首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Aim To (1) describe termite functional diversity patterns across five tropical regions using local species richness sampling of standardized areas of habitat; (2) assess the relative importance of environmental factors operating at different spatial and temporal scales in influencing variation in species representation within feeding groups and functional taxonomic groups across the tropics; (3) achieve a synthesis to explain the observed patterns of convergence and divergence in termite functional diversity that draws on termite ecological and biogeographical evidence to‐date, as well as the latest evidence for the evolutionary and distributional history of tropical rain forests. Location Pantropical. Methods A pantropical termite species richness data set was obtained through sampling of eighty‐seven standardized local termite diversity transects from twenty‐nine locations across five tropical regions. Local‐scale, intermediate‐scale and large‐scale environmental data were collected for each transect. Standardized termite assemblage and environmental data were analysed at the levels of whole assemblages and feeding groups (using components of variance analysis) and at the level of functional taxonomic groups (using correspondence analysis and canonical correspondence analysis). Results Overall species richness of local assemblages showed a greater component of variation attributable to local habitat disturbance level than to region. However, an analysis accounting for species richness across termite feeding groups indicated a much larger component of variation attributable to region. Mean local assemblage body size also showed the greater overall significance of region compared with habitat type in influencing variation. Ordination of functional taxonomic group data revealed a primary gradient of variation corresponding to rank order of species richness within sites and to mean local species richness within regions. The latter was in the order: Africa > south America > south‐east Asia > Madagascar > Australia. This primary gradient of species richness decrease can be explained by a decrease in species richness of less dispersive functional taxonomic groups feeding on more humified food substrates such as soil. Hence, the transects from more depauperate sites/regions were dominated by more dispersive functional taxonomic groups feeding on less humified food substrates such as dead wood. Direct gradient analysis indicated that ‘region’ and other large‐scale factors were the most important in explaining patterns of local termite functional diversity followed by intermediate‐scale geographical and site variables and, finally, local‐scale ecological variables. Synthesis and main conclusions Within regions, centres of termite functional diversity lie in lowland equatorial closed canopy tropical forests. Soil feeding termite evolution further down food substrate humification gradients is therefore more likely to have depended on the long‐term presence of this habitat. Known ecological and energetic constraints upon contemporary soil feeders lend support for this hypothesis. We propose further that the anomalous distribution of termite soil feeder species richness is partly explained by their generally very poor dispersal abilities across oceans. Evolution, radiation and dispersal of soil feeder diversity appears to have been largely restricted to what are now the African and south American regions. The inter‐regional differences in contemporary local patterns of termite species richness revealed by the global data set point to the possibility of large differences in consequent ecosystem processes in apparently similar habitats on different continents.  相似文献   

2.
1. While it is clear that land‐use change significantly impacts the taxonomic dimension of soil biodiversity, how the functional dimension responds to land‐use change is less well understood. 2. This study examined how the transformation of primary forests into rubber tree monocultures impacts individual termite species and how this change is reflected in termite taxonomic and functional α‐diversity (within site) and β‐diversity (among sites). 3. Overall, individual species responded strongly to land‐use change, whereby only 11 of the 27 species found were able to tolerate both habitats. These differences caused a 27% reduction in termite taxonomic richness and reduced taxonomic β‐diversity in rubber plantations compared with primary forests. The study also revealed that the forest conversion led to a shift in some termite species with smaller body size, shorter legs and smaller mandibular traits. Primary forests exhibited higher functional richness and functional β‐diversity of termite species, indicating that functional traits of termite species in rubber plantations are more evenly distributed. 4. The present study suggests that forest conversion does not merely decrease taxonomic diversity of termites, but also exerts functional trait filtering within some termite species. The results affirm the need for biodiversity assessments that combine taxonomic and functional indicators when monitoring the impact of land‐use change.  相似文献   

