首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
覆盖作物的生态效应   总被引:36,自引:6,他引:30  
评述了农田生态系统中主要覆盖作物在减少土壤损失、降低表土迳流、增加土壤养分、减少NO3^-I淋溶、减轻水质污染及病虫草防除中的作用与效应,讨论了覆盖作物管理对农业持续发展的影响。  相似文献   

2.
不同耕作方式对内蒙古旱作农田土壤侵蚀的影响   总被引:3,自引:0,他引:3  
研究黄河流域内蒙古黄土高原丘陵区农田土壤侵蚀状况,对本区域生态农业建设具有重要的意义。试验于2006年在内蒙古呼和浩特市清水河县进行,设免耕(NT)、免耕覆盖(NS)和传统耕作(CT)3种耕作处理方式,种植作物为胡麻和燕麦,观测了全年降雨量和地表水径流量及土壤流失量。结果表明:免耕覆盖及免耕能显著减少降雨对土壤的侵蚀,与传统耕作相比,免耕覆盖处理的燕麦地地表水径流量和土壤的流失量分别减少21.9%和88.3%;3种耕作方式的土壤侵蚀量均受到坡度的影响,并随着坡度的增大而增大,相同环境条件下,不同作物存在一定差异;通过对3种耕作方式下,胡麻和燕麦田土壤侵蚀量与降雨量的关系符合幂函数,且拟合优度良好,均>0.9。  相似文献   

3.
农业活动及转基因作物对农田生物多样性的影响   总被引:2,自引:2,他引:0  
农田生物多样性是生态系统生物多样性的重要组成部分,但较少受到关注.近50年来,由于农业活动引起的环境污染、生境破碎和单一化种植等严重威胁着农田生物多样性.为了了解各因素对农田生物多样性的影响程度,优化农田管理措施,以提高农作物产量并降低环境影响,本文综述了种植方式、地膜覆盖、农药和化肥使用等农业活动及转基因作物对我国农田生物多样性的影响.农药和化肥的过度使用对农田生物多样性的影响最大;而转基因作物对农田生物多样性的影响受诸多因素影响,如携带的转基因性状等.需要加强转基因作物生态环境影响评价研究,特别是对农田生物多样性的潜在影响.农业生产活动应当与农田生物多样性保护密切结合,不仅有利于提高农作物产量,同时也可减少对环境的负面影响.  相似文献   

4.
农田生态系统土壤有机碳库及其影响因子   总被引:37,自引:2,他引:35  
土壤有机碳(SOC)的数量和质量在很大程度上与维持和提高土壤肥力密切相关。农田生态系统土壤碳库研究一直是农业、生态和环境领域的一个主要方向。土地利用、耕作、作物类型、种植密度、灌溉、施肥以及其他人为活动等,对农田生态系统土壤有机碳库的变化均能产生影响。本文综合评述了农田生态系统土壤有机碳库及其影响因子,土壤碳截获潜力,维持和提高土壤有机碳库的措施,以及农田土壤碳截获在温室气体减排及气候变化中的潜在作用等,最后提出了农田生态系统土壤有机碳库研究的主要方向。  相似文献   

5.
耕作方式对农田土壤理化因子和生物学特性的影响   总被引:26,自引:0,他引:26  
不同耕作方式对土壤水热、养分及生物特性产生的影响不同,实施合理的农田土壤管理措施不仅可以改善土壤理化性状,也可改变农田土壤生态过程.保护性耕作方式不同程度地改善了土壤质量,免耕能有效提高土壤酶活性,免耕和深松耕等能为土壤微生物的生长繁殖提供丰富的可利用资源,免耕、少耕等能减少对土壤动物的扰动,进而影响到土壤动物的数量、多样性及种群结构.本文综述了不同耕作方式下农田土壤理化性质和生物学特性的研究进展,重点分析了不同耕作方式对土壤理化因子、酶活性、微生物多样性和土壤动物的影响,指出了适宜的耕作方式对土壤质量修复的可能性及研究方向.  相似文献   

