose tolerance to peanut.  相似文献   

3.
Valpha14 NKT cells produce large amounts of IFN-gamma and IL-4 upon recognition of their specific ligand alpha-galactosylceramide (alpha-GalCer) by their invariant TCR. We show here that NKT cells constitutively express CD28, and that blockade of CD28-CD80/CD86 interactions by anti-CD80 and anti-CD86 mAbs inhibits the alpha-GalCer-induced IFN-gamma and IL-4 production by splenic Valpha14 NKT cells. On the other, the blockade of CD40-CD154 interactions by anti-CD154 mAb inhibited alpha-GalCer-induced IFN-gamma production, but not IL-4 production. Consistent with these findings, CD28-deficient mice showed impaired IFN-gamma and IL-4 production in response to alpha-GalCer stimulation in vitro and in vivo, whereas production of IFN-gamma but not IL-4 was impaired in CD40-deficient mice. Moreover, alpha-GalCer-induced Th1-type responses, represented by enhanced cytotoxic activity of splenic or hepatic mononuclear cells and antimetastatic effect, were impaired in both CD28-deficient mice and CD40-deficient mice. In contrast, alpha-GalCer-induced Th2-type responses, represented by serum IgE and IgG1 elevation, were impaired in the absence of the CD28 costimulatory pathway but not in the absence of the CD40 costimulatory pathway. These results indicate that CD28-CD80/CD86 and CD40-CD154 costimulatory pathways differentially contribute to the regulation of Th1 and Th2 functions of Valpha14 NKT cells in vivo.  相似文献   

4.
CD80 and CD86 interact with CD28 and deliver costimulatory signals required for T cell activation. We demonstrate that ex vivo allergen stimulation of bronchial biopsy tissue from mild atopic asthmatic, but not atopic nonasthmatic, subjects induced production of IL-5, IL-4, and IL-13. Explants from both study groups did not produce IFN-gamma, but secreted the chemokine RANTES without any overt stimulation. In addition to allergen, stimulation of asthmatic explants with mAbs to CD3 and TCR-alphabeta but not TCR-gammadelta induced IL-5 secretion. Allergen-induced IL-5 and IL-13 production by the asthmatic tissue was inhibited by anti-CD80 and, to a lesser extent, by anti-CD86 mAbs. In contrast, the production of these cytokines by PBMCs was not affected by mAbs to CD80, was inhibited by anti-CD86, and was strongly attenuated in the presence of both Abs. FACS analysis revealed that stimulated asthmatic bronchial tissue was comprised of CD4+ T cells that expressed surface CD28 (75. 3%) but little CTLA-4 (4.0%). Neutralizing mAbs to CD40 ligand had no effect on the cytokine levels produced by asthmatic tissue or PBMCs. Collectively, these findings suggest that allergen-specific alphabeta T cells are resident in asthmatic bronchial tissue and demonstrate that costimulation by both CD80 and CD86 is essential for allergen-induced cytokine production. In contrast, CD86 appears to be the principal costimulatory molecule required in PBMC responses. Attenuation of type 2 alphabeta T cell responses in the bronchial mucosa by blocking these costimulatory molecules may be of therapeutic potential in asthma.  相似文献   

5.
The CD28 costimulatory pathway is critical to T cell activation. Blockade of the interaction of CD28 with its ligands CD80 and CD86 using CTLA4-Ig has been proposed as a therapy for a number of immune-based disorders. We have used a murine model of influenza virus infection to study the role of CD28-dependent costimulation in the development of antiviral immune responses. In vivo treatment with CTLA4-Ig to block the interaction of CD28 with CD80 and CD86 reduced virus-specific cytotoxicity and IFN-gamma production by bronchoalveolar lavage fluid CD8+ T lymphocytes in vitro. It also resulted in decreased numbers of virus-specific CD8+ T lymphocytes in the bronchoalveolar lavage fluid, lung, and spleen and lowered virus-specific Ab titers. Mice treated with CTLA4-Ig were able to control and clear the virus infection, but this was delayed compared with controls. Treatment with Y100F-Ig, a mutant form of CTLA4-Ig which selectively binds to CD80 and blocks the CD28-CD80 interaction leaving CD28-CD86 binding intact, did not affect Ab production, spleen cytotoxic precursors, or clearance of virus. However, Y100F-Ig treatment had a clear effect on lung effector cell function. Secretion of IFN-gamma by bronchoalveolar lavage fluid CD8+ T lymphocytes in vitro was decreased, and the number of virus-specific CD8+ T lymphocytes in the bronchoalveolar lavage fluid and lungs of infected mice was reduced. These results indicate that CD28-dependent costimulation is important in the antiviral immune response to an influenza virus infection. The individual CD28 ligand, CD80, is important for some lung immune responses and cannot always be compensated for by CD86.  相似文献   