3.
Land use change is accelerating globally at the expense of biodiversity and ecosystem functioning. Invertebrates are numerically dominant and functionally important in old growth tropical rain forests but highly susceptible to the adverse effects of forest degradation and fragmentation. Ants (Formicidae) and termites (Blattodea: Termitoidae) perform crucial ecosystem services. Here, the potential effects of anthropogenic disturbance on ant and termite communities in dead wood are investigated. Community composition, generic richness, and occupancy rates of ants and termites were compared among two old growth sites (Danum Valley and Maliau Basin) and one twice‐logged site (the Stability of Altered Forest Ecosystems’ (SAFE) Project), in Sabah, Malaysian Borneo. Occupancy was measured as the number of ant or termite encounters (1) per deadwood items, and (2) per deadwood volume, and acts as surrogates for relative abundance (or generic richness). Termites had a lower wood‐occupancy per volume in logged forest. In contrast, there were more ant encounters, and more ant genera, in logged sites and there was a community shift (especially, there were more Crematogaster encounters). The disruption of soil and canopy structure in logged forest may reduce both termite and fungal decay rates, inducing increased deadwood residence times and therefore favoring ants that nest in dead wood. There is an anthropogenic‐induced shift of dead wood in ants and termites in response to disturbance in tropical rain forests and the nature of that shift is taxon‐specific.  相似文献   

4.
Plant diversity is considered one factor structuring soil fungal communities because the diversity of compounds in leaf litter might determine the extent of resource heterogeneity for decomposer communities. Lowland tropical rain forests have the highest plant diversity per area of any biome. Since fungi are responsible for much of the decomposition occurring in forest soils, understanding the factors that structure fungi in tropical forests may provide valuable insight for predicting changes in global carbon and nitrogen fluxes. To test the role of plant diversity in shaping fungal community structure and function, soil (0-20?cm) and leaf litter (O horizons) were collected from six established 1-ha forest census plots across a natural plant diversity gradient on the Isthmus of Panama. We used 454 pyrosequencing and phospholipid fatty acid analysis to evaluate correlations between microbial community composition, precipitation, soil nutrients, and plant richness. In soil, the number of fungal taxa increased significantly with increasing mean annual precipitation, but not with plant richness. There were no correlations between fungal communities in leaf litter and plant diversity or precipitation, and fungal communities were found to be compositionally distinct between soil and leaf litter. To directly test for effects of plant species richness on fungal diversity and function, we experimentally re-created litter diversity gradients in litter bags with 1, 25, and 50 species of litter. After 6?months, we found a significant effect of litter diversity on decomposition rate between one and 25 species of leaf litter. However, fungal richness did not track plant species richness. Although studies in a broader range of sites is required, these results suggest that precipitation may be a more important factor than plant diversity or soil nutrient status in structuring tropical forest soil fungal communities.  相似文献   

5.
Widely documented for temperate and cold forests in both hemispheres, variations in tree growth responses to climate along environmental gradients have rarely been investigated in the tropics. Seven tree‐ring chronologies of Centrolobium microchaete (Fabaceae) in the Cerrado tropical forests of Bolivia are used to determine the growth responses to climate along a precipitation gradient. Chronologies are distributed from the humid Guarayos forests (annual precipitation > 1600 mm) in the transition to the Amazonia to the dry‐mesic Chiquitos forests (annual precipitation < 1200 mm) in the proximity to the dry Chaco. On a large spatial scale, radial growth is positively influenced by rainfall and negatively by temperature at the end of the dry season. However, this regional pattern in climate‐tree growth relationship shows differences along the precipitation gradient. Relationships with climate are highly significant and extend over longer periods of the year in sites with low rainfall and extremely severe dry seasons. At wet sites, larger water soil capacity and endogenous forest dynamics partially mask the direct influence of climate on tree growth. Stronger similarities in tree‐growth responses to climate occur between sites in the dry Central Chiquitos and in the transition to the Guarayos forests. In contrast, the relationships show fewer similarities between sites in the humid Guarayos. We conclude that growth responses to climate in the tropics are more similar between sites with limited rainfall and severe and prolonged dry seasons. Our study points to a convergence in the patterns of growth responses of tropical trees to climate, modulated by scarce rainfall and marked seasonality. The negative impact of water deficits on tree physiological processes induces not only the documented reduction in forest species richness, but also a convergence in tree‐growth responses to climate in dry tropical forests.  相似文献   

