首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Mitochondria isolated from rat heart, liver, kidney and brain (respiratory control 4.0-6.5) release NO and H2O2 at rates that depend on the mitochondrial metabolic state: releases are higher in state 4, about 1.7-2.0 times for NO and 4-16 times for H2O2, than in state 3. NO release in rat liver mitochondria showed an exponential dependence on membrane potential in the range 55 to 180 mV, as determined by Rh-123 fluorescence. A similar behavior was reported for mitochondrial H2O2 production by [S.S. Korshunov, V.P. Skulachev, A.A. Starkov, High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 416 (1997) 15_18.]. Transition from state 4 to state 3 of brain cortex mitochondria was associated to a decrease in NO release (50%) and in membrane potential (24-53%), this latter determined by flow cytometry and DiOC6 and JC-1 fluorescence. The fraction of cytosolic NO provided by diffusion from mitochondria was 61% in heart, 47% in liver, 30% in kidney, and 18% in brain. The data supports the speculation that NO and H2O2 report a high mitochondrial energy charge to the cytosol. Regulation of mtNOS activity by membrane potential makes mtNOS a regulable enzyme that in turn regulates mitochondrial O2 uptake and H2O2 production.  相似文献   

2.
Oxygen dependence of mitochondrial nitric oxide synthase activity   总被引:3,自引:0,他引:3  
The effect of O(2) concentration on mitochondrial nitric oxide synthase (mtNOS) activity and on O(2)(-) production was determined in rat liver, brain, and kidney submitochondrial membranes. The K(mO(2)) for mtNOS were 40, 73, and 37 microM O(2) and the V(max) were 0.51, 0.49, and 0.42 nmol NO/minmg protein for liver, brain, and kidney mitochondria, respectively. The rates of O(2)(-) production, 0.5-12.8 nmol O(2)(-)/minmg protein, depended on O(2) concentration up to 1.1mM O(2). Intramitochondrial NO, O(2)(-), and ONOO(-) steady-state concentrations were calculated for the physiological level of 20 microM O(2); they were 20-39 nM NO, 0.17-0.33 pM O(2)(-), and 0.6-2.2 nM ONOO(-) for the three organs. These levels establish O(2)/NO ratios of 513-1000 that correspond to physiological inhibitions of cytochrome oxidase by intramitochondrial NO of 16-25%. The production of NO by mtNOS appears as a regulatory process that modulates mitochondrial oxygen uptake and cellular energy production.  相似文献   

3.
The production of NO by heart mitochondria was 0.7-1.1 nmol NO/min.mg protein, an activity similar to the ones observed in mitochondrial membranes from other organs. Heart mtNOS seems to contribute with about 56% of the total cellular NO production. The immunological nature of the mtNOS isoform of cardiac tissue remains unclear; in our laboratory, heart mtNOS reacted with an anti-iNOS anti-body. Heart mtNOS expression and activity are regulated by physiological and pharmacological effectors. The state 4/state 3 transition regulates heart mtNOS activity and NO release in intact respiring mitochondria: NO production rates in state 3 were 40% lower than in state 4. Heart mtNOS expression was selectively regulated by O(2) availability in hypobaric conditions and the activity was 20-60% higher in hypoxic rats than in control animals, depending on age. In contrast, NADH-cytochrome c reductase and cytochrome oxidase activities were not affected by hypoxia. The activity of rat heart mtNOS decreased 20% on aging from 12 to 72 weeks of age. On the pharmacological side, mitochondrial NO production was increased after enalapril treatment (the inhibitor of the angiotensin converting enzyme) with modification of heart mtNOS functional activity in the regulation of mitochondrial O(2) uptake and H(2)O(2) production. Thus, heart mtNOS is a highly regulated mitochondrial enzyme, which in turn, plays a regulatory role through mitochondrial NO steady state levels that modulate O(2) uptake and O(2)(-) and H(2)O(2) production rates. Nitric oxide and H(2)O(2) constitute signals for metabolic control that are involved in the regulation of cellular processes, such as proliferation and apoptosis.  相似文献   

4.
We report the first evidence of a mitochondrial NO synthase (mtNOS) in bird skeletal muscle. In vitro, mtNOS activity stimulated by l-arginine reduced intermyofibrillar mitochondrial oxygen uptake and ATP synthesis rates, stimulated endogenous H2O2 generation, but had no effect on oxidative phosphorylation efficiency. Arginine-induced effects were fully reversed by l-NAME, a known NOS inhibitor. When ducklings were cold exposed for 4 weeks, muscle mitochondria displayed an increased state 3 respiration, a reduced H2O2 generation but no significant alteration in mtNOS activity. We conclude that mtNOS is expressed in avian skeletal muscle.  相似文献   

