首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 171 毫秒
1.
从2013年11月至2014年11月,采用尼龙网袋法对华西雨屏区天然常绿阔叶林凋落物进行原位分解试验,模拟N(NH4NO3)沉降水平分别为对照(0 g N·m-2·a-1)、低氮沉降(5 g N·m-2·a-1)、中氮沉降(15 g N·m-2·a-1)和高氮沉降(30 g N·m-2·a-1),研究了N沉降对常绿阔叶林凋落物分解及其木质素和纤维素降解的影响.结果表明:华西雨屏区天然常绿阔叶林凋落物在夏季分解较快,明显快于其他季节.N沉降显著抑制了阔叶林凋落物的分解,抑制作用随N沉降量的增加而加强.N沉降使凋落物质量损失95%的时间与对照(4.81年)相比增加了0.53~1.88年.经过1 年的分解,中氮沉降和高氮沉降处理木质素和纤维素残留率显著高于对照,表明N沉降显著抑制了凋落物木质素和纤维素的降解.凋落物质量残留率与木质素和纤维素残留率呈显著正相关.N沉降抑制凋落物分解的原因可能是无机N的添加对木质素和纤维素的降解造成了阻碍.  相似文献   

2.
华西雨屏区亮叶桦凋落叶分解对模拟氮沉降的响应   总被引:8,自引:0,他引:8       下载免费PDF全文
从2008年1月至2009年2月, 对华西雨屏区亮叶桦(Betula luminifera)人工林进行了模拟氮(N)沉降试验, N沉降水平分别为对照(CK, 0 g N·m-2·a-1)、低N (5 g N·m-2·a-1)、中N (15 g N·m-2·a-1)和高N (30 g N·m-2·a-1)。利用凋落袋法对亮叶桦凋落叶进行原位分解试验, 并在每月下旬定量地对各处理施N (NH4NO3)。结果表明, 虽然华西雨屏区大气N沉降量较高, 但模拟N沉降试验表明: 在N沉降继续增加的情况下, 凋落叶分解这一碳(C)循环和养分循环过程仍会受到显著影响。在1年的分解试验中, 模拟N沉降显著抑制了亮叶桦凋落叶的分解, N沉降处理使得凋落叶质量损失95%的时间在2.65年的基础上增加了1.14-1.96年。N沉降抑制凋落叶分解的原因在于无机N的富集对木质素和纤维素的分解造成阻碍。N沉降处理也导致C、N、磷、钾和镁元素在凋落物中的残留量增加, 但N沉降加速了钙元素的释放。凋落物基质化学特性在很大程度上决定了凋落物分解对N沉降的响应方向, 以及凋落物分解过程中各元素的动态变化。  相似文献   

3.
2018年2月至2019年1月,利用尼龙网袋法对滇中亚高山华山松和云南松两种人工林开展模拟氮(N)沉降下凋落叶和凋落枝原位分解试验,N沉降水平分别为对照(CK, 0 g N·m-2·a-1)、低N(LN, 5 g N·m-2·a-1)、中N(MN, 15 g N·m-2·a-1)和高N(HN, 30 g N·m-2·a-1)。结果表明: 华山松凋落叶和凋落枝年分解率分别为34.8%和18.0%,分别高于云南松凋落叶的32.2%和凋落枝的16.1%。模拟N沉降下,LN处理使华山松凋落叶、枝分解95%所需时间较对照分别减少0.202和1.624年,MN处理分别减少0.045和1.437年,HN处理则分别增加0.840和2.112年;LN处理使云南松凋落叶、枝分解95%所需时间较对照分别减少0.766和4.053年,MN处理分别增加0.366和0.455年,HN处理分别增加0.826和0.906年。经过1年的分解,低N处理促进了华山松和云南松凋落物(叶、枝)的分解,而高N处理表现为抑制作用;N沉降对两种林型凋落物分解的影响与凋落物中纤维素和木质素含量密切相关。可见,凋落物基质质量在一定程度上决定了凋落物分解对N沉降的响应情况,尤其是纤维素和木质素含量。  相似文献   

