首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The members of p90 ribosomal S6 kinase (RSK) family of Ser/Thr kinases are downstream effectors of MAPK/ERK pathway that regulate diverse cellular processes including cell growth, proliferation and survival. In carcinogenesis, RSKs are thought to modulate cell motility, invasion and metastasis. Herein, we have studied an involvement of RSKs in FGF2/FGFR2-driven behaviours of mammary epithelial and breast cancer cells. We found that both silencing and inhibiting of FGFR2 attenuated phosphorylation of RSKs, whereas FGFR2 overexpression and/or its stimulation with FGF2 enhanced RSKs activity. Moreover, treatment with ERK, Src and p38 inhibitors revealed that p38 kinase acts as an upstream RSK2 regulator. We demonstrate for the first time that in FGF2/FGFR2 signalling, p38 but not MEK/ERK, indirectly activated RSK2 at Tyr529, which facilitated phosphorylation of its other residues (Thr359/Ser363, Thr573 and Ser380). In contrast to FGF2-triggered signalling, inhibition of p38 in the EGF pathway affected only RSK2-Tyr529, without any impact on the remaining RSK phosphorylation sites. p38-mediated phosphorylation of RSK2-Tyr529 was crucial for the transactivation of residues located at kinase C-terminal domain and linker-region, specifically, in the FGF2/FGFR2 signalling pathway. Furthermore, we show that FGF2 promoted anchorage-independent cell proliferation, formation of focal adhesions and cell migration, which was effectively abolished by treatment with RSKs inhibitor (FMK). These indicate that RSK2 activity is indispensable for FGF2/FGFR2-mediated cellular effects. Our findings identified a new FGF2/FGFR2-p38-RSK2 pathway, which may play a significant role in the pathogenesis and progression of breast cancer and, hence, may present a novel therapeutic target in the treatment of FGFR2-expressing tumours.  相似文献   

2.
Glucosylceramide-based glycosphingolipids have been previously demonstrated to regulate negatively the formation of inositol 1,4,5-trisphosphate by phospholipase C-gamma1. In the present study, the depletion of endogenous glucosylceramide by D-t-EtDO-P4 in cultured ECV304 cells induced autophosphorylation of Src kinase at tyrosine residue 418 within the catalytic loop and dephosphorylation of Src kinase at tyrosine residues 529 within the carboxyl-terminal regulatory region. Phosphotransferase activities of Src kinase were also induced in the glucosylceramide-depleted cells. c-Src kinase activity and phosphorylations at Src Tyr-418 and epidermal growth factor (EGF) receptor Tyr-1068 were significantly enhanced by bradykinin in response to 100 nm D-t-EtDO-P4 compared with control cells. The phosphorylation and dephosphorylation on Tyr-418 and Tyr-529 residues of c-Src were reversed by treatment of 4-amino-5-(4-chlorophenyl)-7-t-butyl(pyrazolo)[3,4-d]pyrimidine (PP2), an inhibitor of Src kinase, in control cells. Glucosylceramide-depleted cells resisted treatment with PP2, and both phosphorylation of Tyr-418 and dephosphorylation of Tyr-529 induced by depletion of glucosylceramide were maintained. Compared with untreated cells, tyrosine phosphorylation of phospholipase C-gamma1 was enhanced by EGF stimulation in glucosylceramide-depleted cells, associated with enhanced tyrosine phosphorylation of the EGF receptor at Tyr-1068 and Tyr-1086 stimulated by EGF. The Src inhibitor, PP2, significantly blocked EGF-induced tyrosine phosphorylation of phospholipase C-gamma1 in control cells, whereas in glucosylceramide-depleted cells, suppression of Src kinase activity by PP2 toward EGF-induced tyrosine phosphorylation of phospholipase C-gamma1 was less significant. Thus the activation of Src kinase by depletion of glucosylceramide-based glycosphingolipids in cultured ECV304 cells is a critical up-stream event in the activation of phospholipase C-gamma1.  相似文献   