6.
Termites are major decomposers in tropical regions and play critical roles in many soil‐related processes. Studies conducted in Asia and the Neotropics suggest that habitat modification can strongly affect termite assemblages, but data on termite communities from forests in Africa, especially West Africa, are scarce. Here, we measured the short‐term impact of slash‐and‐burn agriculture on termite assemblages in an agricultural region of central Côte d'Ivoire. We assessed termite diversity and relative abundance in four habitat types: secondary forest, cleared forest, burned forest, and crop fields. The secondary forest had higher species richness compared with the other habitats, but all habitat types had similar assemblage structures. Fungus‐growing termites were the most abundant feeding group in all habitats. Soil feeders were most abundant in secondary forest, intermediately abundant in cleared and burned forests, and almost entirely absent in crop fields. Wood‐feeding species showed clear responses to burning; their abundances decreased after fire. We conclude that slash‐and‐burn agriculture does not appear to severely erode the diversity of termite assemblages. This could be due to the dominance of ecologically versatile fungus growers or to the relatively long time between clearing and burning. However, forest clearing negatively affects soil feeders, with the Apicotermitinae most affected by canopy loss.  相似文献   

7.
Environmental correlates of avian diversity in lowland Panama rain forests   总被引:1,自引:0,他引:1  
Aim The composition of communities is known to be influenced by biogeographical history, but also by local environmental conditions. Yet few studies have evaluated the relative importance of the direct and indirect effects of multiple factors on species diversity in rich Neotropical forests. Our study aims to assess drivers of change in local bird species richness in lowland tropical rain forests. Location Thirty‐two physiographic subregions along the corridor of the Panama Canal, Panama. Methods We mapped the distributions of all forest‐dwelling bird species and quantified the environmental characteristics of all subregions, including mean annual rainfall, topographic complexity, elevational variability, forest age and forest area. Plant species richness, believed to be correlated with structural complexity, was estimated by interpolation through kriging for subregions where data were unavailable. Results The study region has a strong rainfall gradient across a short distance (65 km), which is also accompanied by steep gradients in plant and bird species diversity. Path analysis showed that precipitation strongly affected plant species diversity, which in turn affected avian diversity. Forest age and topography affected bird diversity independently of plant diversity. Forest area and its proportion occurring in the largest two fragments of each subregion (habitat configuration) were also positive correlates of bird species richness. Main conclusions Our results suggest that plant species richness, known to be influenced in part by biogeographical history and geology, also affects bird species assemblages locally. We provide support for the hypothesis that bird species richness increases with structural complexity of the habitat. Our analysis of the distributions of the region's most disturbance‐sensitive bird species showed that subregions with more rainfall, more complex topography and older forests harboured not only richer communities but also more sensitive species; while subregions with the opposite characteristics usually lacked large fractions of the regional forest bird community and hosted only common, widely distributed species. Results also emphasize the importance of preserving forest diversity from habitat loss and fragmentation, and confirm that larger, continuous forest tracts are necessary to maintain the rich avian diversity in the region.  相似文献   