6.
2005—2008年在内蒙古清水河县进行了定位试验,研究了不同耕作方式下土壤微生物量及土壤营养指标、作物产量的年际变化。结果表明:免耕有利于提高土壤微生物量碳、氮、磷含量,2007和2008年不同耕作方式0~10cm土层土壤微生物量均表现为免耕留高茬覆盖>免耕留低茬覆盖>免耕留高茬>免耕留低茬>传统耕作;免耕有利于提高土壤有机质和土壤养分含量,2007和2008年不同耕作方式0~10cm土层土壤有机质和养分含量均表现为免耕留高茬覆盖>免耕留低茬覆盖>免耕留高茬>免耕留低茬>传统耕作,实施免耕的前3年,玉米产量不稳定,甚至造成玉米减产,第4年免耕增产效应有所显现;不同保护性方式下土壤指标与玉米产量之间的相关度较好,通径分析得知土壤全氮、全磷、速效磷及微生物量碳对玉米产量起直接作用,其中尤以土壤微生物量碳的作用最大;免耕有利于改善内蒙古农田旱作区的土壤生态环境,提高土壤肥力。  相似文献   

7.
转Bt基因作物Bt毒蛋白在土壤中的安全性研究   总被引:19,自引:5,他引:14  
商业化的转Bt基因作物获准在田间大面积种植,使其释放的Bt毒蛋白对土壤生态系统的生态风险性问题成为人们关注的焦点,本文综述了转Bt抗虫作物以植株残体、根系分泌物、花粉等形式释放的Bt毒蛋白通过田间耕作等方式进入土壤后的一些安全性问题,包括土壤活性颗粒对Bt毒蛋白的吸附作用。Bt毒蛋白在土壤中的杀虫活性、存留,土壤微生物对Bt毒蛋白的降解作用以及Bt毒蛋白对土壤生物的影响等。  相似文献   

8.
作物多样性种植对植食性昆虫行为的影响   总被引:1,自引:0,他引:1  
董文霞  徐宁  肖春 《昆虫知识》2013,50(4):1133-1140
通过农作物遗传多样性、物种多样性的优化布局和种植,增加农田的物种多样性和农田生态系统的稳定性,有效地减轻作物虫害的危害,已经成为国际上农业研究的热点和农业害虫防治的发展趋势。多样性种植对昆虫的影响及其作用机制很大程度上取决于对植食性昆虫的行为反应。多样性种植主要通过干扰植食性昆虫的定向、交配、产卵、转移等行为,影响其在作物上定居和繁殖,进而影响其对植物的危害程度。根据国内外研究进展,本文介绍了作物多样性种植对植食性昆虫行为的影响,并讨论了目前存在的问题和研究前景。  相似文献   

9.
保护性耕作对农田碳、氮效应的影响研究进展   总被引:16,自引:0,他引:16  
作物产量的高低主要取决于土壤肥力,如何保持并提高土壤肥力是确保我国粮食安全和农业可持续发展的重要任务,也是众多学者关注的焦点。土壤有机碳和氮素是评价土壤质量的重要指标,其动态平衡直接影响土壤肥力和作物产量。随着全球气候变化及环境污染问题的愈加突出,农田土壤固碳及提高氮效率成为各界科学家研究的热点。目前,保护性耕作已成为发展可持续农业的重要技术之一,对土壤固碳及氮素的利用具有很大的影响。深入了解保护性耕作对土壤有机碳固持与氮素利用效率提高的影响机制,对于正确评价土壤肥力有着重要意义。但由于气候、土壤及种植制度等条件不一致,关于保护性耕作对农田碳、氮效应结论不一。阐述了国际上保护性耕作对农田系统土壤有机碳含量变化及其分解排放(如CO2和CH4)、氮素变化及其矿化损失(如NH3挥发、N2O排放与氮淋失)和碳氮素相互关系(如C/N层化率)影响的研究进展,并分析了其影响因素和相关机理。尽管国内保护性耕作的研究已进行30 多年,但在土壤有机碳与氮素方面与国外相比依然有较大的差距。保护性耕作对土壤固碳与氮素利用的影响机制,碳素和氮素在土壤-植株-大气系统中的转移变化,及结合农事管理等综合评价其生态效应的研究很少。在此基础上,提出未来我国保护性耕作在土壤有机碳固定和氮素利用方面的重点研究方向:(1)在定位试验基础上进一步探讨保护性耕作对土壤有机碳及氮素利用的影响机制;(2)深入研究土壤有机碳和氮素的相互关系及其对土壤肥力的影响;(3)结合环境保护与土壤可持续管理对保护性耕作农田土壤固碳及氮素高效利用的系统评价研究;(4)加强保护性耕作对农田碳、氮效应的宏观研究,合理评价保护性耕措施下对农田碳、氮综合效应。  相似文献   