4.
为探明高原草甸土壤微生物对短期氮沉降的响应,以纳帕海典型高寒草甸云雾薹草群落为对象,野外原位布设低氮(5 g N·m-2·a-1)、中氮(10 g N·m-2·a-1)和高氮(15 g N·m-2·a-1)3种施氮处理,研究氮沉降引起高寒草甸植物多样性及土壤性质变化对微生物生物量碳氮的影响。结果表明:氮添加显著增加土壤微生物生物量碳氮及其熵值,中氮处理下微生物生物量碳增量最高,达139.3%;微生物生物量碳氮的垂直变化表现为沿土层显著降低,降幅为24.1%~75.1%。氮添加显著提高群落地上生物量,降低Shannon和Simpson多样性,变幅达6.6%~65.4%;氮添加显著降低土壤pH,增加土壤有机质、全氮、铵态氮和硝态氮含量,且在中氮处理下变幅(7.0%~511.1%)最大;土壤pH随土层加深而增大,而其他理化指标则沿土层加深而显著减少,变幅达19.5%~91.2%。结构方程模型表明,土壤铵态氮、硝态氮和有机质对微生物生物量起促进作用,而土壤pH和植...  相似文献   

5.
郭群 《应用生态学报》2019,30(10):3285-3291
氮(N)沉降增加带来的土壤酸化问题已经得到广泛的关注,然而土壤酸化是否受到未来降水格局改变的影响研究相对匮乏.本研究基于内蒙古温带典型草原5年(2013—2017年)的N添加(10和40 g N·m-2·a-1)和增雨(增雨量80 mm,分2 mm×40次、5 mm×16次、10 mm×8次、20 mm×4次、40 mm×2次5种处理)控制试验分析了水分对N添加后土壤酸化的影响.结果表明: 40 g N·m-2·a-1 N添加在土壤酸化出现的时间、酸化程度以及酸化随时间的变化速率上均大于10 g N·m-2·a-1 N添加.40 g N·m-2·a-1 N添加一年后即在各层土壤中观测到了显著的土壤pH降低,而10 g N·m-2·a-1 N添加只有土壤表层(0~5 cm)在N添加一年后出现显著的土壤pH降低,5~10和10~20 cm土层显著的土壤pH降低分别出现在氮添加4年和5年后.氮添加后土壤pH的降低幅度随氮添加年限的延长而增加,40 g N·m-2·a-1 N添加土壤pH随时间的降低速率大于10 g N·m-2·a-1 N添加.增雨不改变氮添加后土壤pH降低的结果,但中小强度增雨方式(2~20 mm)在干旱年份有缓解10 g N·m-2·a-1 N添加处理土壤酸化的趋势,而所有增雨方式在湿润年份均有加剧氮添加(10和40 g N·m-2·a-1)后土壤酸化的趋势,尤其是表层土壤,但缓解和加剧的程度均不显著.高强度增雨方式后(10~40 mm)土壤无机氮的淋溶可能是增雨加剧氮添加后土壤酸化的一个重要原因.本研究将为预测草原生态系统对未来氮沉降和降水格局改变的响应提供科学依据.  相似文献   

6.
采用分解网袋法,在古尔班通古特沙漠南缘设置对照N0(0 g N·m-2·a-1)、N5(5 g N·m-2·a-1)、N10(10 g N·m-2·a-1)和N20(20 g N·m-2·a-1)4个施N处理,研究外源N添加对多枝柽柳、盐角草及两者混合凋落物分解过程及养分释放的影响,分析氮沉降对荒漠生态系统凋落物分解的影响。结果表明: 各物种凋落物的分解速率存在显著差异,经过345 d的分解,多枝柽柳、盐角草及混合物在不同N处理间的分解速率分别为0.64~0.70、0.84~0.99和0.71~0.81 kg·kg-1·a-1。凋落物分解过程中,N、P均表现为养分的直接释放,试验结束时,N0、N5、N10和N20处理单种凋落物及其混合物N分别释放60.6%~67.4%、56.7%~62.6%、57.4%~62.3%、46.8%~63.0%,P分别释放51.9%~77.9%、59.9%~74.7%、53.0%~79.9%、52.3%~76.4%。N处理对单种凋落物及其混合物的分解影响不显著,但各种凋落物的养分动态对N添加的响应不同,N处理抑制了盐角草N、P释放及混合凋落物P释放,而对多枝柽柳无影响。在温带荒漠,适量的N输入对凋落物分解速率影响不大,但可能会延缓个别物种养分向土壤系统的归还。  相似文献   