3.
G-protein coupled receptors may mediate their effects on neuronal growth and differentiation through activation of extracellular signal-regulated kinases 1/2 (ERK1/2), often elicited by transactivation of growth factor receptor tyrosine kinases. This elaborate signaling process includes inducible formation and trafficking of multiprotein signaling complexes and is facilitated by pre-ordained membrane microdomains, in particular lipid rafts. In this study, we have uncovered novel signaling interactions of cannabinoid receptors with fibroblast growth factor receptors, which depended on lipid rafts and led to ERK1/2 activation in primary neurons derived from chick embryo telencephalon. More specifically, the cannabinoid 1 receptor (CB1R) agonist methanandamide induced tyrosine phosphorylation and transactivation of fibroblast growth factor receptor (FGFR)1 via Src and Fyn, which drove an amplification wave in ERK1/2 activation. Transactivation of FGFR1 was accompanied by the formation of a protein kinase C ε-dependent multiprotein complex that included CB1R, Fyn, Src, and FGFR1. Recruitment of molecules increased with time of exposure to methanandamide, suggesting that in addition to signaling it also served trafficking of receptors. Upon agonist stimulation we also detected a rapid incorporation of CB1R, as well as activated Src and Fyn, and FGFR1 in lipid rafts. Most importantly, lipid raft integrity was a pre-requisite for CB1R-dependent complex formation. Our data provide evidence that lipid rafts may organize CB1 receptor proximal signaling events, namely activation of Src and Fyn, and transactivation of FGFR1 towards activation of ERK1/2 and induction of neuronal differentiation.  相似文献   

4.
Stimulation of T47D cells with epidermal growth factor (EGF) results in the activation of the intrinsic tyrosine kinases of the receptor and the phosphorylation of multiple cellular proteins including the receptor, scaffold molecules such as c-Cbl, adapter molecules such as Shc, and the serine/threonine protein kinase Akt. We demonstrate that EGF stimulation of T47D cells results in the activation of the Src protein-tyrosine kinase and that the Src kinase inhibitor PP1 blocks the EGF-induced phosphorylation of c-Cbl but not the activation/phosphorylation of the EGF receptor itself. PP1 also blocks EGF-induced ubiquitination of the EGF receptor, which is presumably mediated by phosphorylated c-Cbl. Src is associated with c-Cbl, and we have previously demonstrated that the Src-like kinase Fyn can phosphorylate c-Cbl at a preferred binding site for the p85 subunit of phosphatidylinositol 3'-kinase. PP1 treatment blocks EGF-induced activation of the anti-apoptotic protein kinase Akt suggesting that Src may regulate activation of Akt, perhaps by a Src --> c-Cbl --> phosphatidylinositol 3'-kinase --> Akt pathway.  相似文献   

5.
The mechanisms involved in the mechanical loading-induced increase in bone formation remain unclear. In this study, we showed that cyclic strain (CS) (10 min, 1% stretch at 0.25 Hz) stimulated the proliferation of overnight serum-starved ROS 17/2.8 osteoblast-like cells plated on type I collagen-coated silicone membranes. This increase was blocked by MEK inhibitor PD-98059. Signaling events were then assessed 0 min, 30 min, and 4 h after one CS period with Western blotting and coimmunoprecipitation. CS rapidly and time-dependently promoted phosphorylation of both ERK2 at Tyr-187 and focal adhesion kinase (FAK) at Tyr-397 and Tyr-925, leading to the activation of the Ras/Raf/MEK pathway. Cell transfection with FAK mutated at Tyr-397 completely blocked ERK2 Tyr-187 phosphorylation. Quantitative immunofluorescence analysis of phosphotyrosine residues showed an increase in focal adhesion plaque number and size in strained cells. CS also induced both Src-Tyr-418 phosphorylation and Src to FAK association. Treatment with the selective Src family kinase inhibitor pyrazolopyrimidine 2 did not prevent CS-induced FAK-Tyr-397 phosphorylation suggesting a Src-independent activation of FAK. CS also activated proline-rich tyrosine kinase 2 (PYK2), a tyrosine kinase highly homologous to FAK, at the 402 phosphorylation site and promoted its association to FAK in a time-dependent manner. Mutation of PYK2 at the Tyr-402 site prevented the ERK2 phosphorylation only at 4 h. Intra and extracellular calcium chelators prevented PYK2 activation only at 4 h. In summary, our data showed that osteoblast response to mitogenic CS was mediated by MEK pathway activation. The latter was induced by ERK2 phosphorylation under the control of FAK and PYK2 phosphorylation orchestrated in a time-dependent manner.  相似文献   

