首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GTPase-activating protein (GAP) is a key regulator of the cellular Ras protein, which is implicated in oncogenic signal transduction pathways downstream of the viral Src (v-Src) kinase. Previous studies demonstrated that v-Src induces tyrosine phosphorylation of GAP, suggesting that GAP may provide a biochemical link between v-Src and Ras signaling pathways. To determine the precise residues in GAP phosphorylated by Src kinases, we used a baculovirus/insect cell expression system for investigating in vitro phosphorylation of GAP. Phosphopeptide mapping analysis revealed that v-Src and normal cellular Src (c-Src) phosphorylate tyrosine residues in bovine GAP at one major site and one minor site in vitro. Significantly, the major site of GAP phosphorylation in vitro is also the major site of in vivo tyrosine phosphorylation of GAP in rat fibroblasts transformed by v-Src. Analyses of GAP deletion mutants and TrpE-GAP fusion proteins established that Tyr-457 of bovine GAP (and the corresponding residue of rat and human GAP) is the major site of tyrosine phosphorylation. Our results demonstrate that the v-Src kinase induces phosphorylation of the same tyrosine residue of GAP in vitro and in vivo, suggesting that GAP is a direct substrate of activated Src kinases in vivo. Because epidermal growth factor receptor phosphorylates the equivalent tyrosine residue in human GAP (Tyr-460), these findings are consistent with the hypothesis that specific phosphorylation of GAP at this site may have a physiologically important role in regulating mitogenic Ras signaling pathways.  相似文献   

2.
Phospholipase C-gamma (PLC-gamma) and GTPase activating protein (GAP) are substrates of EGF, PDGF and other growth factor receptors. Since either PLC-gamma or GAP also bind to the activated receptors it was suggested that their SH2 domains are mediating this association. We attempted to delineate the specific region of the EGF receptor that is responsible for the binding, utilizing EGF receptor mutants, PLC-gamma, and a bacterially expressed TRP E fusion protein containing the SH2 domains of GAP. As previously shown, tyrosine autophosphorylation of the wild-type receptor wsa crucial in mediating the association and in agreement, a kinase negative EGF receptor could bind PLC-gamma or TRP E GAP SH2, but only when cross tyrosine phosphorylated by an active EGF receptor kinase. The importance of autophosphorylation for association was confirmed by demonstrating that a carboxy-terminal deletion of the EGFR missing four autophosphorylation sites bound these proteins poorly. To study the role of EGF receptor autophosphorylation further, a 203 amino acid EGF receptor fragment was generated with cyanogen bromide that contained all known tyrosine autophosphorylation sites. This fragment bound both TRP E GAP SH2 and PLC-gamma but only when tyrosine phosphorylated. This data localizes a major binding site for SH2 domain containing proteins to the carboxy-terminus of the EGF receptor and points to the importance of tyrosine phosphorylation in mediating this association.  相似文献   

3.
The receptor for colony-stimulating factor 1 (CSF-1) is a ligand-activated protein-tyrosine kinase. It has been shown previously that the CSF-1 receptor is phosphorylated on serine in vivo and that phosphorylation on tyrosine can be induced by stimulation with CSF-1. We studied the phosphorylation of the CSF-1 receptor by using the BAC1.2F5 murine macrophage cell line, which naturally expresses CSF-1 receptors. Two-dimensional tryptic phosphopeptide mapping showed that the CSF-1 receptor is phosphorylated on several different serine residues in vivo. Stimulation with CSF-1 at 37 degrees C resulted in rapid phosphorylation on tyrosine at one major site and one or two minor sites. We identified the major site as Tyr-706. The identity of Tyr-706 was confirmed by mutagenesis. This residue is located within the kinase insert domain. There was no evidence that Tyr-973 (equivalent to Tyr-969 in the human CSF-1 receptor) was phosphorylated following CSF-1 stimulation. When cells were stimulated with CSF-1 at 4 degrees C, additional phosphotyrosine-containing phosphopeptides were detected and the level of phosphorylation of the individual phosphotyrosine-containing phosphopeptides was substantially increased. In addition, we show that CSF-1 receptors are capable of autophosphorylation at six to eight major sites in vitro.  相似文献   