8.
Assessing the recovery of species diversity and composition after major disturbance is key to understanding the resilience of tropical forests through successional processes, and its importance for biodiversity conservation. Despite the specific abiotic environment and ecological processes of tropical dry forests, secondary succession has received less attention in this biome than others and changes in species diversity and composition have never been synthesised in a systematic and quantitative review. This study aims to assess in tropical dry forests 1) the directionality of change in species richness and evenness during secondary succession, 2) the convergence of species composition towards that of old‐growth forest and 3) the importance of the previous land use, precipitation regime and water availability in influencing the direction and rate of change. We conducted meta‐analyses of the rate of change in species richness, evenness and composition indices with succession in 13 tropical dry forest chronosequences. Species richness increased with succession, showing a gradual accumulation of species, as did Shannon evenness index. The similarity in species composition of successional forests with old‐growth forests increased with succession, yet at a low rate. Tropical dry forests therefore do show resilience of species composition but it may never reach that of old‐growth forests. We found no significant differences in rates of change between different previous land uses, precipitation regimes or water availability. Our results show high resilience of tropical dry forests in term of species richness but a slow recovery of species composition. They highlight the need for further research on secondary succession in this biome and better understanding of impacts of previous land‐use and landscape‐scale patterns. Synthesis Secondary forests account for an increasing proportion of remaining tropical forest. Assessing their resilience is key to conservation of their biodiversity. Our study is the first meta‐analysis of species changes during succession focussing on tropical dry forests, a highly threatened yet understudied biome. We show a gradual species accumulation and convergence of composition towards that of old‐growth forests. While secondary tropical dry forests offer good potential for biodiversity conservation, their capacity for recovery at a sufficient rate to match threats is uncertain. Further research on this biome is needed to understand the effect of land use history and landscape processes.  相似文献   

9.
Seven microsatellite markers were isolated from Cubitermes subarquatus belonging to the soil‐feeding termite trophic group that plays a key role in tropical rain forests. A variability study performed by using a population of C. subarquatus (n = 73) sampled in the La Lopé forest reserve (Gabon) from 42 nests revealed from 4 to 12 alleles per locus and an heterozygosity from 0.28 to 0.84. Tests for cross‐species amplification realized in the sympatric C. intercalatus and in eight other sympatric termite genera indicated a wider application of the primers isolated from Cubitermes in soil‐feeding termites.  相似文献   

10.
The intermediate disturbance hypothesis (IDH) predicts local species diversity to be maximal at an intermediate level of disturbance. Developed to explain species maintenance and diversity patterns in species-rich ecosystems such as tropical forests, tests of IDH in tropical forest remain scarce, small-scale and contentious. We use an unprecedented large-scale dataset (2504 one-hectare plots and 331 567 trees) to examine whether IDH explains tree diversity variation within wet, moist and dry tropical forests, and we analyse the underlying mechanism by determining responses within functional species groups. We find that disturbance explains more variation in diversity of dry than wet tropical forests. Pioneer species numbers increase with disturbance, shade-tolerant species decrease and intermediate species are indifferent. While diversity indeed peaks at intermediate disturbance levels little variation is explained outside dry forests, and disturbance is less important for species richness patterns in wet tropical rain forests than previously thought.  相似文献   

11.
The importance of termites as decomposers in tropical forests has long been recognized. Studies on the richness and diversity of termite species and their ecological function have flourished in more recent times, but these have been mostly conducted in a thin stratum within a standing man’s reach. Our aims were to evaluate the specific richness and composition of the termite assemblage in the canopy of a tropical rainforest and to determine its originality with respect to the sympatric ground-level fauna. We conducted systematic searches for canopy termites, together with conventional sampling of the sympatric ground-level fauna, in the San Lorenzo forest, Panama. We hypothesized that (1) the canopy accommodates two categories of wood-feeding termites (long-distance foragers and small-colony “one-piece” species) and possibly soil-feeders in suspended soil-like habitats; (2) due to the abundance of soil-feeders, the overall diversity of the ground fauna is higher than that of the canopy; (3) differences in microclimate and resource accessibility favour vertical stratification among wood-feeders. Sixty-three canopy samples yielded ten species of termites, all wood-feeders. Five of these were not found at ground level, although a total of 243 ground samples were collected, representing 29 species. In addition to long-distance foragers (Microcerotermes and Nasutitermes spp.) and small-colony termites (mostly Kalotermitidae), the canopy fauna included Termes hispaniolae, a wood-feeding Termitidae from an allegedly soil-feeding genus, living in large dead branches. Soil-feeders were absent from the canopy, probably because large epiphytes were scarce. As predicted, the ground fauna was much richer than that of the canopy, but the species richness of both habitats was similar when only wood-feeders were considered. Vertical stratification was strongly marked among wood-feeders, as all common species, apart from the arboreal-nesting Microcerotermes arboreus, could unequivocally be assigned to either a ground or a canopy group. The canopy, therefore, contributes significantly to the total species richness of the termite assemblage, and the diversity, abundance and ecological importance of canopy termites in tropical rainforests may be higher than previously recognized.Electronic Supplementary Material Supplementary material is available to authorized users in the online version of this article at .  相似文献   