6.
The CD80/86-CD28 and CD40-CD40 ligand costimulatory pathways are essential for Th cell-dependent B cell responses that generate high-affinity, class-switched Ab in vivo. Disruption of either costimulatory pathway results in defective in vivo humoral immune responses, but it remains unclear to what extent this is due to deficient activation of Th cells and/or of B cells. To address this issue, we generated mixed chimeras in which CD80/86- or CD40-deficient bone marrow-derived cells coexist with wild-type (WT) cells, thereby providing the functional T cell help and accessory cell functions required for fully competent B cell responses. We were then able to assess the requirement for CD80/86 or CD40 expression on B cells producing class-switched Ig in response to a T-dependent Ag. In CD80/86 WT plus CD80/86 double-knockout mixed chimeras, both WT- and CD80/86-deficient B cells produced IgG1 and IgE responses, indicating that direct signaling by CD80/86 is not essential for efficient B cell activation. In marked contrast, only WT IgG1 and IgE responses were detected in the chimeras containing CD40-deficient cells, demonstrating that CD40 expression on B cells is essential for class switching by those B cells. Thus, while disrupting either the CD80/86-CD28 or the CD40-CD40 ligand costimulatory pathway abrogates T-dependent B cell immune responses, the two pathways are nonredundant and mediated by distinct mechanisms.  相似文献   

7.
Blockade of costimulatory signals is a promising therapeutic target to prevent allograft rejection. In this study, we sought to characterize to what extent CTLA-4 engagement contributes to the development of transplantation tolerance under the cover of CD40/CD40L and CD28/CD86 blockade. In vitro, we found that inhibition of the primary alloresponse and induction of alloantigen hyporesponsiveness by costimulation blockade was abrogated by anti-CTLA-4 mAb. In addition, regulatory CD4(+)CD25(+) T cells (T(REG)) were confirmed to play a critical role in the induction of hyporesponsiveness by anti-CD40L and anti-CD86 mAb. Our data indicated that CTLA-4 engagement is not required for activation or suppressor function of T(REG). Instead, in the absence of either CTLA-4 signaling or T(REG), CD8(+) T cell division was enhanced, whereas the inhibition of CD4(+) T cell division by costimulation blockade remained largely unaffected. In vivo, the administration of additional anti-CTLA-4 mAb abrogated anti-CD40L- and anti-CD86 mAb-induced cardiac allograft survival. Correspondingly, rejection was accompanied by enhanced allograft infiltration of CD8(+) cells. We conclude that CTLA-4 signaling and T(REG) independently cooperate in the inhibition of CD8(+) T cell expansion under costimulation blockade.  相似文献   

8.
Triggering of murine NK cells by CD40 and CD86 (B7-2)   总被引:5,自引:0,他引:5  
NK cell-mediated cytotoxicity is regulated by both triggering and inhibitory signals. The interaction between MHC class I molecules expressed on target cells and specific MHC class I-binding receptors expressed by NK cells generally leads to inhibition of lysis. We have shown recently that CD80 (B7-1) in mice and CD40 in humans trigger NK cell-mediated cytotoxicity in vitro. In the present study, we show that murine CD40 and CD86 (B7-2) trigger murine NK cell-mediated cytotoxicity in vitro when expressed on tumor cells. Preincubation of the transfected cell lines with anti-CD40 F(ab')2 fragments or cytolytic T lymphocyte-associated Ag-4-Ig (CTLA-4-Ig) before the cytotoxic assay abolished the triggering effect. Furthermore, radiolabeled CD40- and B7-2-expressing cells were rapidly eliminated in vivo in an NK cell-dependent manner. NK cells from CD40 ligand (CD40L)-/- or CD28-/- mice were triggered by tumor cells transfected with CD40 and B7-2, respectively, and these transfectants were rapidly eliminated in vivo when inoculated into CD40L-/- and CD28-/- mice. This suggests that the CD40 and B7-2 molecules can interact with receptors on NK cells other than CD40L and CD28, respectively, and that these may account for some of the reactivities observed in the present study. Collectively, these data demonstrate that 1) costimulatory molecules, other than B7-1, can modulate NK cell responses in vitro, 2) they can also affect NK cell-dependent responses in vivo, and 3) parts of these reactions are independent of CD28 and CD40L.  相似文献   