5.
Mitochondrial nitric oxide metabolism in rat muscle during endotoxemia   总被引:2,自引:0,他引:2  
In this study, heart and diaphragm mitochondria produced 0.69 and 0.77 nmol nitric oxide (NO)/min mg protein, rates that account for 67 and 24% of maximal cellular NO production, respectively. Endotoxemia and septic shock occur with an exacerbated inflammatory response that damages tissue mitochondria. Skeletal muscle seems to be one of the main target organs in septic shock, showing an increased NO production and early oxidative stress. The kinetic properties of mitochondrial nitric oxide synthase (mtNOS) of heart and diaphragm were determined. For diaphragm, the KM values for O2 and L-Arg were 4.6 and 37 microM and for heart were 3.3 and 36 microM. The optimal pH for mtNOS activity was 6.5 for diaphragm and 7.0 for heart. A marked increase in mtNOS activity was observed in endotoxemic rats, 90% in diaphragm and 30% in heart. Diaphragm and heart mitochondrial O2*- and H2O2 production were 2- to 3-fold increased during endotoxemia and Mn-SOD activity showed a 2-fold increase in treated animals, whereas catalase activity was unchanged. One of the current hypotheses for the molecular mechanisms underlying the complex condition of septic shock is that the enhanced NO production by mtNOS leads to excessive peroxynitrite production and protein nitration in the mitochondrial matrix, causing mitochondrial dysfunction and contractile failure.  相似文献   

6.
Mitochondria are the specialized organelles for energy metabolism but also participate in the production of O(2) active species, cell cycle regulation, apoptosis and thermogenesis. Classically, regulation of mitochondrial energy functions was based on the ADP/ATP ratio, which dynamically stimulates the transition between resting and maximal O(2) uptake. However, in the last years, NO was identified as a physiologic regulator of electron transfer and ATP synthesis by inhibiting cytochrome oxidase. Additionally, NO stimulates the mitochondrial production of O(2) active species, primarily O(2)(-) and H(2)O(2), and, depending on NO matrix concentration, of ONOO(-), which is responsible for the nitrosylation and nitration of mitochondrial components. By this means, alteration in mitochondrial complexes restricts energy output, further increases O(2) active species and changes cell signaling for proliferation and apoptosis through redox effects on specific pathways. These mechanisms are prototypically operating in prevalent generalized diseases like sepsis with multiorgan failure or limited neurodegenerative disorders like Parkinson's disease. Complex I appears to be highly susceptible to ONOO(-) effects and nitration, which defines an acquired group of mitochondrial disorders, in addition to the genetically induced syndromes. Increase of mitochondrial NO may follow over-expression of nNOS, induction and translocation of iNOS, and activation and/or increased content of the newly described mtNOS. Likewise, mtNOS is important in the modulation of O(2) uptake and cell signaling, and in mitochondrial pathology, including the effects of aging, dystrophin deficiency, hypoxia, inflammation and cancer.  相似文献   

7.
This study deals with mitochondrial energy efficiency in liver and skeletal muscle mitochondria in 15 days cold exposed rats. Cold exposure strongly increases the sensitivity to uncoupling by added palmitate of skeletal muscle but not liver mitochondria, while mitochondrial energy coupling in the absence of fatty acids is only slightly affected by cold in liver and skeletal muscle. In addition, uncoupling protein 3 content does not follow changes in skeletal muscle mitochondrial coupling. It is therefore concluded that skeletal muscle could play a direct thermogenic role based on fatty acid-induced mild uncoupling of mitochondrial oxidative phosphorylation.  相似文献   