10.
硬覆盖对土壤水热传输及作物生长发育影响的试验研究   总被引:2,自引:0,他引:2  
河北省盐渍区农业水资源非常紧缺 ,农业节水势在必行。覆盖保摘技术是农田节水管理的重要措施之一 ,国内外对此有过不少研究报道。但多集中在地膜、秸秆、砂砾和化学喷涂等覆盖材料上 ,这些覆盖材料在使用中有种种不理想之处 ,如地膜覆盖容易造成残膜的“白色污染” ,并且使用年限短 ,降水不易入渗 ,中耕、除草、施肥困难 ,使作物抗病力差等[1 ] ;秸秆覆盖容易使秸秆中的毒素物质与作物间发生生化它感现象 ,影响作物生长[2 ] 。化学喷涂除了不利于农事作业外 ,还可能造成土壤污染。为此 ,我们在中国科学院南皮试区盐渍土上试用了一种新型覆…  相似文献   

11.
Cover crops are gaining traction in many agricultural regions, partly driven by increased public subsidies and by private markets for ecosystem services. These payments are motivated by environmental benefits, including improved soil health, reduced erosion, and increased soil organic carbon. However, previous work based on experimental plots or crop modeling indicates cover crops may reduce crop yields. It remains unclear, though, how recent cover crop adoption has affected productivity in commercial agricultural systems. Here we perform the first large-scale, field-level analysis of observed yield impacts from cover cropping as implemented across the US Corn Belt. We use validated satellite data products at sub-field scales to analyze maize and soybean yield outcomes for over 90,000 fields in 2019–2020. Because we lack data on cover crop species or timing, we seek to quantify the yield impacts of cover cropping as currently practiced in aggregate. Using causal forests analysis, we estimate an average maize yield loss of 5.5% on fields where cover crops were used for 3 or more years, compared with fields that did not adopt cover cropping. Maize yield losses were larger on fields with better soil ratings, cooler mid-season temperatures, and lower spring rainfall. For soybeans, average yield losses were 3.5%, with larger impacts on fields with warmer June temperatures, lower spring and late-season rainfall, and, to a lesser extent, better soils. Estimated impacts are consistent with multiple mechanisms indicated by experimental and simulation-based studies, including the effects of cover crops on nitrogen dynamics, water consumption, and soil oxygen depletion. Our results suggest a need to improve cover crop management to reduce yield penalties, and a potential need to target subsidies based on likely yield impacts. Ultimately, avoiding substantial yield penalties is important for realizing widespread adoption and associated benefits for water quality, erosion, soil carbon, and greenhouse gas emissions.  相似文献   

