首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have analyzed the expression of the three major known growth transformation-associated Epstein-Barr virus (EBV) proteins, EBNA-1, EBNA-2, and latent membrane protein (LMP), in a series of somatic cell hybrids derived from the fusion of EBV-carrying Burkitt lymphoma (BL) lines with EBV-positive or EBV-negative B-cell lines. Independently of the cell phenotype, EBNA-1 was invariably coexpressed in all EBV-carrying hybrids. In hybrids between EBV-carrying, LMP-positive and LMP-negative Burkitt lymphoma lines, LMP was expressed, indicating positive control. Two EBV-negative lymphoma lines, Ramos and BJAB, differed in their ability to express LMP after B95-8 virus-induced conversion and after hybridization with Raji cells. BJAB was permissive while Ramos was nonpermissive for LMP, although both expressed EBNA-2. The EBNA-2-deleted P3HR-1 virus gave the same pattern of LMP expression in these two cells. Our findings indicate that the expression of EBNA-1, EBNA-2, and LMP is regulated by independent mechanisms.  相似文献   

2.
Previous experiments have demonstrated that positive selection markers recombined into the Epstein-Barr virus (EBV) genome enable the isolation of transforming or nontransforming mutant EBV recombinants in EBV-negative B-lymphoma (BL) cell lines (A. Marchini, J. I. Cohen, and E. Kieff, J. Virol. 66:3214-3219, 1992; F. Wang, A. Marchini, and E. Kieff, J. Virol. 65:1701-1709, 1991). However, virus has been recovered from a BL cell clone (BL41) infected with an EBV recombinant in only one instance (Wang et al., J. Virol. 65:1701-1709, 1991). We now compare the utility of four EBV-negative BL lines, BJAB, BL30, BL41, and Loukes, for isolating EBV recombinants and supporting their subsequent replication. Transforming or nontransforming EBV recombinants carrying a simian virus 40 promoter-hygromycin phosphotransferase (HYG) cassette were cloned by selecting newly infected BL cells for HYG expression. Most of the infected BL clones contained EBV episomes, and EBV gene expression was largely restricted to EBNA-1. Although the BJAB cell line was a particularly good host for isolating EBV recombinants (Marchini et al., J. Virol. 66:3214-3219, 1992), it was largely nonpermissive for virus replication, even in response to heterologous expression of the BZLF1 immediate-early transactivator. In contrast, approximately 50% of infected BL41, BL30, or Loukes cell clones responded to lytic cycle induction. Frequently, a substantial fraction of infected cells expressed the late lytic infection viral protein, gp350/220, and released infectious virus. Since BL cells do not depend on EBV for growth, transforming and nontransforming EBV recombinants were isolated and passaged.  相似文献   

3.
4.
5.
We exposed human blood lymphocytes to autologous and to allogeneic lymphoblastoid lines (LCLs), each alone or in combination, and analyzed the MHC Class I restriction pattern of the generated auto-LCL reactive cytotoxicity. In the cultures of two EBV-seropositive, HLA A11-positive individuals the majority of cytotoxic lymphocytes generated after repeated stimulation with autologous LCL were restricted by this molecule. One of the cultures was subjected to various stimulation strategies. A relatively low proportion of HLA A2- and HLA B7-restricted cytotoxic T cells could be detected in the autostimulated cultures. Such cells were enriched at the expense of A11-restricted ones by stimulating with allogeneic LCLs which lacked HLA A11 but expressed A2 or B7. Interestingly, stimulation of the lymphocytes with only allogeneic LCL also generated autoreactive CTLs. Thus, by including or using exclusively allogeneic LCL stimulators, the CTL fractions represented by few cells could be enriched.  相似文献   

6.
Human B-cell lines derived from normal donors (LCL) or from Burkitt lymphomas (BL) were compared for their sensitivity to natural (NK) and interferon (IFN)-activated (IAK) cytotoxicity, mediated by effector cells from normal human blood. In four cases, a BL and an LCL line were derived from the same donor and had been kept in culture for the same period of time. The BL series included both Epstein-Barr virus (EBV)-carrying and EBV-negative lymphoma lines. The latter were compared with their own EBV-converted, Epstein-Barr nuclear antigen (EBNA)- and EBV-DNA-positive sublines, established by in vitro infection with two different viral substrains. LCL and BL lines from the same donor were lysed with equal efficiency by both NK and IAK effectors. There was no relationship between the NK sensitivity and the nude mouse tumorigenicity of different EBV-converted Ramos sublines, or the expression of differentiation markers such as insulin receptor, surface IgD, and the B2 surface antigen. Moreover, EBV-converted sublines of BJAB differed in their NK sensitivity, in spite of closely similar expression of these markers. NK-sensitive Ramos and BJAB sublines induced a stronger proliferative response upon confrontation with allogeneic lymphocytes than their NK-resistant counterparts. This suggests that the target cell may play an active role in triggering the lytic interaction. There was no correlation between this property and any of the other parameters studied.  相似文献   