9.
The interactions between CD80 and CD86 on antigen-presenting cells and CD28 on T cells serve as an important costimulatory signal in the activation of T cells. Although the simplistic two-signal hypothesis has been challenged in recent years by the identification of different costimulators, this classical pathway has been shown to significantly impact antiviral humoral and cellular immune responses. How the CD80/CD86-CD28 pathway affects the control of chronic or latent infections has been less well characterized. In this study, we investigated its role in antiviral immune responses against murine gammaherpesvirus 68 (MHV-68) and immune surveillance using CD80/CD86(-/-) mice. In the absence of CD80/CD86, primary antiviral CD8(+) T-cell responses and the induction of neutralizing antibodies were severely impaired. During long-term immune surveillance, the virus-specific CD8(+) T cells were impaired in IFN-gamma production and secondary expansion and exhibited an altered phenotype. Surprisingly, a low level of viral reactivation in the lung was observed, and this effect was independent of CD28 and CTLA-4. Thus, CD80 and CD86, signaling through CD28 and possibly another unidentified receptor, are required for optimal immune surveillance and antiviral immune responses to murine gammaherpesvirus.  相似文献   

10.
CD80 and CD86 both costimulate T cell activation. Their individual effects in vivo are difficult to study as they are coordinately up-regulated on APCs. We have studied mice expressing rat insulin promoter (RIP)-CD80 and RIP-CD86 on the NOD and NOD.scid genetic background to generate in vivo models, using diabetes as a readout for cytotoxic T cell activation. Accelerated spontaneous diabetes onset was observed in NOD-RIP-CD80 mice and the transfer of diabetes from 6-wk-old NOD mice to NOD.scid-RIP-CD80 mice was greater compared with NOD-RIP-CD86 and NOD.scid-RIP-CD86 mice, respectively. However, the secondary in vivo response was maintained if T cells were activated through CD86 costimulation compared with CD80. This was demonstrated by greater ability to cause recurrent diabetes in NOD-RIP-CD86 diabetic mice transplanted with 6-wk-old NOD islets and adoptively transferred diabetes from diabetic NOD-RIP-CD86 mice to NOD.scid mice. In vitro, CD80 costimulation enhanced cytotoxicity, proliferation, and cytokine secretion in activated CD8 T cells compared with CD86 costimulation. We demonstrated increased CTLA-4 and programmed death-1 inhibitory molecule expression following costimulation by both CD80 and CD86 (CD80 > CD86). Furthermore, T cells stimulated by CD80 were more susceptible to inhibition by CD4(+)CD25(+) T cells. Overall, while CD86 does not stimulate an initial response as strongly as CD80, there is greater sustained activity that is seen even in the absence of continued costimulation. These functions have implications for the engineered use of costimulatory molecules in altering immune responses in a therapeutic setting.  相似文献   

11.
Pancreatic islet endothelial cells (ECs) form the barrier across which autoreactive T cells transmigrate during the development of islet inflammation in type 1 diabetes. Little is known about the immune phenotype of islet ECs that might shape their molecular interaction with autoreactive T cells before and during the development of islet inflammation. In this study we examined the expression and functional significance of costimulatory molecules by human islet ECs. Freshly isolated human islet ECs constitutively expressed CD86 (B7-2) and ICOS ligand but not CD80 (B7-1) or CD40 costimulatory molecules. The functional activity of islet EC-expressed CD86 was examined by coculture of resting islet ECs with CD4 T cells stimulated by CD3 ligation alone. Marked T cell proliferation in the coculture was completely abrogated by mAb blockade of CD86, confirming that costimulatory properties are conferred on ECs by CD86 expression. In view of its location on the vasculature, we hypothesized a role for CD86 in T cell adhesion/transmigration. In keeping with this, adhesion/transmigration of activated (CD3 ligated) memory (CD45R0(+)) CD4 T cells across islet ECs was completely inhibited in the presence of CD86 blocking mAb. Identical results were obtained for T cell adhesion using either CTLA-4 blocking mAb or CTLA-4Ig (abatacept), indicating CTLA-4 as the T cell ligand for these CD86-mediated effects. These data suggest a novel role for CD86 expression on the microvasculature, whereby ligation of CTLA-4 on CD4 T cells by CD86 on islet ECs is key to the adhesion of recently activated T cells.  相似文献   