6.
Stimulation of human colonic epithelial T84 cells with the muscarinic receptor agonist carbachol, a stable analog of acetylcholine, induced Akt, p70S6K1 and ERK activation. Treatment of T84 cells with the selective inhibitor of EGF receptor (EGFR) tyrosine kinase AG1478 abrogated Akt phosphorylation on Ser473 induced by either carbachol or EGF, indicating that carbachol-induced Akt activation is mediated through EGFR transactivation. Surprisingly, AG1478 did not suppress p70S6K1 phosphorylation on Thr389 in response to carbachol, indicating the G protein-coupled receptor (GPCR) stimulation induces p70S6K1 activation, at least in part, via an Akt-independent pathway. In contrast, treatment with the selective MEK inhibitor U0126 (but not with the inactive analog U0124) inhibited carbachol-induced p70S6K1 activation, indicating that the MEK/ERK/RSK pathway plays a critical role in p70S6K1 activation in GPCR-stimulated T84 cells. These findings imply that GPCR activation induces p70S6K1 via ERK rather than through the canonical PI 3-kinase/Akt/TSC/mTORC1 pathway in T84 colon carcinoma cells.  相似文献   

7.
Fibroblast growth factors (FGFs) play an important regulatory role in skeletal development and bone formation. However, the FGF signaling mechanisms controlling osteoblast function are poorly understood. Here, we identified a role for the Src family members Lyn and Fyn in osteoblast differentiation promoted by constitutive activation of FGF receptor-2 (FGFR2). We show that the overactive FGFR2 S252W mutation induced decreased Src family kinase tyrosine phosphorylation and activity associated with decreased Lyn and Fyn protein expression in human osteoblasts. Pharmacological stimulation of Src family kinases or transfection with Lyn or Fyn vectors repressed alkaline phosphatase (ALP) up-regulation induced by overactive FGFR2. Inhibition of proteasome activity restored normal Lyn and Fyn expression and ALP activity in FGFR2 mutant osteoblasts. Immunoprecipitation studies showed that Lyn, Fyn, and FGFR2 interacted with the ubiquitin ligase c-Cbl and ubiquitin. Transfection with c-Cbl in which the RING finger was disrupted or with c-Cbl with a point mutation that abolishes the binding ability of the Cbl phosphotyrosine-binding domain restored Src kinase activity and Lyn, Fyn, and FGFR2 levels and reduced ALP up-regulation in mutant osteoblasts. Thus, constitutive FGFR2 activation induces c-Cbl-dependent Lyn and Fyn proteasome degradation, resulting in reduced Lyn and Fyn kinase activity, increased ALP expression, and FGFR2 down-regulation. This reveals a common Cbl-mediated negative feedback mechanism controlling Lyn, Fyn, and FGFR2 degradation in response to overactive FGFR2 and indicates a role for Cbl-dependent down-regulation of Lyn and Fyn in osteoblast differentiation induced by constitutive FGFR2 activation.  相似文献   