12.
Cover crops have been reported as one of the most effective practices to increase soil organic carbon (SOC) for agroecosystems. Impacts of cover crops on SOC change vary depending on soil properties, climate, and management practices, but it remains unclear how these control factors affect SOC benefits from cover crops, as well as which management practices can maximize SOC benefits. To address these questions, we used an advanced process-based agroecosystem model, ecosys, to assess the impacts of winter cover cropping on SOC accumulation under different environmental and management conditions. We aimed to answer the following questions: (1) To what extent do cover crops benefit SOC accumulation, and how do SOC benefits from cover crops vary with different factors (i.e., initial soil properties, cover crop types, climate during the cover crop growth period, and cover crop planting and terminating time)? (2) How can we enhance SOC benefits from cover crops under different cover crop management options? Specifically, we first calibrated and validated the ecosys model at two long-term field experiment sites with SOC measurements in Illinois. We then applied the ecosys model to six cover crop field experiment sites spanning across Illinois to assess the impacts of different factors on SOC accumulation. Our modeling results revealed the following findings: (1) Growing cover crops can bring SOC benefits by 0.33 ± 0.06 MgC ha−1 year−1 in six cover crop field experiment sites across Illinois, and the SOC benefits are species specific to legume and non-legume cover crops. (2) Initial SOC stocks and clay contents had overall small influences on SOC benefits from cover crops. During the cover crop growth period (i.e., winter and spring in the US Midwest), high temperature increased SOC benefits from cover crops, while the impacts from larger precipitation on SOC benefits varied field by field. (3) The SOC benefits from cover crops can be maximized by optimizing cover crop management practices (e.g., selecting cover crop types and controlling cover crop growth period) for the US Midwestern maize–soybean rotation system. Finally, we discussed the economic and policy implications of adopting cover crops in the US Midwest, including that current economic incentives to grow cover crops may not be sufficient to cover costs. This study systematically assessed cover crop impacts for SOC change in the US Midwest context, while also demonstrating that the ecosys model, with rigorous validation using field experiment data, can be an effective tool to guide the adaptive management of cover crops and quantify SOC benefits from cover crops. The study thus provides practical tools and insights for practitioners and policy-makers to design cover crop related government agricultural policies and incentive programs for farmers and agri-food related industries.  相似文献   

13.
Cover crops play an increasingly important role in improving soil quality, reducing agricultural inputs and improving environmental sustainability. The main objectives of this critical global review and systematic analysis were to assess cover crop practices in the context of their impacts on nitrogen leaching, net greenhouse gas balances (NGHGB) and crop productivity. Only studies that investigated the impacts of cover crops and measured one or a combination of nitrogen leaching, soil organic carbon (SOC), nitrous oxide (N2O), grain yield and nitrogen in grain of primary crop, and had a control treatment were included in the analysis. Long‐term studies were uncommon, with most data coming from studies lasting 2–3 years. The literature search resulted in 106 studies carried out at 372 sites and covering different countries, climatic zones and management. Our analysis demonstrates that cover crops significantly (p < 0.001) decreased N leaching and significantly (p < 0.001) increased SOC sequestration without having significant (p > 0.05) effects on direct N2O emissions. Cover crops could mitigate the NGHGB by 2.06 ± 2.10 Mg CO2‐eq ha?1 year?1. One of the potential disadvantages of cover crops identified was the reduction in grain yield of the primary crop by ≈4%, compared to the control treatment. This drawback could be avoided by selecting mixed cover crops with a range of legumes and non‐legumes, which increased the yield by ≈13%. These advantages of cover crops justify their widespread adoption. However, management practices in relation to cover crops will need to be adapted to specific soil, management and regional climatic conditions.  相似文献   

14.
填闲种植及其在黄土高原旱作农业区的可行性分析   总被引:1,自引:0,他引:1  
王俊  薄晶晶  付鑫 《生态学报》2018,38(14):5244-5254
在主要粮食作物系统休闲期间种植填闲作物可兼顾环境与经济效益。综述了填闲种植对农田土壤水分、养分和后续粮食作物生产力形成等生态过程的影响及其具有的固碳减排、减少淋溶、控制侵蚀等环境与经济效益,并在此基础上从土壤水分限制、养分提高和产量经济效益等角度探讨了填闲种植在黄土高原旱作农业区的可行性,指出今后应重点加强填闲种植系统的水肥生产力形成机制、关键环境效益的形成机理、填闲作物与管理措施选择、生态经济效益评价以及气候变化背景下的填闲种植系统综合效益评估等方面展开定位观测与模型模拟研究,为填闲种植在黄土高原旱作农业区的推广提供科学依据。  相似文献   