8.
Free radical chemistry in biological systems   总被引:4,自引:0,他引:4  
Mitochondria are an active source of the free radical superoxide (O2-) and nitric oxide (NO), whose production accounts for about 2% and 0.5% respectively, of mitochondrial O2 uptake under physiological conditions. Superoxide is produced by the auto-oxidation of the semiquinones of ubiquinol and the NADH dehydrogenase flavin and NO by the enzymatic action of the nitric oxide synthase of the inner mitochondrial membrane (mtNOS). Nitric oxide reversibly inhibits cytochrome oxidase activity in competition with O2. The balance between NO production and its utilization results in a NO intramitochondrial steady-state concentration of 20-50 nM, which regulates mitochondrial O2 uptake and energy supply. The regulation of cellular respiration and energy production by NO and its ability to switch the pathway of cell death from apoptosis to necrosis in physiological and pathological conditions could take place primarily through the inhibition of mitochondrial ATP production. Nitric oxide reacts with O2- in a termination reaction in the mitochondrial matrix, yielding peroxynitrite (ONOO-), which is a strong oxidizing and nitrating species. This reaction accounts for approximately 85% of the rate of mitochondrial NO utilization in aerobic conditions. Mitochondrial aging by oxyradical- and peroxynitrite-induced damage would occur through selective mtDNA damage and protein inactivation, leading to dysfunctional mitochondria unable to keep membrane potential and ATP synthesis.  相似文献   

9.
Nitric oxide and cytokines constitute the molecular markers and the intercellular messengers of inflammation and septic shock. Septic shock occurs with an exacerbated inflammatory response that damages tissue mitochondria. Skeletal muscle appears as one of the main target organs in septic shock, showing an increased nitric oxide (NO) production, an early oxidative stress, and contractile failure. Mitochondria isolated from rat and human skeletal muscle in septic shock show a markedly increased NO generation and a decreased state 3 respiration, more marked with nicotinamide adenine dinucleotide (NAD)-linked substrates than with succinate, without uncoupling or impairment of phosphorylation. One of the current hypothesis for the molecular mechanisms of septic shock is that the enhanced NO production by mitochondrial nitric oxide synthase (mtNOS) leads to excessive peroxynitrite (ONOO(-)) production and protein nitration in the mitochondrial matrix, to mitochondrial dysfunction and to contractile failure. Surface chemiluminescence is a useful assay to assess inflammation and oxidative stress in in situ liver and skeletal muscle. Liver chemiluminescence in inflammatory processes and phagocyte chemiluminescence have been found spectrally different from spontaneous liver chemiluminescence with increased 440-600 nm emission, likely due to NO and ONOO(-) participation in the reactions leading to the formation of excited species.  相似文献   

10.
Male rats exposed for 21 days to high altitude (4,340 m) responded with arrest of weight gain and increased hematocrit and testosterone levels. High altitude significantly (58%) increased heart mitochondrial nitric oxide (NO) synthase (mtNOS) activity, whereas heart cytosolic endothelial NOS (eNOS) and liver mtNOS were not affected. Western blot analysis found heart mitochondria reacting only with anti-inducible NOS (iNOS) antibodies, whereas the postmitochondrial fraction reacted with anti-iNOS and anti-eNOS antibodies. In vitro-measured NOS activities allowed the estimation of cardiomyocyte capacity for NO production, a value that increased from 57% (sea level) to 79 nmol NO.min(-1).g heart(-1) (4,340 m). The contribution of mtNOS to total cell NO production increased from 62% (sea level) to 71% (4340 m). Heart mtNOS activity showed a linear relationship with hematocrit and a biphasic quadratic association with estradiol and testosterone. Multivariate analysis showed that exposure to high altitude linearly associates with hematocrit and heart mtNOS activity, and that testosterone-to-estradiol ratio and heart weight were not linearly associated with mtNOS activity. We conclude that high altitude triggers a physiological adaptive response that upregulates heart mtNOS activity and is associated in an opposed manner with the serum levels of testosterone and estradiol.  相似文献   

11.
Different mitochondrial nitric-oxide synthase (mtNOS) isoforms have been described in rat and mouse tissues, such as liver, thymus, skeletal muscle, and more recently, heart and brain. The modulation of these variants by thyroid status, hypoxia, or gene deficiency opens a broad spectrum of mtNOS-dependent tissue-specific functions. In this study, a new NOS variant is described in rat brain with an M(r) of 144 kDa and mainly localized in the inner mitochondrial membrane. During rat brain maturation, the expression and activity of mtNOS were maximal at the late embryonic stages and early postnatal days followed by a decreased expression in the adult stage (100 +/- 9 versus 19 +/- 2 pmol of [(3)H]citrulline/min/mg of protein, respectively). This temporal pattern was opposite to that of the cytosolic 157-kDa nNOS protein. Mitochondrial redox changes followed the variations in mtNOS activity: mtNOS-dependent production of hydrogen peroxide was maximal in newborns and decreased markedly in the adult stage, thus reflecting the production and utilization of mitochondrial matrix nitric oxide. Moreover, the activity of brain Mn-superoxide dismutase followed a developmental pattern similar to that of mtNOS. Cerebellar granular cells isolated from newborn rats and with high mtNOS activity exhibited maximal proliferation rates, which were decreased by modifying the levels of either hydrogen peroxide or nitric oxide. Altogether, these findings support the notion that a coordinated modulation of mtNOS and Mn-superoxide dismutase contributes to establish the rat brain redox status and participate in the normal physiology of brain development.  相似文献   