8.
SHP-2, an SH2 domain-containing protein-tyrosine phosphatase, plays an important role in receptor tyrosine kinase-regulated cell proliferation and differentiation. Little is known about the activation mechanisms and the participation of SHP-2 in the activity of G protein-coupled receptors lacking intrinsic tyrosine kinase activity. We show that the activity of SHP-2 (but not SHP-1) is specifically stimulated by the selective alpha2A-adrenergic receptor agonist UK14304 and by lysophosphatidic acid (LPA) in Madin-Darby canine kidney (MDCK) cells. UK14304 and LPA promote the tyrosine phosphorylation of SHP-2 and its association with Grb2. The agonist-induced direct interaction of Grb2 with SHP-2 is mediated by the SH2 domain of Grb2 and the tyrosine phosphorylation of SHP-2. Rapid activation of Src family kinase by UK14304 preceded the SHP-2 activation. Among the Src family members (Src, Fyn, Lck, Yes, and Lyn) present in MDCK cells, Fyn was the only one specifically associated with SHP-2, and the physical interaction between them, which requires the Src family kinase activity, was increased in response to the agonists. Pertussis toxin, PP1 (a selective Src family kinase inhibitor), or overexpression of a catalytically inactive mutant of Fyn blocked the UK14304- or LPA-stimulated activity of SHP-2, SHP-2 tyrosine phosphorylation, and SHP-2 association with Grb2. Therefore, we have demonstrated for the first time that the activation of SHP-2 by these Gi protein-coupled receptors requires Fyn kinase and that there is a specific physical interaction of Fyn kinase with SHP-2 in MDCK cells.  相似文献   

9.
Steel factor (SLF) plus GM-CSF induces proliferative synergy in factor-dependent cell line MO7e and hematopoietic progenitor cells. We previously reported ERK1/2 involvement in this synergy, but its downstream signaling molecules are not defined. Here, we investigated activation of the 90-kDa ribosomal S6 kinase (RSK) proteins by measuring the phosphorylation status and in vitro kinase activity in MO7e cells. Both GM-CSF and SLF induced activation of RSK, and the combined stimulation with these two cytokines induced synergistic and persistent activation of RSK. RSK activity was reduced by PI3 kinase inhibitor LY294002 or MEK1 inhibitor PD98059, suggesting that the ERK as well as the PI3 kinase pathways are involved in regulation of RSK activity. Sensitivities of RSK activity to inhibitory drugs correlated well with those of c-fos gene induction. Taken together, synergistic activation of RSK may contribute, at least in part, to the synergistic induction of c-fos after combined stimulation with GM-CSF plus SLF.  相似文献   

10.
Fibroblast growth factor receptor 3 (FGFR3) influences a diverse array of biological processes, including cell growth, differentiation, and migration. Activating mutations in FGFR3 are associated with multiple myeloma, cervical carcinoma, and bladder cancer. To identify proteins that interact with FGFR3 and which may mediate FGFR3-dependent signaling, a yeast two-hybrid screen was employed using the cytoplasmic kinase domain of FGFR3 as bait. We identified the adapter protein SH2-B as an FGFR3-interacting protein. Coimmunoprecipitation experiments demonstrate binding of the SH2-B beta isoform to FGFR3 in 293T cells. Tyrosine phosphorylation of SH2-B beta was observed when coexpressed with activated FGFR3 mutants such as the weakly activated mutant N540K or the strongly activated mutant K650E, both associated with human developmental syndromes. The extent of tyrosine phosphorylation of SH2-B beta correlates with receptor activation, suggesting that FGFR3 activation mediates tyrosine phosphorylation of SH2-B beta. Furthermore, two tyrosine phosphorylation sites of FGFR3, Tyr-724 and Tyr-760, are required for optimal binding of the Src homology-2 (SH2) domain of SH2-B beta. We also demonstrate the phosphorylation and nuclear translocation of Stat5 by activated FGFR3, which increases in response to overexpression of SH2-B beta. Taken together, our results identify SH2-B beta as a novel FGFR3 binding partner that mediates signal transduction.  相似文献   