7.
The natural killer (NK) sensitivity of two Epstein-Barr virus (EBV)-carrying Burkitt lymphoma lines (Daudi and Raji) and one EBV-negative acute lymphocytic leukemia-derived T-cell line (Molt-4) increased when they were cultured for 24 hr in the presence of the phorbol ester TPA. In the EBV-carrying lines, this increase occurred independently of the entry of the cells into the viral cycle. 12-O-Tetradecanoylphorbol-13-acetate (TPA)-treated Daudi and Molt-4 cells cross-competed for the effectors in the NK assay as indicated by the cold-target inhibition tests. TPA-treated cells showed an increased binding of human but not of mouse lymphocytes.  相似文献   

8.
9.
10.
Primary infection with EBV during acute infectious mononucleosis (IM) is associated with a cytotoxic response against allogeneic target cells. C depletion with anti-CD3 (OKT3) and anti-CD8 (OKT8) mAb decreased the allogeneic cytolysis of two EBV-infected lymphoblastoid cell lines (LCL) by 96% and 89%, respectively. Complement depletion with the NK cell-specific mAb Leu-11b and NKH-1a resulted in only a slight decrease (less than 35%) in the lysis of these LCL. mAb inhibition studies with OKT3 and OKT8 inhibited the allogeneic lysis of two LCL by 87% and 82%, respectively. The alloreactive cytotoxic response was strongly inhibited by mAb specific for MHC class I determinants (W6/32, 65% inhibition and BBM.1, 58% inhibition). Acute IM lymphocytes lysed the allogeneic EBV-negative cell lines HSB2 (45%) and HTLV-1 T cell lines (16%). NK cell-depleted lymphocytes from an acute IM patient demonstrated preferential lysis of K562 transfected with human HLA-A2 (73%) compared with the K562 transfected control (20%). Cold target competition studies with allogeneic and autologous target and competitor LCL demonstrated no significant competitive inhibition between allogeneic and autologous cells. We interpret these results as evidence that 1) the acute IM-alloreactive cytotoxic response is mediated primarily by CTL; 2) these alloreactive CTL lyse allogeneic target cells irrespective of EBV antigenic expression; 3) MHC class I expression is sufficient for allogeneic recognition and lysis of target cells; 4) distinct effector CTL populations mediate lysis of autologous and allogeneic target cells; and 5) during acute IM, EBV infection results in the induction of both virus-specific and alloreactive CTL populations.  相似文献   

11.
We have previously shown that SNU-1103, which is a latency type III Epstein-Barr virus (EBV)-transformed lymphoblastoid cell line (LCL) that was developed from a Korean cancer patient, resists serum starvation-induced G(1) arrest. In this study, we examined the role of latent membrane protein-1 (LMP-1) in serum starvation resistance, since LMP-1 is known to be essential for EBV-mediated immortalization of human B lymphocytes. The LMP-1 gene from SNU-1103 was introduced into the EBV-negative BJAB cell line, and shown to be associated with resistance to G(1) arrest during serum starvation. Western blot analyses of the LMP-1-transfected cells revealed several protein alterations as compared to vector-transfected control cells. The expression of key cell-cycle regulatory proteins was affected in the G(1) phase: the expression of cyclin D3, CDK2, p27, and E2F-4 was up-regulated, and the expression of cyclin D2, CDK6, p21, and p103 was down-regulated during serum starvation. These results imply that of the several EBV viral genes expressed in EBV-negative B lymphoma cells, LMP-1 mediates resistance to serum starvation-induced G(1) arrest. However, we cannot rule out the possibility that other EBV genes are also involved in the cell-cycle progression of the EBV-transformed LCL during serum starvation, since the altered protein expression profile of the LMP-1 transfectants was distinct from that of the SNU-1103 cells that expressed all of the EBV viral proteins.  相似文献   