4.
Lipocortin I is a 39-kilodalton membrane-associated protein that in A431 cells is phosphorylated on tyrosine in response to epidermal growth factor (EGF). We have used recombinant human lipocortin I as a substrate for several protein kinases and identified phosphorylated residues by a combination of peptide mapping and sequence analysis. Lipocortin I was phosphorylated near the amino terminus at Tyr-21 by recombinant pp60c-src. The same tyrosine residue was phosphorylated by polyoma middle T/pp60c-src complex, by recombinant pp50v-abl, and with A431 cell membranes by the EGF receptor/kinase. The primary site of phosphorylation by protein kinase C was also near the amino terminus at Ser-27. The major site of phosphorylation by adenosine cyclic 3',5'-phosphate dependent protein kinase was on the carboxy-terminal half of the molecule at Thr-216. These sites are compared to the phosphorylation sites previously located in the structurally related protein lipocortin II.  相似文献   

5.
Phospholipase C-gamma (PLC-gamma) is a substrate of the fibroblast growth factor receptor (FGFR; encoded by the flg gene) and other receptors with tyrosine kinase activity. It has been demonstrated that the src homology region 2 (SH2 domain) of PLC-gamma and of other signalling molecules such as GTPase-activating protein and phosphatidylinositol 3-kinase-associated p85 direct their binding toward tyrosine-autophosphorylated regions of the epidermal growth factor or platelet-derived growth factor receptor. In this report, we describe the identification of Tyr-766 as an autophosphorylation site of flg-encoded FGFR by direct sequencing of a tyrosine-phosphorylated tryptic peptide isolated from the cytoplasmic domain of FGFR expressed in Escherichia coli. The same phosphopeptide was found in wild-type FGFR phosphorylated either in vitro or in living cells. Like other growth factor receptors, tyrosine-phosphorylated wild-type FGFR or its cytoplasmic domain becomes associated with intact PLC-gamma or with a fusion protein containing the SH2 domain of PLC-gamma. To delineate the site of association, we have examined the capacity of a 28-amino-acid tryptic peptide containing phosphorylated Tyr-766 to bind to various constructs containing SH2 and other domains of PLC-gamma. It is demonstrated that the tyrosine-phosphorylated peptide binds specifically to the SH2 domain but not to the SH3 domain or other regions of PLC-gamma. Hence, Tyr-766 and its flanking sequences represent a major binding site in FGFR for PLC-gamma. Alignment of the amino acid sequences surrounding Tyr-766 with corresponding regions of other FGFRs revealed conserved tyrosine residues in all known members of the FGFR family. We propose that homologous tyrosine-phosphorylated regions in other FGFRs also function as binding sites for PLC-gamma and therefore are involved in coupling to phosphatidylinositol breakdown.  相似文献   

6.
Phosphorylation of the NMDA receptor by Src-family tyrosine kinases has been implicated in the regulation of receptor function. We have investigated the tyrosine phosphorylation of NMDA receptor subunits NR2A and NR2B by exogenous Src and Fyn and compared this to phosphorylation by tyrosine kinases associated with the postsynaptic density (PSD). Phosphorylation of the receptor by exogenous Src and Fyn was dependent upon initial binding of the kinases to PSDs via their SH2-domains. Src and Fyn phosphorylated similar sites in NR2A and NR2B, tryptic peptide mapping identifying seven and five major tyrosine-phosphorylated peptides derived from NR2A and NR2B, respectively. All five tyrosine phosphorylation sites on NR2B were localized to the C-terminal, cytoplasmic domain. Phosphorylation of NR2B by endogenous PSD tyrosine kinases yielded only three tyrosine-phosphorylated tryptic peptides, two of which corresponded to Src phosphorylation sites, and one of which was novel. Phosphorylation-site specific antibodies identified NR2B Tyr1472 as a phosphorylation site for intrinsic PSD tyrosine kinases. Phosphorylation of this site was inhibited by the Src-family-specific inhibitor PP2. The results identify several potential phosphorylation sites for Src in the NMDA receptor, and indicate that not all of these sites are available for phosphorylation by kinases located within the structural framework of the PSD.  相似文献   