12.
环境因子是影响物种分布并导致物种多样性形成的重要因素,采伐后恢复的热带森林次生林和原始林的环境因子是否一致是一个很重要的问题.对于该问题的回答对长期监测热带森林次生林的变化具有重要意义.该文基于在海南尖峰岭地区设置的164个625 m2植被公里网格样地数据,记录了每个样地的采伐历史并测定了其他的17个环境变量指标,分析了17个环境因子之间的相关关系;将164个样地划分成3种不同采伐历史的森林,通过典范对应分析(CCA)探讨3种森林类型中影响物种分布的环境因子组成;比较两种多元回归模型的优劣,来揭示3种森林类型中影响物种丰富度形成的环境因子组成的差异.结果表明:驱动海南尖峰岭地区物种分布并导致物种多样性差异的环境因子在森林采伐前后并不是一成不变的,而是与森林采伐历史有关联的.除了人为森林采伐干扰外,海拔梯度是形成海南尖峰岭热带天然林物种多样性的最重要因素.CCA分析显示:原始林中,物种分布与海拔、土壤交换性钙和交换性镁含量3个环境因子有较密切的关系,也与4个土壤物理性质环境因子(土壤密度、土壤最大持水能力、毛细管持水量和毛管孔隙度)关系密切;森林采伐后的恢复森林中,土壤全磷和速效磷含量对物种分布的影响增强,但皆伐后土壤交换性钙和交换性镁含量对物种分布的影响减弱.多元回归分析显示:原始林的物种丰富度与海拔和土壤交换性钙含量显著相关,径级择伐后恢复热带天然林的物种丰富度和海拔、土壤全磷含量和速效钾含量显著相关,皆伐后恢复热带天然林的物种丰富度仅和海拔显著相关.研究结果还显示,如果数据中存在空间自相关,建立多元回归模型时应该考虑数据中的空间自相关属性,虽然它并不总是存在的.  相似文献   

13.
Through their role as ‘ecosystem engineers’, termites provide a range of ecosystem services including decomposition, and carbon and nitrogen cycling. Although termite diversity levels differ between regions as a result of variation in regional species pool size, in general, termite diversity is thought to decline with elevation. This study (1) investigated how termite species density, abundance, functional group diversity and termite attack on dead wood vary with altitude along an Amazon–Andes altitudinal gradient in Peru; (2) identified likely environmental causes of this pattern; and (3) explored the implications of termite presence for ecosystem functioning (notably for decomposition). Termites were sampled with a standardized 100 × 2 m straight‐belt transect at five undisturbed forest sites along a gradient 190 to 3025 m, as were environmental variables and termite and fungus attack on dead wood. Termite diversity was similar to that found at comparable sites in South America, and there was little turnover of assemblage composition with elevation suggesting that montane specialists are not present. Termite diversity declined with increased elevation, though the upper distribution limit for termites was at a lower elevation than anticipated. We suggest that key drivers of this elevation pattern are reduced temperature with altitude and mid‐elevation peaks in soil water content. Also, attack on dead wood diminished with decreasing termite indirect absolute abundance, while the depth of the soil humic layer increased. We hypothesize that termite abundance is a major accelerant of decomposition rates (and associated mineralization) in Amazonian forests.  相似文献   