11.
12.
We previously reported that serotonin (5-HT) increased glial cell line-derived neurotrophic factor (GDNF) release in a 5-HT2 receptor (5-HT2R) and mitogen-activated protein kinase kinase/extracellular signal-related kinase (MEK/ERK)-dependent manner in rat C6 glioma cells (C6 cells), a model of astrocytes. We herein found that 5-HT-induced rapid ERK phosphorylation was blocked by 5-HT2R antagonists in C6 cells. We therefore examined 5-HT-induced ERK phosphorylation to reveal the mechanism of 5-HT-induced GDNF mRNA expression. As 5-HT-induced ERK phosphorylation was blocked by inhibitors for Gαq/11 and fibroblast growth factor receptor (FGFR), but not for second messengers downstream of Gαq/11, 5-HT2R-mediated FGFR transactivation was suggested to be involved in the ERK phosphorylation. Although FGFR1 and 2 were functionally expressed in C6 cells, 5-HT selectively phosphorylated FGFR2. Indeed, small interfering RNA for FGFR2, but not for FGFR1, blocked 5-HT-induced ERK phosphorylation. As Src family tyrosine kinase inhibitors and microtubule depolymerizing agents blocked 5-HT-induced FGFR2 phosphorylation, Src family tyrosine kinase and stabilized microtubules were suggested to act upstream of FGFR2. Finally, 5-HT-induced GDNF mRNA expression was also inhibited by the blockade of 5-HT2R, FGFR, and Src family tyrosine kinase. In conclusion, our findings suggest that 5-HT induces GDNF mRNA expression via 5-HT2R-mediated FGFR2 transactivation in C6 cells.  相似文献   

13.
Epidermal growth factor (EGF) induces paxillin tyrosine dephosphorylation and Src activation, but the signaling pathways that mediate these responses were largely undefined. We found that Gab1, a docking protein for the SHP2 protein-tyrosine phosphatase in EGF-stimulated cells, was associated with paxillin. SHP2 dephosphorylated paxillin and caused dissociation of Csk, a negative regulator of Src, from paxillin but had no effect on paxillin-Src association. A lower level of Src Tyr-530 phosphorylation was detected in paxillin-associated Src in EGF-stimulated cells. Expression of an SHP2 binding defective mutant of Gab1 (Gab1FF) or a catalytically inactive mutant of SHP2 (SHP2DN) prevented paxillin tyrosine dephosphorylation and Src activation induced by EGF. Importantly, Gab1FF blocked paxillin-SHP2 complex formation, Src Tyr-530 dephosphorylation, Erk activation, and cell migration induced by EGF. Inhibition of Src tyrosine kinase activity abrogated EGF-stimulated Erk activation and cell migration. Together, these results reveal that Gab1 recruits SHP2 to dephosphorylate paxillin, leading to dissociation of Csk from the paxillin-Src complex and Src activation and that Src is an SHP2 effector involved in EGF-stimulated Erk activation and cell migration.  相似文献   

14.
15.
Src is activated in response to a variety of growth factors and hormones that bind G protein-coupled receptors (GPCRs), and its activity is regulated by phosphorylation at key sites, including the autophosphorylation site Tyr-418 and the inhibitory site Tyr-529. To better understand the mechanisms controlling Src activation, we examined Src phosphorylation in Swiss 3T3 fibroblasts stimulated with bombesin and in IEC-18 intestinal epithelial cells stimulated with angiotensin II (Ang II). Phosphorylation at Src Tyr-418, the activation loop site, was rapidly and markedly increased after GPCR agonist addition in both cell types. However, treatment of intact cells with the selective Src family kinase inhibitor PP2, at concentrations which abolished Src-mediated phosphorylation of focal adhesion kinase (FAK) at Tyr-577, unexpectedly led to increased phosphorylation at Src Tyr-418 and diminished phosphorylation at Tyr-529. In Swiss 3T3 cells, PP2 enhanced Tyr-418 phosphorylation after 1 min of bombesin stimulation, while in IEC-18 cells, PP2 increased Ang II-stimulated Tyr-418 phosphorylation at all times tested. These results imply that a distinct, non-Src family kinase may be responsible for phosphorylating Src at Tyr-418 in intact fibroblasts and epithelial cells stimulated by GPCR agonists.  相似文献   