12.
Epstein-Barr virus (EBV) is present in all cases of endemic Burkitt lymphoma (BL) but in few European/North American sporadic BLs. Gene expression arrays of sporadic tumors have defined a consensus BL profile within which tumors are classifiable as “molecular BL” (mBL). Where endemic BLs fall relative to this profile remains unclear, since they not only carry EBV but also display one of two different forms of virus latency. Here, we use early-passage BL cell lines from different tumors, and BL subclones from a single tumor, to compare EBV-negative cells with EBV-positive cells displaying either classical latency I EBV infection (where EBNA1 is the only EBV antigen expressed from the wild-type EBV genome) or Wp-restricted latency (where an EBNA2 gene-deleted virus genome broadens antigen expression to include the EBNA3A, -3B, and -3C proteins and BHRF1). Expression arrays show that both types of endemic BL fall within the mBL classification. However, while EBV-negative and latency I BLs show overlapping profiles, Wp-restricted BLs form a distinct subgroup, characterized by a detectable downregulation of the germinal center (GC)-associated marker Bcl6 and upregulation of genes marking early plasmacytoid differentiation, notably IRF4 and BLIMP1. Importantly, these same changes can be induced in EBV-negative or latency I BL cells by infection with an EBNA2-knockout virus. Thus, we infer that the distinct gene profile of Wp-restricted BLs does not reflect differences in the identity of the tumor progenitor cell per se but differences imposed on a common progenitor by broadened EBV gene expression.  相似文献   

13.
14.
Lymphocyte function associated antigen 1 (LFA-1) is a heterodimeric leucocyte adhesion molecule comprising non-covalently associated 95 kD, CD18 and 180 kD, CD11a subunits. Lymphoblastoid cell-lines (LCL) derived from persons with Down's syndrome (Trisomy 21) exhibit increased expression of LFA-1 compared with normal LCL. Although this is probably due to a gene-dosage related increase in the synthesis of CD18, cell-cycle differences between Trisomy 21 (T21) and normal LCL could also influence LFA-1 expression. We have therefore analysed expression of CD18 on G1 and G2M cells using sequential flow cytometry. T21 and normal LCL were co-stained with the DNA-binding vital dye HO342 (Hoechst 33342), and with a CD18 monoclonal antibody. The LCL were first sorted on the basis of HO342 staining into G1 and G2M populations, and these fractions then analysed for CD18 expression. Irrespective of the stage of the cell-cycle, expression of CD18 was increased on T21 compared with normal LCL. Although more CD18 was detected on both T21 and normal G2M compared with G1 cells, the relative density of CD18 in G2M was less than in G1 because G2M cells were larger.  相似文献   

15.
Epstein-Barr virus (EBV)-negative Burkitt's lymphoma (BL) cell lines have been converted to EBV genome positivity by in vitro infection with the transforming EBV strain B95.8 and with the nontransforming mutant strain P3HR1, which has a deletion in the gene encoding the nuclear antigen EBNA2. These B95.8- and P3HR1-converted lines have been compared for their patterns of expression of EBV latent genes (i.e., those viral genes constitutively expressed in all EBV-transformed lines of normal B-cell origin) and for their recognition by EBV-specific cytotoxic T lymphocytes (CTLs), in an effort to identify which latent gene products provide target antigens for the T-cell response. B95.8-converted lines on several different EBV-negative BL-cell backgrounds all showed detectable expression of the nuclear antigens EBNA1, EBNA2, and EBNA3 and of the latent membrane protein (LMP); such converts were also clearly recognized by EBV-specific CTL preparations with restriction through selected human leukocyte antigen (HLA) class I antigens on the target cell surface. The corresponding P3HR1-converted lines (lacking an EBNA2 gene) expressed EBNA1 and EBNA3 but, surprisingly, showed no detectable LMP; furthermore, these converts were not recognized by EBV-specific CTLs. Such differences in T-cell recognition were not due to any differences in expression of the relevant HLA-restricting determinants between the two types of convert, as shown by binding of specific monoclonal antibodies and by the susceptibility of both B95.8 and P3HR1 converts to allospecific CTLs directed against these same HLA molecules. The results suggest that in the normal infectious cycle, EBNA2 may be required for subsequent expression of LMP and that both EBNA2 and LMP (but not EBNA1 or EBNA3) may provide target antigens for the EBV-specific T-cell response.  相似文献   

16.
Epstein-Barr virus (EBV)-negative Burkitt lymphomas (BLs) can be infected in vitro with prototype EBV strains to study how the virus may affect the phenotype of tumor cells. Studies thus far have concentrated on the use of transforming B95-8 and nontransforming P3HR1 strains. Immunological and phenotypic differences between the sublines infected with these two strains were reported. The majority of these differences, if not all, can be attributed to the lack of EBNA-2 coding sequences in the P3HR1 strain. The recent development of a selectable Akata strain has opened up new possibilities for infecting epithelial and T cells as well. We infected five EBV-negative BL lines with the recombinant Akata virus. Our results indicate that the infected cell lines BL28, Ramos, and DG75 express EBNA-1, EBNA-2, and LMP1, the viral proteins associated with type III latency, and use both YUK and QUK splices. In contrast, two EBV-negative variants of Akata and Mutu when reinfected displayed restricted type I latency and expressed only EBNA-1. All clones of infected Mutu cells used the QUK splice exclusively. The usage of Qp was observed in a majority of Akata clones. Some Akata clones, however, were found to have double promoter usage (Qp and C/Wp) but at 4 months after infection did not express EBNA-2. The results demonstrate differential regulation of EBV latency in BLs with the same recombinant viral strain and suggest that the choice of latency type may be cell dependent. The restricted latency observed for infected Akata and Mutu cells indicates that a BL may opt for type I latency in the absence of immune pressure as well.  相似文献   