12.
Female rats were treated with FSH (40 IU/kg) on the first and second diestrus days (D1 and D2) and with LH (40 IU/kg) on the proestrus (P) day to synchronize and maximize ovarian changes. Follicle area increased by 50% from D1 to P, and the estrus (E) phase showed multiple corpora lutea and massive apoptosis. Increased oxygen uptakes (42-102%) were determined in ovary slices and in isolated mitochondria in active state 3 along the proliferation phase (D1-D2-P) that returned to initial values in the E phase. Mitochondrial content and the electron transfer activities of complexes I and IV were also maximal in the P phase (20-79% higher than in D1). Production of NO by mitochondrial nitric oxide synthase (mtNOS), biochemically determined, and the mtNOS functional activity in regulating state 3 oxygen uptake were also maximal at P and 79-88% higher than at D1. The moderately increased rate of NO in the proliferative phase is associated with mitochondrial biogenesis, whereas the high rate of NO generation by mtNOS at phase P appears to trigger mitochondria-dependent apoptosis. The calculated fraction of ovary mitochondria in state 3 was at a minimal value at the P phase. Mitochondrial oxidative damage, with increased thiobarbituric acid-reactive substances and protein carbonyls, indicates progressive mitochondrial dysfunction between phases P and E. The roles of mitochondria as ATP provider, as a source of NO to signal for mitochondrial proliferation and mitochondria-dependent apoptosis, and as a source of O(2)(-) and H(2)O(2) appear well adapted to serve the proliferation-apoptosis sequence of the ovarian cycle.  相似文献   

13.

Background

In the metabolic syndrome with hyperinsulinemia, mitochondrial inhibition facilitates muscle fat and glycogen accumulation and accelerates its progression. In the last decade, nitric oxide (NO) emerged as a typical mitochondrial modulator by reversibly inhibiting citochrome oxidase and oxygen utilization. We wondered whether insulin-operated signaling pathways modulate mitochondrial respiration via NO, to alternatively release complete glucose oxidation to CO2 and H2O or to drive glucose storage to glycogen.

Methodology/Principal Findings

We illustrate here that NO produced by translocated nNOS (mtNOS) is the insulin-signaling molecule that controls mitochondrial oxygen utilization. We evoke a hyperinsulinemic-normoglycemic non-invasive clamp by subcutaneously injecting adult male rats with long-lasting human insulin glargine that remains stable in plasma by several hours. At a precise concentration, insulin increased phospho-Akt2 that translocates to mitochondria and determines in situ phosphorylation and substantial cooperative mtNOS activation (+4–8 fold, P<.05), high NO, and a lowering of mitochondrial oxygen uptake and resting metabolic rate (−25 to −60%, P<.05). Comparing in vivo insulin metabolic effects on gastrocnemius muscles by direct electroporation of siRNA nNOS or empty vector in the two legs of the same animal, confirmed that in the silenced muscles disrupted mtNOS allows higher oxygen uptake and complete (U-14C)-glucose utilization respect to normal mtNOS in the vector-treated ones (respectively 37±3 vs 10±1 µmolO2/h.g tissue and 13±1 vs 7.2±1 µmol 3H2O/h.g tissue, P<.05), which reciprocally restricted glycogen-synthesis by a half.

Conclusions/Significance

These evidences show that after energy replenishment, insulin depresses mitochondrial respiration in skeletal muscle via NO which permits substrates to be deposited as macromolecules; at discrete hyperinsulinemia, persistent mtNOS activation could contribute to mitochondrial dysfunction with insulin resistance and obesity and therefore, to the progression of the metabolic syndrome.  相似文献   