7.
To identify the autophosphorylation sites on the human insulin receptor (IR), partially purified human IR was incubated in vitro in the presence of insulin and manganese [gamma-32P]ATP so as to achieve near-maximal activation of the histone 2b kinase activity. Approximately 70% of all beta subunit [32P]phosphotyrosine resides on two tryptic peptide segments identified by microsequencing as IR precursor (Ullrich, A., Bell, J. R., Chen, E.-Y., Herrera, R., Petruzelli, L. M., Dull, T. J., Gray, A., Coussens, L., Liao, Y.-C., Tsubokawa, M., Mason, A., Seeburg, P. H., Grunfeld, C., Rosen, O. M., and Ramachandran, J. (1985) Nature 313, 756-761) 1144-1152 (tyrosine at 1146, 1150, 1151, designated peptide 5) and 1315-1329 (tyrosine at 1316, 1322, designated peptide 8), which were recovered in approximately equal amounts. Half of the remaining unidentified [32P]phosphotyrosine residues reside on another tryptic peptide of Mr 4000-5000. Assignment of [32P]phosphotyrosine to specific residues required subdigestion and Edman degradation of 32P peptides covalently coupled to solid supports. Peptide 5 was recovered in triple and double phosphorylated forms in a molar ratio of about 2:1. Tyr-1146 contained 32P in both forms of peptide 5; in the double phosphorylated form, phenylthiohydantoin-[32P]phosphotyrosine was recovered at both Tyr-1150 and Tyr-1151, in a ratio of about 1:2. Thus, the double phosphorylated peptide 5 is presumably a mixture of Tyr-P-1146/1150 and Tyr-P-1146/1151, predominantly the latter. Peptide 8 was recovered only as the double phosphorylated form. We conclude that autophosphorylation of human IR in vitro leads to the phosphorylation of at least 6 of the 13 tyrosine residues on the beta subunit intracellular extension. Five of these tyrosines are clustered in two domains; one domain is in the structurally unique C-terminal tail and contains Tyr-1316 and -1322 which are both phosphorylated. The second domain is located in the segment of the tyrosine kinase region homologous to the major in vitro autophosphorylation site of pp60 v-src and contains Tyr-1146, which is fully phosphorylated, and Tyr-1150 and -1151; although the majority of IR beta subunits exhibit phosphorylation of both tyrosine 1150 and 1151, up to 20-25% of Tyr-1150 remains unphosphorylated at complete kinase activation.  相似文献   

8.
9.
GTPase-activating protein (GAP) enhances the rate of GTP hydrolysis by cellular Ras proteins and is implicated in mitogenic signal transduction. GAP is phosphorylated on tyrosine in cells transformed by Rous sarcoma virus and serves as an in vitro substrate of the viral Src (v-Src) kinase. Our previous studies showed that GAP complexes stably with normal cellular Src (c-Src), although its association with v-Src is less stable. To further investigate the molecular basis for interactions between GAP and the Src kinases, we examined GAP association with and phosphorylation by a series of c-Src and v-Src mutants. Analysis of GAP association with c-Src/v-Src chimeric proteins demonstrates that GAP associates stably with Src proteins possessing low kinase activity and poorly with activated Src kinases, especially those that lack the carboxy-terminal segment of c-Src containing the regulatory amino acid Tyr-527. Phosphorylated Tyr-527 is a major determinant of c-Src association with GAP, as demonstrated by c-Src point mutants in which Tyr-527 is changed to Phe. While the isolated amino-terminal half of the c-Src protein is insufficient for stable GAP association, analysis of point substitutions of highly conserved amino acid residues in the c-Src SH2 region indicate that this region also influences Src-GAP complex formation. Therefore, our results suggest that both Tyr-527 phosphorylation and the SH2 region contribute to stable association of c-Src with GAP. Analysis of in vivo phosphorylation of GAP by v-Src mutants containing deletions encompassing the SH2, SH3, and unique regions suggests that the kinase domain of v-Src contains sufficient substrate specificity for GAP phosphorylation. Even though tyrosine phosphorylation of GAP correlates to certain extent with the transforming ability of various c-Src and v-Src mutants, our data suggest that other GAP-associated proteins may also have roles in Src-mediated oncogenic transformation. These findings provide additional evidence for the specificity of Src interactions with GAP and support the hypothesis that these interactions contribute to the biological functions of the Scr kinases.  相似文献   