17.
TGF-beta is a potent inducer of apoptosis in many Burkitt's lymphoma (BL) cell lines. In this study, we characterize this apoptotic process in the EBV-negative BL41 cell line. Induction of apoptosis was detected as early as 8 h after TGF-beta treatment, as assayed by TUNEL and poly(ADP-ribose) polymerase cleavage. FACS analysis demonstrates that this proceeds predominately from the G1, but also from the G2/M phases of the cell cycle. We observed no early detectable changes in the steady-state levels of Bcl-2 and several of its family members after TGF-beta treatment. We detected cleavage of caspases 2, 3, 7, 8, and 9 into their active subunits. Consistent with the involvement of these enzymes in TGF-beta-mediated apoptosis, the broad spectrum caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp(Ome)-flouromethylketone (ZVAD-fmk) blocked TGF-beta-induced apoptosis and revealed a G1 arrest in treated cells. Use of specific caspase inhibitors revealed that the induction of apoptosis is caspase 8 dependent, but caspase 3 independent. Activation of caspase 8 has been shown to be a critical event in death receptor-mediated apoptosis. However, TGF-beta treatment of BL41 cells was found not to affect the cell surface expression of Fas, TNF-R1, DR3, DR4, or DR5, or the steady-state expression levels of Fas ligand, TNF-R1, DR3, DR4, and DR5. Furthermore, blocking experiments indicated that TGF-beta-mediated apoptosis is not dependent on Fas ligand, TNF-alpha, tumor necrosis-like apoptosis-inducing ligand, or TNF-like weak inducer of apoptosis signaling. Therefore, it appears that TGF-beta induces apoptosis in BL cell lines via caspase 8 in a death receptor-independent fashion.  相似文献   

18.
19.
Latent Epstein-Barr virus (EBV) infection and growth transformation of B lymphocytes is characterized by EBV nuclear and membrane protein expression (EBV nuclear antigen [EBNA] and latent membrane protein [LMP], respectively). LMP1 is known to be an oncogene in rodent fibroblasts and to induce B-lymphocyte activation and cellular adhesion molecules in the EBV-negative Burkitt's lymphoma cell line Louckes. EBNA-2 is required for EBV-induced growth transformation; it lowers rodent fibroblast serum dependence and specifically induces the B-lymphocyte activation antigen CD23 in Louckes cells. These initial observations are now extended through an expanded study of EBNA- and LMP1-induced phenotypic effects in a different EBV-negative B-lymphoma cell line, BJAB. LMP1 effects were also evaluated in the EBV-negative B-lymphoma cell line BL41 and the EBV-positive Burkitt's lymphoma cell line, Daudi (Daudi is deleted for EBNA-2 and does not express LMP). Previously described EBNA-2- and LMP1-transfected Louckes cells were studied in parallel. EBNA-2, from EBV-1 strains but not EBV-2, induced CD23 and CD21 expression in transfected BJAB cells. In contrast, EBNA-3C induced CD21 but not CD23, while no changes were evident in vector control-, EBNA-1-, or EBNA-LP-transfected clones. EBNAs did not affect CD10, CD30, CD39, CD40, CD44, or cellular adhesion molecules. LMP1 expression in all cell lines induced growth in large clumps and expression of the cellular adhesion molecules ICAM-1, LFA-1, and LFA-3 in those cell lines which constitutively express low levels. LMP1 expression induced marked homotypic adhesion in the BJAB cell line, despite the fact that there was no significant increase in the high constitutive BJAB LFA-1 and ICAM-1 levels, suggesting that LMP1 also induces an associated functional change in these molecules. LMP1 induction of these cellular adhesion molecules was also associated with increased heterotypic adhesion to T lymphocytes. The Burkitt's lymphoma marker, CALLA (CD10), was uniformly down regulated by LMP1 in all cell lines. In contrast, LMP1 induced unique profiles of B-lymphocyte activation antigens in the various cell lines. LMP1 induced CD23 and CD39 in BJAB; CD23 in Louckes; CD39 and CD40 in BL41; and CD21, CD40, and CD44 in Daudi. In BJAB, CD23 surface and mRNA expression were markedly increased by EBNA-2 and LMP1 coexpression, compared with EBNA-2 or LMP1 alone. This cooperative effect was CD23 specific, since no such effect was observed on another marker, CD21.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号