14.
Mitochondrial nitric oxide (NO) production was assayed in rats submitted to hypobaric hypoxia and in normoxic controls (53.8 and 101.3 kPa air pressure, respectively). Heart mitochondria from young normoxic animals produced 0.62 and 0.37 nmol NO.min(-1).mg protein(-1) in metabolic states 4 and 3, respectively. This production accounts for a release to the cytosol of 29 nmol NO.min(-1).g heart(-1) and for 55% of the NO generation. The mitochondrial NO synthase (mtNOS) activity measured in submitochondrial membranes at pH 7.4 was 0.69 nmol NO.min(-1).mg protein(-1). Rats exposed to hypobaric hypoxia for 2-18 mo showed 20-60% increased left ventricle mtNOS activity compared with their normoxic siblings. Left ventricle NADH-cytochrome-c reductase and cytochrome oxidase activities decreased by 36 and 12%, respectively, from 2 to 18 mo of age, but they were not affected by hypoxia. mtNOS upregulation in hypoxia was associated with a retardation of the decline in the mechanical activity of papillary muscle upon aging and an improved recovery after anoxia-reoxygenation. The correlation of left ventricle mtNOS activity with papillary muscle contractility (determined as developed tension, maximal rates of contraction and relaxation) showed an optimal mtNOS activity (0.69 nmol.min(-1).mg protein(-1)). Heart mtNOS activity is regulated by O(2) in the inspired air and seems to play a role in NO-mediated signaling and myocardial contractility.  相似文献   

15.
1. Tissue oxygen uptake and enzyme activities were investigated in the naked mole rat, Heterocephalus glaber, a mammal notable for its low body temperature and metabolism and poor temperature regulating ability. 2. Q10 for O2 uptake of Heterocephalus crude liver homogenates ranged from 1.91 for the temperature interval 25-30 degrees C to 1.76 within the range 30-38 degrees C, values similar to those reported for typical homoiotherms. 3. Km pyruvate of lactate dehydrogenase in heart muscle had the same temperature dependence in the mole rat and mouse. 4. O2 uptake and cytochrome oxidase activity of skeletal muscle were higher for mole rat than mouse. The reverse was true for heart muscle. Brain and liver O2 uptake showed similar values for both species, while kidney O2 uptake was highest in the mouse. 5. Pyruvate kinase activity in heart and skeletal muscle was higher in mouse than mole rat, suggesting a greater reliance on glycolysis in the former. 6. Na+, K+ -ATPase activity of liver and kidney was 60% higher in mouse than mole rat, while brain was 30% higher in mouse. 7. The results indicate that the effects of temperature on tissue metabolism in the mole rat conform to those in typical homoiotherms. The low body temperature and O2 uptake in the mole rat find no expression in the tissue respiratory capacity.  相似文献   

16.
Mouse brain mitochondria have a nitric oxide synthase (mtNOS) of 147 kDa that reacts with anti-nNOS antibodies and that shows an enzymatic activity of 0.31-0.48 nmol NO/min mg protein. Addition of chlorpromazine to brain submitochondrial membranes inhibited mtNOS activity (IC50 = 2.0 +/- 0.1 microM). Brain mitochondria isolated from chlorpromazine-treated mice (10 mg/kg, i.p.) show a marked (48%) inhibition of mtNOS activity and a markedly increased state 3 respiration (40 and 29% with malate-glutamate and succinate as substrates, respectively). Respiration of mitochondria isolated from control mice was 16% decreased by arginine and 56% increased by NNA (Nomega-nitro-L-arginine) indicating a regulatory activity of mtNOS and NO on mitochondrial respiration. Similarly, mitochondrial H2O2 production was 55% decreased by NNA. The effect of NNA on mitochondrial respiration and H2O2 production was significantly lower in chlorpromazine-added mitochondria and absent in mitochondria isolated from chlorpromazine-treated mice. Results indicate that chlorpromazine inhibits brain mtNOS activity in vitro and can exert the same action in vivo.  相似文献   

17.
Nitric oxide (nitrogen monoxide, NO) exerts a wide profile of its biological activities via regulation of respiration and respiration-dependent functions. The presence of nitric oxide synthase (NOS) in mitochondria (mtNOS) was recently reported by us (Ghafourifar and Richter, FEBS Lett. 418, 291-296, 1997) and others (Giulivi et al., J. Biol. Chem. 273, 11038-11043, 1998). Here we report that NO, provided by an NO donor as well as by mtNOS stimulation, regulates mitochondrial matrix pH, transmembrane potential and Ca2+ buffering capacity. Exogenously-added NO causes a dose-dependent matrix acidification. Also mtNOS stimulation, induced by loading mitochondria with Ca2+, causes mitochondrial matrix acidification and a drop in mitochondrial transmembrane potential. Inhibition of mtNOS's basal activity causes mitochondrial matrix alkalinization and provides a resistance to the sudden drop of mitochondrial transmembrane potential induced by mitochondrial Ca2+ uptake. We conclude that mtNOS plays a critical role in regulating mitochondrial delta(pH).  相似文献   