12.
The CD28 ligands CD80 and CD86 are expressed on APC, and both provide costimulatory function. However, the reason for the expression of two separate CD28 ligands remains unclear. We have previously shown that blockade of CD80 costimulation by Y100F-Ig, a CTL-associated Ag-4 (CTLA4)-Ig mutant that does not bind CD86, inhibits the development of lung inflammatory immune responses, but does not affect blood eosinophilia or Ab production. Each of those responses was inhibited by treatment with CTLA4-Ig, which binds both CD80 and CD86. To clarify the mechanism underlying these observations we have developed a model of lung inflammation using adoptively transferred CD4(+) T cells expressing a Valpha11(+)Vbeta3(+) transgenic TCR specific for I-E(k) and moth cytochrome c. Treatment with Y100F-Ig inhibited the induction of lung eosinophilia in adoptively transferred mice. However, Y100F-Ig did not detectably affect the accumulation of Ag-specific T cells at the site of peptide deposit or in the draining lymphoid tissues. Acquisition of an activated phenotype and expression of adhesion molecules required for migration into the lung were modestly affected. Importantly, treatment with Y100F-Ig diminished the ability of T cells to produce the cytokines IL-4 and IL-5 following intranasal challenge with Ag. All the responses examined were severely inhibited by treatment with CTLA4-Ig. We conclude that T cells require CD80 costimulation for the optimal production of IL-5 following intranasal administration of Ag. Decreased IL-5 production is the most likely explanation for the diminished airway eosinophilia observed.  相似文献   

13.
To examine the role of CD28 and CTLA-4 in Th cell differentiation, we used a novel microsphere-based system to compare the effects of CD28 ligation by Ab or CD80/CD86. One set of beads was prepared by coating with anti-CD3 and anti-CD28 Ab. Another set of beads was prepared by immobilizing anti-CD3 and murine CD80-Ig fusion protein or murine CD86-Ig fusion protein on the beads. The three sets of beads were compared in their effects on the ability to activate and differentiate splenic CD4 T cells. When purified naive CD4(+) cells were stimulated in vitro, robust proliferation of similar magnitude was induced by all three sets of beads. When cytokine secretion was examined, all bead preparations induced an equivalent accumulation of IL-2. In contrast, there was a marked difference in the cytokine secretion pattern of the Th2 cytokines IL-4, IL-10, and IL-13. The B7-Ig-stimulated cultures had high concentrations of Th2 cytokines, whereas there were low or undetectable concentrations in the anti-CD28-stimulated cultures. Addition of anti-CTLA-4 Fab augmented B7-mediated IL-4 secretion. These studies demonstrate that B7 is a critical and potent stimulator of Th2 differentiation, and that anti-CD28 prevents this effect.  相似文献   

14.
Costimulatory ligands CD80 and CD86 have different binding preferences and affinities to their receptors, CD28 and CTLA-4. Earlier, we demonstrated that CD80 binds to CTLA-4 with higher affinity and has a role in suppressing T cell response. The current study demonstrates that not only did blockade of CD86 upon Ag presentation by bone marrow-derived dendritic cells (DC) to OVA-specific T cells result in induction of hyporesponsive T cells but also that these T cells could suppress the proliferative response of effector T cells. These T cells showed TGF-beta1 on their surface and secreted TGF-beta1 and IL-10 upon restimulation. Although blockade of CTLA-4 and neutralization of IL-10 profoundly inhibited the induction of these TGF-beta1(+) T cells, their ability to suppress the effector T cell proliferation was abrogated by neutralization of TGF-beta1 alone. Induction of TGF-beta1(+) and IL-10(+) T cells was found to be independent of natural CD4(+)CD25(+) regulatory T cells, demonstrating that preferential ligation of CTLA-4 by CD80 induced IL-10 production by effector T cells, which in turn promoted the secretion of TGF-beta1. Treatment of prediabetic NOD mice with islet beta cell Ag-pulsed CD86(-/-) DCs, but not CD80(-/-) DCs, resulted in the induction of TGF-beta1- and IL-10-producing cells, significant suppression of insulitis, and delay of the onset of hyperglycemia. These observations demonstrate not only that CD80 preferentially binds to CTLA-4 but also that interaction during Ag presentation can result in IL-10-dependent TGF-beta1(+) regulatory T cell induction, reinstating the potential of approaches to preferentially engage CTLA-4 through CD80 during self-Ag presentation in suppressing autoimmunity.  相似文献   