7.
为理解模拟氮沉降对华西雨屏区天然常绿阔叶林土壤微生物生物量碳(MBC)和氮(MBN)的影响,通过一年野外模拟氮(NH4NO3)沉降试验,氮沉降水平分别为对照(CK, 0 g N·m-2·a-1)、低氮沉降(L, 5 g N·m-2·a-1)、中氮沉降(M, 15 g N·m-2·a-1)和高氮沉降(H, 30 g N·m-2·a-1),研究了氮沉降对天然常绿阔叶林土壤MBC和MBN的影响.结果表明: 氮沉降显著降低了0~10 cm土层MBC和MBN,且随氮沉降量的增加,下降幅度增大;L和M处理对10~20 cm土层MBC和MBN无显著影响,H处理显著降低了10~20 cm土层土壤MBC和MBN;氮沉降对MBC和MBN的影响随土壤深度的增加而减弱.MBC和MBN具有明显的季节变化,在0~10和10~20 cm土层均表现为秋季最高,夏季最低.0~10和10~20 cm土层土壤微生物生物量C/N分别介于10.58~11.19和9.62~12.20,表明在华西雨屏区天然常绿阔叶林土壤微生物群落中真菌占据优势.  相似文献   

8.
为研究N沉降下凋落物养分释放及生态化学计量特征,以滇中磨盘山常绿阔叶林为研究对象,利用尼龙网袋法布设凋落物(凋落叶、凋落枝)原位分解试验,设置不同施N处理:对照(CK,0 g N·m-2·a-1)、低氮(LN,5 g N·m-2·a-1)、中氮(MN,15 g N·m-2·a-1)和高氮(HN,30 g N·m-2·a-1)。结果表明: 模拟N沉降1年后,凋落叶、凋落枝和土壤的C、N含量均表现为随着N沉降量的增加而逐渐升高,增幅分别为0.3%~8.2%、4.9%~69.0%;C/N则表现为随着N沉降量的增加逐渐降低,降幅为0.8%~37.8%;凋落枝P含量、C/P、N/P在各处理下差异均不显著。处理时间与施N水平均显著影响凋落叶、凋落枝及土壤的N、P含量及C/N、C/P、N/P;1年分解过程中,凋落物C、N、P残留率依次呈释放、淋溶-富集-释放、淋溶-富集的模式,外源N显著抑制了凋落物C、N、P释放过程;土壤C、P含量与凋落物N、P含量呈显著正相关,土壤N含量与凋落物C、N含量呈显著正相关。N沉降下常绿阔叶林凋落物与土壤生态化学计量具有显著相关性,研究滇中常绿阔叶林凋落物分解和生态化学计量特征有助于了解森林生态系统凋落物分解过程对N沉降的响应机理。  相似文献   

9.
为探究氮沉降增加背景下高寒草甸土壤呼吸干湿季变化及其与环境因子的耦合关系,选择纳帕海典型退化草甸疏花早熟禾群落,设置对照(0 g·m-2·a-1)、低氮(5 g·m-2·a-1)、中氮(10 g·m-2·a-1)和高氮(15 g·m-2·a-1)4个水平的氮沉降模拟试验,分析氮沉降引起的地上生物量、植物多样性及土壤理化性质变化对土壤呼吸的影响。结果表明:不同氮沉降处理均显著促进草甸土壤呼吸,干季和湿季土壤呼吸速率相较于对照分别增加了21.9%~53.9%和27.3%~51.2%,且在中氮处理下增幅最大。氮沉降显著提升草甸地上生物量(增幅达52.2%~66.4%);植物多样性随氮添加总体呈降低趋势,湿季最大降幅(13.5%~24.2%)出现在高氮处理。氮沉降显著增加土壤铵态氮、有机质、微生物生物量碳氮、温度和含水率(增幅为14.3%~333.5%),氮沉降显著降低土壤pH(减幅达9.0%~34.6%)。结构方程表明...  相似文献   