15.
方斌  吴金凤  倪绍祥 《生态学报》2012,32(20):6489-6500
尝试以作物种植前、后土壤N的空间变化为基础与农户调查数据相结合,以GIS技术为手段,辅以地统计分析,探讨县域作物土壤环境空间变化特征及其与农户土地管理行为,特别是N投入行为间关系。其结果对更深入揭示农田碱解氮的演化规律,指导农民合理N投入,减少投入成本,提升生态环境,具有十分重要的作用。通过对Moran’s I指数分析,结果表明:农业N投入普遍偏高,过剩量大;不同区域作物N投入存在较大差异,且农户各自惯性投入依然较强。平原区变异系数大的主要原因在于种植规模化品种少,粮食作物和经济作物N投入差距大;山区和半山区的变异系数小的原因是由于规模化经营尚未形成,种植作物的多样性和N投入的不稳定性综合形成的。此外,研究还表明,GIS空间分析技术与经典试验相结合能有效分析不同农户间的作物种植前后土壤N的变化差异,对建立针对性的、差异化农地利用对策具有十分重要的作用。下一步研究可结合土地利用与覆盖变化、土壤物质循环作更深入探讨。  相似文献   

16.
东北三江平原覆盖作物种植效果   总被引:1,自引:0,他引:1  
以土壤紧实度、冬前生物量、根系性状、植株氮累积量等为指标对供试12种覆盖作物(豆科:紫花苜蓿、光叶苕子、毛叶苕子、红三叶、白三叶、箭筈豌豆;非豆科:苏丹草、青萝卜、Nitro radish、甘蓝型油菜、羽衣甘蓝、菊苣)在东北三江平原地区的种植效果及应用潜力进行综合评价。结果表明: 12种覆盖作物在试验播期均能正常生长,不同覆盖作物与对照相比均有利于降低土壤紧实度,其中青萝卜、Nitro radish和苏丹草土壤紧实度下降最显著,分别较对照下降了47.1%、43.4%和33.4%;覆盖作物群体冬前鲜生物量为3.38~13.98 kg·m-2,干生物量为0.78~2.43 kg·m-2,非豆科覆盖作物的生物量显著高于豆科覆盖作物;覆盖作物的群体根系体积以萝卜、油菜、菊苣较大,尤其Nitro radish的根体积高达4018.5 cm3·m-2,苏丹草的根系横向延展范围最宽;豆科覆盖作物的灰分含量显著低于非豆科覆盖作物,能提供更多易分解的有机物质;覆盖作物总氮积累量为18.72~53.09 g·m-2,其中,羽衣甘蓝和菊苣的氮积累量最高,且生物量相对较大,有利于氮的积累和固定。在三江平原地区根据主栽作物的类型与冠层结构,选择豆科的三叶草、苕子、紫花苜蓿和非豆科的萝卜、羽衣甘蓝、苏丹草作为覆盖作物进行行间或行内混播的种植方式,可以在调控土壤结构的同时促进养分循环,有利于三江平原黑土地力的提升。  相似文献   

17.
APSIM 模型的发展与应用   总被引:7,自引:0,他引:7  
土壤-作物模拟模型已成为向农业生产管理决策提供科学依据的一个有效工具,APSIM(Agricultural Production System Simulator)模型是澳大利亚科学家开发研制的,用于模拟农业系统穰生物过程,特别是气候风险下系统各组分生态和经济输出的机理模型,APSIM已在温带大 陆性气候,温带海洋性气候,亚热带干旱气候和地中海气候带下的粘土,胀缩土(duplex),变性土(vertisol),粉粒砂壤,粉粒壤土和粉粒粘壤土等土壤上进行了验证和应用。可以用于小麦等20余种作物的模拟,APSIM模型在作物结构和轮作序列调整,作物产量,质量预测和控制及不同种植方式下水土流失调控等方面具有良好的描述能力。  相似文献   