14.
Species richness, abundance and diversity patterns in palm communities in the Yucatan Peninsula were compared at three sites with different forest types (semi‐deciduous, semi‐evergreen and evergreen), as well as different precipitation, geomorphology and soil depth. All individual palms, including seedlings, juveniles and adults, were identified and counted in forty‐five (0.25 ha) transects. A total of 46 000 individual palms belonging to 11 species from nine genera and two subfamilies were recorded. Palm richness, diversity and abundance were highest in the evergreen forest. Species from the subfamily Coryphoideae dominated the semi‐deciduous and semi‐evergreen forests while species from the subfamily Arecoideae dominated the evergreen forest. Seven species were found only in the evergreen forest. Chamaedorea seifrizii and Sabal yapa were found in all three forest types, while Thrinax radiata was found in the semi‐deciduous and semi‐ evergreen forests and Cocothrinax readii only in the semi‐evergreen forest. Compared to other neotropical palm communities, the richness and diversity in the Yucatan Peninsula are lower than in the western Amazon basin. Although palm richness and diversity on the Yucatan Peninsula were positively associated with precipitation, other variables, in particular soil depth and fertility as well as habitat heterogeneity (microtopography and canopy cover), need to be considered to better understand the observed patterns.  相似文献   

15.
Roads and road-building are among the most important environmental impacts on forests near urban areas, but their effects on ecosystem processes and species distributions remain poorly known. Termites are the primary decomposer organisms in tropical forests and their spatial distribution is strongly affected by vegetation and soil structure. We studied the impacts of road construction on termite community structure in an Amazonian forest fragment near Manaus, Brazil. One leading question was whether the fragment under study was large enough to maintain the termite species pool present in nearby continuous forests. We also asked how soil moisture and canopy openness varied with proximity to roads, and whether these changes were associated with changes in termite species richness and composition in the fragment. While the forest fragment had a termite composition very similar to that of continuous forests, roads caused important changes in soil moisture and canopy openness, especially when close to forest edges. At distances of up to 81 m from roads, changes in soil moisture were significantly related to changes in termite species composition, but there was no correlation between canopy openness and species richness or composition. These results suggest that fragmentation caused by roads impacts termites in a different and less damaging manner than fragmentation caused by other kinds of degradation, and that even fragments bisected by roads can support very diverse communities and even undescribed taxa of termites. We conclude that a buffer zone should be established for conservation purposes in the reserves surrounded by roads.  相似文献   

16.
Disturbance, particularly agricultural expansion is one of the major threats to the biodiversity and ecological functions of tropical and sub-tropical ecosystems. In this regard, we examined changes in the species richness, abundance, and diversity of termites across different disturbance treatments in a sub-tropical semi-arid savanna in south eastern Zimbabwe. Nine transects (100?×?2 m) representing three habitat disturbance treatments (primary woodland; grazing area; agricultural field) were sampled for termites using a rapid biodiversity assessment protocol. Termites were more abundant and species-rich in primary woodland and grazing area than in the agricultural field. Twelve termite species from three sub-families were present, with Microtermes sp. constituting 35% of the identified termite species. Termite feeding group structure differed significantly among land-use types, and of all termites present, wood-feeding termites were the most abundant while soil-feeders were rare in the agricultural field. In conclusion the observed pattern in termite species richness and relative abundance indicates that termites are very resilient to natural disturbance and might actually benefit from some natural disturbances like they did in the grazing area of this study, but they are not resilient to extreme anthropogenic disturbance. Although there was no notable difference in termite species richness and relative abundance between agricultural field and primary woodland, the pattern observed across the three sites may be potential support for the IDH suggesting that intermediate levels of physical disturbance intensity influence the structure and functioning of termite assemblages in semi-arid savanna.  相似文献   