10.
涂玉  尤业明  孙建新 《生态学杂志》2012,23(9):2325-2331
2010年9月-2011年10月,在山西省灵空山油松和辽东栎混交林样地采取随机区组设计,研究了地表凋落物和氮添加处理对土壤微生物生物量碳、氮和微生物活性的影响.凋落物处理包括: 剔除凋落物(N)、叶凋落物加倍(L)、枝果凋落物加倍(B)和混合凋落物加倍(LB);氮添加量分别为0(N0)、5 g·m-2·a-1(N1)和10 g·m-2·a-1(N2).结果表明: 剔除地表凋落物且无氮添加时,油松和辽东栎混交林地的土壤有机碳(SOC)含量显著降低,其他试验处理间对SOC的影响无显著差异.土壤微生物生物量碳(MBC)、氮(MBN)及其活性(MR)的变化范围依次为: 262.42~873.16 mg·kg-1、73.55~173.85 mg·kg-1和2.38~3.68mg·kg-1·d-1.MBC、MBN和MR两两间呈极显著正相关.氮添加对MBC、MBN和MR均无显著影响;凋落物处理对MR影响显著,表现为混合凋落物加倍处理的MR最高,叶凋落物加倍处理次之,剔除凋落物处理最低,而对MBC和MBN无显著影响.凋落物和氮添加处理在整个试验过程中未表现出交互作用.短期的氮添加处理和森林地表凋落物变化对土壤微生物过程的影响有限.  相似文献   

11.
氮供给和种植密度是影响植物生长的两个重要因素。豆科植物因其生物固氮能力而在受到氮限制的生态系统中具有重要作用, 氮含量增加促进植物生长的同时也会抑制豆科植物的生物固氮能力, 种植密度会通过种内竞争影响豆科植物的生长和生物固氮能力, 然而少有研究关注氮肥添加和种植密度对豆科植物生长和生物固氮能力的影响。该研究以达乌里胡枝子(Lespedeza davurica)为研究对象, 通过温室盆栽实验, 探究氮肥和种植密度对其生长和生物固氮的影响。实验设置4个氮添加水平(0、5、10、20 g·m-2·a-1)和3种种植密度(1、3、6 Ind.·pot-1, 约32、96、192 Ind.·m-2)。结果发现: 1)施肥和密度增加均影响了达乌里胡枝子的生长。叶片碳(C)、氮(N)含量、净光合速率随施氮量增加而增加, 氮添加也促进了植物的生长, 当施氮量为10 g·m-2·a-1时植物产量达到最大。叶片C、N含量、净光合速率随种植密度增加而下降, 密度增加可以促进每盆的总生物量, 但对单个植株的生长有负效应。2)氮肥对根瘤形成有抑制作用, 但种植密度增加会缓解氮肥对生物固氮能力带来的“氮阻遏”。该实验条件下, 当施氮量为10 g·m-2·a-1, 种植密度为3 Ind.·pot-1, 或施氮量为5 g·m-2·a-1, 种植密度为6 Ind.·pot-1时, 能最大程度发挥“施氮增产”和种植密度缓解“氮阻遏”的作用。氮添加降低了达乌里胡枝子的根瘤生物量和对根瘤形成的投资(根瘤生物量占总生物量的比例), 从而抑制达乌里胡枝子的生物固氮。种植密度增加导致达乌里胡枝子因种内竞争增加而使资源获取受限, 从而增加对根瘤的投资和根瘤生物量来获得更多来自大气中的氮。3)结构方程结果显示, 氮肥和种植密度通过直接或间接作用, 解释了64%的达乌里胡枝子生物量变化和42%的根瘤生物量变化。上述结果表明合理优化豆科植物的施肥量和种植密度可能对人工草地种植以及退化草地恢复管理具有重要意义。  相似文献   

12.
本研究于2015—2016年进行野外控制试验,分析了不同施氮(N)水平(0、1、2、4、8、16 g N·m-2·a-1)对青藏高原高寒草原根系生产、周转速率和现存量的影响及其调控因素。结果表明: 随着施N量的增加,根系生产量和现存量呈线性或指数下降的趋势。与对照相比,16 g N·m-2·a-1处理根系生产量和现存量2年平均下降43.0%和45.7%。根系周转速率呈先上升后下降的趋势,2015年和2016年分别在2和4 g N·m-2·a-1处理达到峰值。线性混合模型结果显示,根系淀粉含量是调控根系生产量和周转速率的主要因素,分别解释二者变异的21.7%和25.4%;而根系现存量则受根系蛋白含量的影响,其解释率为20.8%。N富集对根系生产和现存量表现出抑制作用,低N促进而高N抑制根系周转速率,根系碳氮代谢指标是调控根系动态对N添加响应的主要因素。  相似文献   