10.
A rapid phosphorylation of tyrosine hydroxylase occurs in the PC12 nerve-like clonal cell line in response to nerve growth factor (NGF), epidermal growth factor (EGF), dibutyryl-cAMP, cholera toxin, phorbol- 12-myristate-13-acetate (PMA), or potassium depolarization in the presence of calcium ions. Complete tryptic digestion and two-dimensional peptide mapping reveals four available sites of phosphorylation in the enzyme. Phosphoamino acid analysis demonstrates that serine is the amino acid residue phosphorylated in each peptide. Specific phosphorylation of each of the four sites is achieved by different subsets of the above agents. One peptide site is phosphorylated in response to EGF alone. A second site is phosphorylated only in response to NGF, cholera toxin or dibutyryl-cAMP. A third site is phosphorylated only in response to potassium depolarization and requires the presence of extracellular Ca2+. The fourth site is the only site phosphorylated in response to PMA. These data indicate that at least 4 distinct kinase systems can act to phosphorylate tyrosine hydroxylase in PC12 cells. The PMA-stimulated peptide site is also phosphorylated in response to every one of the other agents. Further proteolytic digestions and phosphopeptide mapping of this common peptide, using Staphylococcus V8 protease and thermolysin, did not generate different phosphopeptides resulting from the different agents. These data suggest that the phosphorylation of this common peptide in response to all of the agents may be mediated by a common kinase, and, hence, that tyrosine hydroxylase phosphorylation by some agents may be mediated by two kinases. Although phosphopeptide maps of tyrosine hydroxylase resulting from cAMP elevation or NGF are qualitatively similar, quantitative differences exist, suggesting differential regulation of the same kinases by these agents. Tyrosine hydroxylase was found to be activated 2--4-fold in response to each phosphorylating agent. Thus, NGF and EGF present novel, natural means of regulating the activation state of tyrosine hydroxylase in responsive neurons.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The peripheral nicotinic acetylcholine receptor (nAChR) is phosphorylated on tyrosine residues in vivo and in vitro at a high stoichiometry. We have previously reported that this tyrosine phosphorylation occurs on the beta, gamma, and delta subunits of the receptor and is implicated in both the modulation of the function of the receptor and localization of the receptor at the synapse. The specific tyrosine residue of each subunit which is phosphorylated is now identified. The endogenously phosphorylated nAChR from the electric organ of Torpedo californica was phosphorylated to maximal stoichiometry in vitro exclusively on tyrosine residues as indicated by phosphoamino acid analysis. Two-dimensional phosphopeptide maps of thermolysin limit digests of the isolated phosphorylated subunits indicated that each subunit is phosphorylated at a single site. To determine the site of tyrosine phosphorylation of the beta, gamma, and delta subunits, phosphorylated subunits were isolated and digested with trypsin. A single phosphotyrosine containing peptide from each subunit was purified by antiphosphotyrosine antibody affinity chromatography and reverse phase high performance liquid chromatography. The purified phosphopeptides were subjected to sequential Edman degradation and sequence analysis. Comparison of the phosphopeptide sequence data with the deduced amino acid sequence of each subunit indicated that Tyr-355 of beta, Tyr-364 of gamma, and Tyr-372 of delta are the sites of in vitro and in vivo tyrosine phosphorylation of the nAChR. Identification of these sites should facilitate further studies of the role of tyrosine phosphorylation in the regulation of receptor function.  相似文献   

12.
Fyn is a member of the Src-family protein tyrosine kinases and plays important roles in both neurons and oligodendrocytes. Here we report association of Fyn with p250GAP, a RhoGAP protein that is expressed predominantly in brain. p250GAP interacts with Fyn both in vitro and in vivo. p250GAP is tyrosine phosphorylated by Fyn when co-expressed in HEK293T cells. This phosphorylation appears to enhance the interaction between p250GAP and Fyn. Furthermore, the level of tyrosine phosphorylation of p250GAP increases upon differentiation of the oligodendrocyte cell line CG4. Given that Fyn activity is up-regulated during oligodendrocyte maturation, the results argue that p250GAP is phosphorylated by Fyn in oligodendrocytes. Tyrosine phosphorylation of p250GAP by Fyn would regulate its RhoGAP activity, subcellular localization, or interactions with other proteins, leading to morphological and phenotypic changes of oligodendrocytes.  相似文献   