18.
The mitochondrial metabolic state regulates the rate of NO release from coupled mitochondria: NO release by heart, liver and kidney mitochondria was about 40-45% lower in state 3 (1.2, 0.7 and 0.4 nmol/min mg protein) than in state 4 (2.2, 1.3 and 0.7 nmol/min mg protein). The activity of mtNOS, responsible for NO release, appears driven by the membrane potential component and not by intramitochondrial pH of the proton motive force. The intramitochondrial concentrations of the NOS substrates, L-arginine (about 310 microM) and NADPH (1.04-1.78 mM) are 60-1000 times higher than their KM values. Moreover, the changes in their concentrations in the state 4-state 3 transition are not enough to explain the changes in NO release. Nitric oxide release was exponentially dependent on membrane potential as reported for mitochondrial H2O2 production [S.S. Korshunov, V.P. Skulachev, A.A. Satarkov, High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 416 (1997) 15-18.]. Agents that decrease or abolish membrane potential minimize NO release while the addition of oligomycin that produces mitochondrial hyperpolarization generates the maximal NO release. The regulation of mtNOS activity, an apparently voltage-dependent enzyme, by membrane potential is marked at the physiological range of membrane potentials.  相似文献   

19.
Nitric oxide (NO) is synthesized by members of the NO synthase (NOS) family. Recently the existence of a mitochondrial NOS (mtNOS), its Ca(2+) dependence, and its relevance for mitochondrial bioenergetics was reported (Ghafourifar, P., and Richter, C. (1997) FEBS Lett. 418, 291-296; Giulivi, C., Poderoso, J. J., and Boveris, A. (1998) J. Biol. Chem. 273, 11038-11043). Here we report on the possible involvement of mtNOS in apoptosis. We show that uptake of Ca(2+) by mitochondria triggers mtNOS activity and causes the release of cytochrome c from isolated mitochondria in a Bcl-2-sensitive manner. mtNOS-induced cytochrome c release was paralleled by increased lipid peroxidation. The release of cytochrome c as well as increase in lipid peroxidation were prevented by NOS inhibitors, a superoxide dismutase mimic, and a peroxynitrite scavenger. We show that mtNOS-induced cytochrome c release is not mediated via the mitochondrial permeability transition pore because the release was aggravated by cyclosporin A and abolished by blockade of mitochondrial calcium uptake by ruthenium red. We conclude that, upon Ca(2+)-induced mtNOS activation, peroxynitrite is formed within mitochondria, which causes the release of cytochrome c from isolated mitochondria, and we propose a mechanism by which elevated Ca(2+) levels induce apoptosis.  相似文献   

20.
The existence of mitochondrial nitric oxide (NO) synthase (mtNOS) has been controversial since it was first reported in 1995. We have addressed this issue by making direct microsensor measurements of NO production in the mitochondria isolated from mouse hearts. Mitochondrial NO production was stimulated by Ca2+ and inhibited by blocking electrogenic Ca2+ uptake or by using NOS antagonists. Cardiac mtNOS was identified as the neuronal isoform by the absence of NO production in the mitochondria of mice lacking the neuronal but not the endothelial or inducible isoforms. In cardiomyocytes from dystrophin-deficient (mdx) mice, elevated intracellular Ca2+, increased mitochondrial NO production, slower oxidative phosphorylation, and decreased ATP production were detected. Inhibition of mtNOS increased contractility in mdx but not in wild-type cardiomyocytes, indicating that mtNOS may protect the cells from overcontracting. mtNOS was also implicated in radiation-induced cell damage. In irradiated rat/mouse urinary bladders, we have evidence that mitochondrially produced NO damages the urothelial "umbrella" cells that line the bladder lumen. This damage disrupts the permeability barrier thereby creating the potential to develop radiation cystitis. RT-PCR and Southern blot analyses indicate that mtNOS is restricted to the umbrella cells, which scanning electron micrographs show are selectively damaged by radiation. Simultaneous microsensor measurements demonstrate that radiation increases NO and peroxynitrite (ONOO-) production in these cells, which can be prevented by transfection with manganese superoxide dismutase (MnSOD) or instillation of NOS antagonists during irradiation or irradiation of bladders devoid of mtNOS. These studies demonstrate that mtNOS is in the cardiomyocytes and urothelial cells, that it is derived from the neuronal isoform, and that it can be either protective or detrimental.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号