15.
The lymphocytic choriomeningitis virus (LCMV) system constitutes one of the most widely used models for the study of infectious disease and the regulation of virus-specific T cell immunity. However, with respect to the activity of costimulatory and associated regulatory pathways, LCMV-specific T cell responses have long been regarded as relatively independent and thus distinct from the regulation of T cell immunity directed against many other viral pathogens. Here, we have reevaluated the contribution of CD28-CD80/86 costimulation in the LCMV system by use of CD80/86-deficient mice, and our results demonstrate that a disruption of CD28-CD80/86 signaling compromises the magnitude, phenotype, and/or functionality of LCMV-specific CD8(+) and/or CD4(+) T cell populations in all stages of the T cell response. Notably, a profound inhibition of secondary T cell immunity in LCMV-immune CD80/86-deficient mice emerged as a composite of both defective memory T cell development and a specific requirement for CD80 but not CD86 in the recall response, while a related experimental scenario of CD28-dependent yet CD80/86-independent secondary CD8(+) T cell immunity suggests the existence of a CD28 ligand other than CD80/86. Furthermore, we provide evidence that regulatory T cells (T(REG)s), the homeostasis of which is altered in CD80/86(-/-) mice, contribute to restrained LCMV-specific CD8(+) T cell responses in the presence of CD80/86. Our observations can therefore provide a more coherent perspective on CD28-CD80/86 costimulation in antiviral T cell immunity that positions the LCMV system within a shared context of multiple defects that virus-specific T cells acquire in the absence of CD28-CD80/86 costimulation.  相似文献   

16.
Effective activation of T cells requires engagement of two separate T-cell receptors. The antigen-specific T-cell receptor (TCR) binds foreign peptide antigen-MHC complexes, and the CD28 receptor binds to the B7 (CD80/CD86) costimulatory molecules expressed on the surface of antigen-presenting cells (APC). The simultaneous triggering of these T-cell surface receptors with their specific ligands results in an activation of this cell. In contrast, CTLA-4 (CD152) is a distinct T-cell receptor that, upon binding to B7 molecules, sends an inhibitory signal to T cell activation. Many in vitro and in vivo studies demonstrated that both CD80 and CD86 ligands have an identical role in the activation of T cells. Recently, functions of B7 costimulatory molecules in vivo have been investigated in B7-1 and/or B7-2 knockout mice, and the authors concluded that CD86 could be more important for initiating T-cell responses, while CD80 could be more significant for maintaining these immune responses. In this study, we directly compared the role of CD80 and CD86 in initiating and maintaining proliferation of resting CD4(+) T cells in an in vitro mode system that allowed to provide the first signal-to-effector cells through the use of suboptimal doses of PHA and the second costimulatory signal through cells expressing CD80 or CD86, but not any other costimulatory molecules. Using this experimental system we demonstrate that the CD80 and CD86 molecules can substitute for each other in the initial activation of resting CD4(+) T cells and in the maintenance of their proliferative response.  相似文献   

17.
OX40 and its ligand (OX40L) have been implicated in T cell-dependent humoral immune responses. To further characterize the role of OX40/OX40L in T-B cell interaction, we newly generated an anti-mouse OX40L mAb (RM134L) that can inhibit the costimulatory activity of OX40L transfectants for anti-CD3-stimulated T cell proliferation. Flow cytometric analyses using RM134L and an anti-mouse OX40 mAb indicated that OX40 was inducible on splenic T cells by stimulation with immobilized anti-CD3 mAb in a CD28-independent manner, while OX40L was not expressed on resting or activated T cells. OX40L was inducible on splenic B cells by stimulation with anti-IgM Ab plus anti-CD40 mAb, but not by either alone. These activated B cells exhibited a potent costimulatory activity for anti-CD3-stimulated T cell proliferation and IL-2 production. Anti-CD80 and anti-CD86 mAbs partially inhibited the costimulatory activity, and further inhibition was obtained by their combination with RM134L and/or anti-CD70 mAb. We also found the anti-IgM Ab- plus anti-CD40 mAb-stimulated B cells exhibited a potent costimulatory activity for proliferation of and IL-2 production by anti-CD3-stimulated CD28- T cells from CD28-deficient mice, which was substantially inhibited by RM134L and/or anti-CD70 mAb. These results indicated that OX40L and CD70 expressed on surface Ig- and CD40-stimulated B cells can provide CD28-independent costimulatory signals to T cells.  相似文献   