16.
17.
X Li  J W Lee  L M Graves    H S Earp 《The EMBO journal》1998,17(9):2574-2583
In GN4 rat liver epithelial cells, angiotensin II (Ang II) produces intracellular calcium and protein kinase C (PKC) signals and stimulates ERK and JNK activity. JNK activation appears to be mediated by a calcium-dependent tyrosine kinase (CADTK). To define the ERK pathway, we established GN4 cells expressing an inhibitory Ras(N17). Induction of Ras(N17) blocked EGF- but not Ang II- or phorbol ester (TPA)-dependent ERK activation. In control cells, Ang II and TPA produced minimal increases in Ras-GTP level and Raf kinase activity. PKC depletion by chronic TPA exposure abolished TPA-dependent ERK activation but failed to diminish the effect of Ang II. In PKC-depleted cells, Ang II increased Ras-GTP level and activated Raf and ERK in a Ras-dependent manner. In PKC depleted cells, Ang II stimulated Shc and Cbl tyrosine phosphorylation, suggesting that without PKC, Ang II activates another tyrosine kinase. PKC-depletion did not alter Ang II-dependent tyrosine phosphorylation or activity of p125(FAK), CADTK, Fyn or Src, but PKC depletion or incubation with GF109203X resulted in Ang II-dependent EGF receptor tyrosine phosphorylation. In PKC-depleted cells, EGF receptor-specific tyrosine kinase inhibitors blocked Ang II-dependent EGF receptor and Cbl tyrosine phosphorylation, and ERK activation. In summary, Ang II can activate ERK via two pathways; the latent EGF receptor, Ras-dependent pathway is equipotent to the Ras-independent pathway, but is masked by PKC action. The prominence of this G-protein coupled receptor to EGF receptor pathway may vary between cell types depending upon modifiers such as PKC.  相似文献   

18.
19.
The primary endpoint of signalling through the canonical Raf–MEK–ERK MAP kinase cascade is ERK activation. Here we report a novel signalling outcome for this pathway. Activation of the MAP kinase pathway by growth factors or phorbol esters during G2 phase results in only transient activations of ERK and p90RSK, then suppression to below control levels. A small peak of ERK and p90RSK activation in early G2 phase cells was identified, and inhibition of this delayed entry into mitosis. The previously identified, proteolytically cleaved form of MEK1 termed tMEK (truncated MEK1), is also induced with G2 phase MAPK pathway activation. We demonstrate that addition of recombinant mutants of MEK1 with an N-terminal truncation similar to that of tMEK also inhibited ERK and p90RSK activations and delayed progression into mitosis. Only catalytically inactive forms of tMEK were capable of these effects, but surprisingly, phosphorylation on the activating Ser218/222 sites was also required. A lack of MEK1 or ability to accumulate tMEK resulted in the absence of the feedback inhibition of ERK and p90RSK activations. tMEK is a novel output from the canonical MAP kinase signalling pathway, acting in a MAPK signalling-regulated dominant negative manner to inhibit ERK and p90RSK activations, acting as a dampening mechanism to reduce the magnitude or duration of MAPK pathway signalling in G2/M phase.  相似文献   

20.
Various members of the canonical family of transient receptor potential channels (TRPCs) exhibit increased cation influx following receptor stimulation or Ca(2+) store depletion. Tyrosine phosphorylation of TRP family members also results in increased channel activity; however, the link between the two events is unclear. We report that two tyrosine residues in the C terminus of human TRPC4 (hTRPC4), Tyr-959 and Tyr-972, are phosphorylated following epidermal growth factor (EGF) receptor stimulation of COS-7 cells. This phosphorylation was mediated by Src family tyrosine kinases (STKs), with Fyn appearing to be the dominant kinase. In addition, EGF receptor stimulation induced the exocytotic insertion of hTRPC4 into the plasma membrane dependent on the activity of STKs and was accompanied by a phosphorylation-dependent increase in the association of hTRPC4 with Na(+)/H(+) exchanger regulatory factor. Furthermore, this translocation and association was defective upon mutation of Tyr-959 and Tyr-972 to phenylalanine. Significantly, inhibition of STKs was concomitant with a reduction in Ca(2+) influx in both native COS-7 cells and hTRPC4-expressing HEK293 cells, with cells expressing the Y959F/Y972F mutant exhibiting a reduced EGF response. These findings represent the first demonstration of a mechanism for phosphorylation to modulate TRPC channel function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号