13.
Regulation of the epidermal growth factor receptor by phosphorylation   总被引:5,自引:0,他引:5  
The receptor for epidermal growth factor (EGF) is a glycosylated transmembrane phosphoprotein that exhibits EGF-stimulable protein tyrosine kinase activity. On EGF stimulation, the receptor undergoes a self-phosphorylation reaction at tyrosine residues located primarily in the extreme carboxyl-terminal region of the protein. Using enzymatically active EGF receptor purified by immunoaffinity chromatography from A431 human epidermoid carcinoma cells, the self-phosphorylation reaction has been characterized as a rapid, intramolecular process which is maximal at 30-37 degrees C and exhibits a very low Km for ATP (0.2 microM). When phosphorylation of exogenous peptide substrates was measured as a function of receptor self-phosphorylation, tyrosine kinase activity was found to be enhanced two to threefold at 1-2 mol of phosphate per mol of receptor. Analysis of the dependence of the tyrosine kinase activity on ATP concentration yielded hyperbolic kinetics when plotted in double-reciprocal fashion, indicating that ATP can serve as an activator of the enzyme. Higher concentrations of peptide substrates were found to inhibit both the self- and peptide phosphorylation, but this inhibition could be overcome by first self-phosphorylating the enzyme. These results suggest that self-phosphorylation can remove a competitive/inhibitory constraint so that certain exogenous substrates can have greater access to the enzyme active site. In addition to self-phosphorylation, the EGF receptor can be phosphorylated on threonine residues by the calcium- and phospholipid-dependent protein kinase C. The sites on the EGF receptor phosphorylated in vitro by protein kinase C are identical to the sites phosphorylated on the receptor isolated from A431 cells exposed to the tumor promoters 12-O-tetradecanoylphorbol 13-acetate or teleocidin. This phosphorylation of the EGF receptor results in a suppression of its tyrosine kinase and EGF binding activities both in vivo and in vitro. The EGF receptor can thus be variably regulated by phosphorylation: self-phosphorylation can enhance tyrosine kinase activity whereas protein kinase C-catalyzed phosphorylation can depress enzyme activity. Because these two phosphorylations account for only a fraction of the phosphate present in the EGF receptor in vivo, other protein kinases can apparently phosphorylate the receptor and these may exert additional controls on EGF receptor/kinase function.  相似文献   

14.
Fyn, a member of the Src family of tyrosine kinases, is implicated in both brain development and adult brain function. In the present study, we identified a Rho GTPase-activating protein (GAP), TCGAP (Tc10/Cdc42 GTPase-activating protein), as a novel Fyn substrate. TCGAP interacted with Fyn and was phosphorylated by Fyn, with Tyr-406 in the GAP domain as a major Fyn-mediated phosphorylation site. Fyn suppressed the GAP activity of wild-type TCGAP but not the Y406F mutant of TCGAP in a phosphorylation-dependent manner, suggesting that Fyn-mediated Tyr-406 phosphorylation negatively regulated the TCGAP activity. In situ hybridization analyses showed that TCGAP mRNA was expressed prominently in both immature and adult mouse brain, with high levels in cortex, corpus striatum, hippocampus, and olfactory bulb. Overexpression of wild-type TCGAP in PC12 cells suppressed nerve growth factor-induced neurite outgrowth, whereas a GAP-defective mutant of TCGAP enhanced the neurite outgrowth. Nerve growth factor enhanced tyrosine phosphorylation of TCGAP through activation of Src family kinases. These results suggest that TCGAP is involved in Fyn-mediated regulation of axon and dendrite outgrowth.  相似文献   

15.
beta2-Chimaerin, an intracellular receptor for the second messenger diacylglycerol and phorbol esters, is a GTPase-activating protein (GAP) specific for Rac. beta2-Chimaerin negatively controls many Rac-dependent pathophysiological events including tumor development. However, the regulatory mechanism of beta2-chimaerin remains largely unknown. Here we report that beta2-chimaerin is tyrosine-phosphorylated by Src-family kinases (SFKs) upon cell stimulation with epidermal growth factor (EGF). Mutational analysis identified Tyr-21 in the N-terminal regulatory region as a major phosphorylation site. Intriguingly, the addition of SFK inhibitor and the replacement of Tyr-21 with Phe (Y21F) markedly enhanced Rac-GAP activity of beta2-chimaerin in EGF-treated cells. Moreover, the Y21F mutant inhibited integrin-dependent cell spreading, in which Rac1 plays a critical role, more strongly than wild-type beta2-chimaerin. These results suggest Tyr-21 phosphorylation as a novel, SFK-dependent mechanism that negatively regulates beta2-chimaerin Rac-GAP activity.  相似文献   