13.
外源氮输入和水分变化对荒漠草原凋落物分解的影响   总被引:1,自引:0,他引:1  
全球气候变化背景下,大气氮沉降和降水变化日益显著,其对荒漠草原凋落物分解的影响存在很大的不确定性.采用裂区设计,设置主区为自然降雨、增雨30%和减雨30% 3个水分处理,副区为0(N0)、30(N30)、50(N50)和100 kg·hm-2·a-1(N100)4个氮素水平,经过21个月(2016年1月—2017年10月)水氮处理,研究水氮共同作用对荒漠草原常见物种猪毛菜、短花针茅和木地肤3种植物凋落物分解的影响.结果表明: 3种凋落物干物质残留率随时间增加而减少,用Olson负指数衰减模型拟合效果较好,凋落物分解系数(k)大小为猪毛菜>短花针茅>木地肤.增雨30%N100处理分解系数最高,为0.028.单因素处理下,增雨30%和N50的凋落物分解最快.水氮共同作用下,增雨 30%N100处理凋落物分解最快.3种凋落物初始化学全氮含量大小为猪毛菜>短花针茅>木地肤,猪毛菜和短花针茅k值与全氮含量呈显著正相关;全碳含量、纤维素含量、木质素含量、C/N、木质素/N和纤维素/N大小为木地肤>短花针茅>猪毛菜,猪毛菜k值与各指标均呈显著负相关,短花针茅和木地肤k值与C/N、木质素/N和纤维素/N均呈显著负相关.猪毛菜分解最快,木地肤分解最慢.适量的水、氮添加有利于荒漠草原凋落物的分解,可以促进土壤养分循环,对荒漠草原可持续发展及生态平衡有积极作用.  相似文献   

14.
以亚热带森林的幼苗群落为对象,设置对照(CK)、氮添加(100 kg N·hm-2·a-1)、磷添加(50 kg P·hm-2·a-1)和氮+磷添加(100 kg N·hm-2·a-1+50 kg P·hm-2·a-1)4种处理的施肥样地,测定幼苗的株高、地径、冠幅、比叶面积、死亡率等指标,研究氮磷添加下幼苗的生长与群落结构的变化及其驱动力。结果表明: 与未施肥相比,磷添加下幼苗的株高增长率、地径增长率分别显著下降45.1%和30.3%;主要建群树种死亡率受到施肥的影响,氮添加显著增加米槠幼苗死亡率至25.1%,氮磷施肥显著提高丝栗栲死亡率至25.1%~31.3%,而氮添加、磷添加显著降低了木荷和润楠的死亡率;施肥显著降低了幼苗群落中木荷和丝栗栲的重要值,氮添加、磷添加显著增加了润楠幼苗的重要值。氮+磷添加显著降低了幼苗群落的Shannon指数、Simpson指数;幼苗生长主要受到土壤铵态氮、有效磷、全氮、林冠开度及比叶面积的影响,而幼苗死亡率主要受到土壤铵态氮、有效磷和林冠开度的影响。综合来看,氮磷添加主要通过调控土壤氮磷速效养分,进而改变叶片功能性状来影响幼苗的生长;加速外生菌根树种(米槠和丝栗栲)的死亡,改变幼苗群落建群种的重要值,降低物种多样性, 最终可能改变亚热带次生阔叶林成年树的群落结构。  相似文献   

15.
土壤微生物在陆地生态系统的生物地球化学循环中起着重要作用。然而目前尚不清楚氮(N)添加量及其持续时间如何影响土壤微生物群落结构,以及微生物群落结构变化与微生物相对养分限制状况是否存在关联。本研究在亚热带黄山松林开展了N添加试验以模拟N沉降,并设置3个处理:对照(CK, 0 kg N·hm-2·a-1)、低N(LN, 40 kg N·hm-2·a-1)和高N(HN, 80 kg N·hm-2·a-1)。在N添加满1年和3年时测定土壤基本理化性质、磷脂脂肪酸含量和碳(C)、N、磷(P)获取酶活性,并通过生态酶化学计量分析土壤微生物的相对养分限制状况。结果表明: 1年N添加对土壤微生物群落结构无显著影响,3年LN处理显著提高了革兰氏阳性菌(G+)、革兰氏阴性菌(G-)、放线菌(ACT)和总磷脂脂肪酸(TPLFA)含量,而3年HN处理对微生物的影响不显著,表明细菌和ACT对N添加可能更为敏感。N添加加剧了微生物C和P限制,而P限制是土壤微生物群落结构变化的最佳解释因子。这表明,N添加诱导的P限制可能更有利于部分贫营养菌(如G+)和参与P循环的微生物(如ACT)的生长,从而改变亚热带黄山松林土壤微生物群落结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号