18.
CD4 T cell activation is positively (CD28) and negatively (CTLA-4) regulated by the costimulatory ligands CD80 and CD86. A central question is how the balance between these two opposing forces is controlled as T cells differentiate. We have previously shown that CD28 signaling is absolutely required to prime naive CD4 T cells to differentiate into effectors that provide help for germinal centers and class-switched Ab responses. In this study, we show that the requirement for CD28 signaling is transient and effector CD4 T cells do not require CD28 signals to sustain their function. The CD28 independence of effector T cells within germinal centers suggested that a key function for CD80/CD86 under these circumstances might be to provide negative regulatory signals via the CD28 homologue CTLA-4. By examining germinal center responses in mice where the ability to signal through T cell CTLA-4 was compromised, we provide data that supports a critical role for CTLA-4 in down-regulating T cell help for germinal center B cells.  相似文献   

19.
Activation of APC via CD40-CD40 ligand pathway induces up-regulation of costimulatory molecules such as B7 and production of IL-12. Interaction between B7 on APC and CD28 on naive T cells is necessary for priming the T cells. On the other hand, interaction between B7 on APC and CTLA-4 on activated T cells transduces a negative regulatory signal to the activated T cells. In the present study, we attempted to generate tumor-specific CTL by s.c. administration of antigenic peptides encapsulated in multilamellar liposomes (liposomal peptide vaccine) with anti-CD40 mAb and/or anti-CTLA-4 mAb. Liposomal OVA257-264 and anti-CD40 mAb or anti-CTLA-4 mAb were administrated to C57BL/6 mice and the splenocytes were cocultured with OVA257-264 for 4 days. The splenic CD8+ T cells showed a significant cytotoxicity against EL4 cells transfected with cDNA of OVA. In addition, administration of both anti-CD40 and anti-CTLA-4 mAb enhanced the CTL responses. Considerable CTL responses were induced in MHC class II deficient mice by the same procedure. This finding indicated that CTL responses could be generated even in the absence of Th cells. When BALB/c mice were immunized with pRL1a peptide that are tumor-associated Ag of RLmale symbol1 leukemia cells using the same procedure, significant CTL responses were induced and prolonged survival of the BALB/c mice was observed following RLmale symbol1 inoculation. These results demonstrate that anti-CD40 mAb and anti-CTLA-4 mAb function as immunomodulators and may be applicable to specific cancer immunotherapy with antitumor peptide vaccine.  相似文献   

20.
CD28-B7 interaction plays a critical costimulatory role in inducing T cell activation, while CTLA-4-B7 interaction provides a negative signal that is essential in immune homeostasis. Transfer of CD45RB(high)CD4(+) T cells from syngeneic mice induces transmural colon inflammation in SCID recipients. This adoptive transfer model was used to investigate the contribution of B7-CD28/CTLA-4 interactions to the control of intestinal inflammation. CD45RB(high)CD4(+) cells from CD28(-/-) mice failed to induce mucosal inflammation in SCID recipients. Administration of anti-B7.1 (but not anti-B7.2) after transfer of wild-type CD45RB(high)CD4(+) cells also prevented wasting disease with colitis, abrogated leukocyte infiltration, and reduced production of proinflammatory cytokines IL-2 and IFN-gamma by lamina propria CD4(+) cells. In contrast, anti-CTLA-4 treatment led to deterioration of disease, to more severe inflammation, and to enhanced production of proinflammatory cytokines. Of note, CD25(+)CD4(+) cells from CD28(-/-) mice similar to those from the wild-type mice were efficient to prevent intestinal mucosal inflammation induced by the wild-type CD45RB(high) cells. The inhibitory functions of these regulatory T cells were effectively blocked by anti-CTLA-4. These data show that the B7-CD28 costimulatory pathway is required for induction of effector T cells and for intestinal mucosal inflammation, while the regulatory T cells function in a CD28-independent way. CTLA-4 signaling plays a key role in maintaining mucosal lymphocyte tolerance, most likely by activating the regulatory T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号