16.
The N-methyl-d-aspartate (NMDA) receptors play critical roles in synaptic plasticity, neuronal development, and excitotoxicity. Tyrosine phosphorylation of NMDA receptors by Src-family tyrosine kinases such as Fyn is implicated in synaptic plasticity. To precisely address the roles of NMDA receptor tyrosine phosphorylation, we identified Fyn-mediated phosphorylation sites on the GluR epsilon 2 (NR2B) subunit of NMDA receptors. Seven out of 25 tyrosine residues in the C-terminal cytoplasmic region of GluR epsilon 2 were phosphorylated by Fyn in vitro. Of these 7 residues, Tyr-1252, Tyr-1336, and Tyr-1472 in GluR epsilon 2 were phosphorylated in human embryonic kidney fibroblasts when co-expressed with active Fyn, and Tyr-1472 was the major phosphorylation site in this system. We then generated rabbit polyclonal antibodies specific to Tyr-1472-phosphorylated GluR epsilon 2 and showed that Tyr-1472 of GluR epsilon 2 was indeed phosphorylated in murine brain using the antibodies. Importantly, Tyr-1472 phosphorylation was greatly reduced in fyn mutant mice. Moreover, Tyr-1472 phosphorylation became evident when hippocampal long term potentiation started to be observed, and its magnitude became larger in murine brain. Finally, Tyr-1472 phosphorylation was significantly enhanced after induction of long term potentiation in the hippocampal CA1 region. These data suggest that Tyr-1472 phosphorylation of GluR epsilon 2 is important for synaptic plasticity.  相似文献   

17.
The p56lck and p59fyn protein tyrosine kinases are important signal transmission elements in the activation of mature T lymphocytes by ligands to the T-cell antigen receptor (TCR)/CD3 complex. The lack of either kinase results in deficient early signaling events, and pharmacological agents that block tyrosine phosphorylation prevent T-cell activation altogether. After triggering of the TCR/CD3 complex, both kinases are moderately activated and begin to phosphorylate cellular substrates, but the molecular mechanisms responsible for these changes have remained unclear. We recently found that the p72syk protein tyrosine kinase is physically associated with the TCR/CD3 complex and is rapidly tyrosine phosphorylated and activated by receptor triggering also in T cells lacking p56lck. Here we examine the regulation of p72syk and its interaction with p56lck in transfected COS-1 cells. p72syk was catalytically active and heavily phosphorylated on its putative autophosphorylation site, Tyr-518/519. Mutation of these residues to phenylalanines abolished its activity in vitro and toward cellular substrates in vivo and reduced its tyrosine phosphorylation in intact cells by approximately 90%. Coexpression of lck did not alter the catalytic activity of p72syk, but the expressed p56lck was much more active in the presence of p72syk than when expressed alone. This activation was also seen as increased phosphorylation of cellular proteins. Concomitantly, p56lck was phosphorylated at Tyr-192 in its SH2 domain, and a Phe-192 mutant p56lck was no longer phosphorylated by p72syk. Phosphate was also detected in p56lck at Tyr-192 in lymphoid cells. These findings suggest that p56lck is positively regulated by the p72syk kinase.  相似文献   