18.
The acreage planted in corn and soybean crops is vast, and these crops contribute substantially to the world economy. The agricultural practices employed for farming these crops have major effects on ecosystem health at a worldwide scale. The microbial communities living in agricultural soils significantly contribute to nutrient uptake and cycling and can have both positive and negative impacts on the crops growing with them. In this study, we examined the impact of the crop planted and soil tillage on nutrient levels, microbial communities, and the biochemical pathways present in the soil. We found that farming practice, that is conventional tillage versus no‐till, had a much greater impact on nearly everything measured compared to the crop planted. No‐till fields tended to have higher nutrient levels and distinct microbial communities. Moreover, no‐till fields had more DNA sequences associated with key nitrogen cycle processes, suggesting that the microbial communities were more active in cycling nitrogen. Our results indicate that tilling of agricultural soil may magnify the degree of nutrient waste and runoff by altering nutrient cycles through changes to microbial communities. Currently, a minority of acreage is maintained without tillage despite clear benefits to soil nutrient levels, and a decrease in nutrient runoff—both of which have ecosystem‐level effects and both direct and indirect effects on humans and other organisms.  相似文献   

19.
An improved integration of mycorrhizas may increase the sustainability in plant production. Two strategies for increasing the soil inoculum potential of mycorrhizal fungi were investigated in field experiments with leeks: Pre-cropping with mycorrhizal main crops and pre-establishment of mycorrhizal cover crops. Experiments on soils with moderate to high P content (26–50 mg kg–1 bicarbonate-extractable P) showed that the previous crop influenced mycorrhiza formation, uptake of P, Zn, and Cu, and early growth of leek seedlings. A cover crop of black medic, established the previous autumn, increased the colonization of leek roots by mycorrhizal fungi. During early growth stages, this increase was 45–95% relative to no cover crop. However, cover cropping did not significantly increase nutrient concentration or growth. These variables were not influenced by the time of cover crop incorporation or tillage treatments. Differences in colonization, nutrient uptake and plant growth diminished during the growing period and at the final harvest date, the effects on plant production disappeared. High soil P level or high soil inoculum level was most likely responsible for the limited response of increased mycorrhiza formation on plant growth and nutrient concentrations.  相似文献   

20.
Over the last century, US agriculture greatly intensified and became industrialized, increasing in inputs and yields while decreasing in total cropland area. In the industrial sector, spatial agglomeration effects are typical, but such changes in the patterns of crop types and diversity would have major implications for the resilience of food systems to global change. Here, we investigate the extent to which agricultural industrialization in the United States was accompanied by agglomeration of crop types, not just overall cropland area, as well as declines in crop diversity. Based on county‐level analyses of individual crop land cover area in the conterminous United States from 1840 to 2017, we found a strong and abrupt spatial concentration of most crop types in very recent years. For 13 of the 18 major crops, the widespread belts that characterized early 20th century US agriculture have collapsed, with spatial concentration increasing 15‐fold after 2002. The number of counties producing each crop declined from 1940 to 2017 by up to 97%, and their total area declined by up to 98%, despite increasing total production. Concomitantly, the diversity of crop types within counties plummeted: in 1940, 88% of counties grew >10 crops, but only 2% did so in 2017, and combinations of crop types that once characterized entire agricultural regions are lost. Importantly, declining crop diversity with increasing cropland area is a recent phenomenon, suggesting that corresponding environmental effects in agriculturally dominated counties have fundamentally changed. For example, the spatial concentration of agriculture has important consequences for the spread of crop pests, agrochemical use, and climate change. Ultimately, the recent collapse of most agricultural belts and the loss of crop diversity suggest greater vulnerability of US food systems to environmental and economic change, but the spatial concentration of agriculture may also offer environmental benefits in areas that are no longer farmed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号