17.
对西双纳不同面积“龙山”片断干性季节雨林和保护区连续湿性季节雨淋凋落物层土壤动物群落多样性研究表明,土壤动物群落物种丰盛度,多度和多样性的变化不顾在随雨林片断化面积减少而降低的“种-面积效应”,而雨林片断化后因先锋植物(喜阳性)侵入产生的“干暖效应”,使片断雨林凋落物增多,腐殖质,土壤有机质,N,P等元素含量增高,土壤生境条件更有利于土壤动物生存,其群落多样性指数高于连续湿性季节雨林,但2种生境土壤动物群落种-多度模型均表现为对数级模式。  相似文献   

18.
Forested tropical landscapes around the world are being extensively logged and converted to agriculture, with serious consequences for biodiversity and potentially ecosystem functioning. Here we investigate associations between habitat disturbance and functional diversity of ants and termites—two numerically dominant and functionally important taxa in tropical rain forests that perform key roles in predation, decomposition, nutrient cycling and seed dispersal. We compared ant and termite occurrence and composition within standardised volumes of soil and dead wood in old growth forest, logged forest and oil palm plantation in Sabah, Malaysian Borneo. Termites occurred substantially less frequently in converted habitats than in old growth forest, whereas ant occurrences were highest in logged forest and lowest in old growth forest. All termite feeding groups had low occurrence in disturbed habitats, with soil feeders occurring even less frequently than wood feeders. Ant functional groups showed more variable associations, with some opportunist and behaviourally dominant groups being more abundant in degraded habitats. The importance of ants and termites in tropical ecosystems and such differing patterns of assemblage variation suggest that ecosystem functioning may be significantly altered in converted habitats.  相似文献   

19.
A role of termites in decomposition processes was quantitatively evaluated in a dry evergreen forest (DEF) in Thailand, using respiration rates and biomasses of fungus combs as well as of termites themselves. The termite population and fungus combs mineralized 11.2% of carbon (C) in the annual aboveground litterfall (AAL) by their respiration. Fungus combs were responsible for a major part (7.2% of the AAL) of the C mineralization mediated by termites. For comparison, fractions of AAL mineralized by respiration from termite populations and fungus combs were estimated for tropical forests and savannas where termites have been well studied, assuming that there is the same ratio as for the DEF between biomass of fungus combs and abundance of fungus growers. Termites in dry tropical forests (annual rainfall<2,000 mm) are shown to mineralize about 10% of C in the AAL by respiration from their populations and fungus combs, and their ecological impact in savannahs is comparable in this aspect. A significant negative correlation between fraction of AAL and annual rainfall demonstrates that the importance of termites in decomposition processes is greater in dry tropical forests than in moist tropical forests. Considering that fungus combs contributed significantly to AAL mineralization in most of the tropical forests and savannas, fungus growers are a much more influential group than previously expected in tropical ecosystems.T. Abe deceased on 27 March 2000  相似文献   

20.
Termites play important roles in organic matter decomposition, nutrient cycling, and soil structure in tropical rain forests. When forests are replaced by agriculture, termite species richness, abundance, and function often decline. We compared the termite assemblage of a primary forest site with that of a low plant diversity, palm-based agroforest (five plant species) and a high plant diversity, home-garden agroforest (10 plant species) using a rapid biodiversity assessment protocol. In comparing the primary forest termite species composition to previously published studies, we found soil feeders and the Apicotermitinae to be more dominant than previously reported in Amazonia. Thirty percent of the species belonged to the Apicotermitinae, and an unusually high percentage (57%) of species were soil feeders. Unexpectedly, the palm-based agroforest, despite its lower plant diversity, was closer to primary forest in termite species composition, rate of species accumulation, and proportions of species in taxonomic and functional classes than was the home-garden agroforest. This suggests that particular plant attributes may better determine the termite assemblage than plant diversity alone in these agroecosystems. Unlike other agroecosystems reported in the literature, Apicotermitinae and soil feeders were proportionally more abundant in these agroforests than in primary forest. The ability of agroforests to support populations of soil feeders has a potentially positive effect on soil fertility in these agroecosystems; insomuch as feeding guild is a proxy for function, these closed-canopy agroforests may be able to sustain the same termite-mediated functions as primary forest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号