18.
The recently identified transient receptor potential (TRP) channel family member, TRPV4 (formerly known as OTRPC4, VR-OAC, TRP12, and VRL-2) is activated by hypotonicity. It is highly expressed in the kidney as well as blood-brain barrier-deficient hypothalamic nuclei responsible for systemic osmosensing. Apart from its gating by hypotonicity, little is known about TRPV4 regulation. We observed that hypotonic stress resulted in rapid tyrosine phosphorylation of TRPV4 in a heterologous expression model and in native murine distal convoluted tubule cells in culture. This tyrosine phosphorylation was sensitive to the inhibitor of Src family tyrosine kinases, PP1, in a dose-dependent fashion. TRPV4 associated with Src family kinases by co-immunoprecipitation studies and confocal immunofluorescence microscopy, and this interaction required an intact Src family kinase SH2 domain. One of these kinases, Lyn, was activated by hypotonic stress and phosphorylated TRPV4 in an immune complex kinase assay and an in vitro kinase assay using recombinant Lyn and TRPV4. Transfection of wild-type Lyn dramatically potentiated hypotonicity-dependent TRPV4 tyrosine phosphorylation whereas dominant negative-acting Lyn modestly inhibited it. Through mutagenesis studies, the site of tonicity-dependent tyrosine phosphorylation was mapped to Tyr-253, which is conserved across all species from which TRPV4 has been cloned. Importantly, point mutation of Tyr-253 abolished hypotonicity-dependent channel activity. In aggregate, these data indicate that hypotonic stress results in Src family tyrosine kinase-dependent tyrosine phosphorylation of the tonicity sensor TRPV4 at residue Tyr-253 and that this residue is essential for channel function in this context. This is the first example of direct regulation of TRP channel function through tyrosine phosphorylation.  相似文献   

19.
Antigen receptor ligation on lymphocytes activates protein tyrosine kinases and phospholipase C-gamma (PLC-gamma) isoforms. Glutathione S-transferase fusion proteins containing the C-terminal Src-homology 2 [SH2(C)] domain of PLC-gamma1 bound to tyrosyl phosphorylated Syk. Syk isolated from antigen receptor-activated B cells phosphorylated PLC-gamma1 on Tyr-771 and the key regulatory residue Tyr-783 in vitro, whereas Lyn from the same B cells phosphorylated PLC-gamma1 only on Tyr-771. The ability of Syk to phosphorylate PLC-gamma1 required antigen receptor ligation, while Lyn was constitutively active. An mCD8-Syk cDNA construct could be expressed as a tyrosyl-phosphorylated chimeric protein tyrosine kinase in COS cells, was recognized by PLC-gamma1 SH2(C) in vitro, and induced tyrosyl phosphorylation of endogenous PLC-gamma1 in vivo. Substitution of Tyr-525 and Tyr-526 at the autophosphorylation site of Syk in mCD8-Syk substantially reduced the kinase activity and the binding of this variant chimera to PLC-gamma1 SH2(C) in vitro; it also failed to induce tyrosyl phosphorylation of PLC-gamma1 in vivo. In contrast, substitution of Tyr-348 and Tyr-352 in the linker region of Syk in mCD8-Syk did not affect the kinase activity of this variant chimera but almost completely eliminated its binding to PLC-gamma1 SH(C) and completely eliminated its ability to induce tyrosyl phosphorylation of PLC-gamma1 in vivo. Thus, an optimal kinase activity of Syk and an interaction between the linker region of Syk with PLC-gamma1 are required for the tyrosyl phosphorylation of PLC-gamma1.  相似文献   

20.
Three peptides were synthesized corresponding to potential autophosphorylation sites of the beta subunit of the human insulin receptor. These were peptide 1150 corresponding to amino acids 1142-1153 of the pro-receptor, peptide 960 corresponding to amino acids 952-961 of the proreceptor, and peptide 1316 corresponding to amino acids 1313-1329 of the proreceptor. Peptide 1150 served as a better substrate for the insulin receptor tyrosine protein kinase than either of the other peptides or than the Src peptide (corresponding to the sequence surrounding the autophosphorylation site at Tyr-416). Microsequencing of the phosphorylated peptide 1150 indicated that Tyr-1150 rather than Tyr-1146 or Tyr-1151 was phosphorylated in the in vitro reaction. The insulin receptor was then isolated from 32P-labeled IM-9 cells that had been exposed to insulin. Tryptic digestion of the beta subunit revealed one peptide whose phosphorylation was dependent upon insulin and occurred exclusively on Tyr. This peptide was selectively immunoprecipitated by an antipeptide antibody directed to the Tyr-1150-containing sequence. We conclude that Tyr-1150 is preferentially phosphorylated by the purified receptor kinase and that one of the autophosphorylation reactions elicited by insulin in intact cells occurs in a sequence that contains this residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号