首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Many cases of early-onset inherited Alzheimer's disease (AD) are caused by mutations in the presenilin-1 (PS1) gene. Overexpression of PS1 mutations in cultured PC12 cells increases their vulnerability to apoptosis-induced trophic factor withdrawal and oxidative insults. We now report that primary hippocampal neurons from PS1 mutant knock-in mice, which express the human PS1M146V mutation at normal levels, exhibit increased vulnerability to amyloid beta-peptide toxicity. The endangering action of mutant PS1 was associated with increased superoxide production, mitochondrial membrane depolarization, and caspase activation. The peroxynitrite-scavenging antioxidant uric acid and the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone protected hippocampal neurons expressing mutant PS1 against cell death induced by amyloid beta-peptide. Increased oxidative stress may contribute to the pathogenic action of PS1 mutations, and antioxidants may counteract the adverse property of such AD-linked mutations.  相似文献   

2.
3.
Apolipoprotein E (apoE) is present in the brain and may contribute to neurophysiologic or neuropathologic events, depending on environmental and genetic influences. Recent studies indicate a role for apoE in synaptic plasticity and maintenance of synaptic membrane symmetry, suggesting that apoE may be involved in regulating synaptic homeostasis. In the present study, cerebrocortical synaptosomes were prepared from transgenic mice lacking apoE (apoE KO) to analyze the possible contribution of apoE toward maintaining homeostasis in synaptosomes. Synaptosomal preparations from apoE KO and wild-type mice exhibited similar basal levels of reactive oxygen species, mitochondrial function, and caspase activity; however, following application of amyloid beta-peptide [Abeta(1-40)], apoE KO synaptosomes displayed increased levels of oxidative stress, mitochondrial dysfunction, and caspase activation compared with synaptosomes from wild-type mice. Synaptosomal membranes from apoE KO mice were more fluid than wild-type synaptosomes and contained higher levels of thiobarbituric acid-reactive substances, consistent with elevated levels of lipid peroxidation occurring in the synapses of apoE KO mice. Together, these data are consistent with a role for apoE in maintaining homeostasis by attenuating oxidative stress, caspase activation, and mitochondrial homeostasis in synapses.  相似文献   

4.
Alzheimer's disease, the major dementing disorder of the elderly that affects over 4 million Americans, is related to amyloid beta-peptide, the principal component of senile plaques in Alzheimer's disease brain. Oxidative stress, manifested by protein oxidation and lipid peroxidation, among other alterations, is a characteristic of Alzheimer's disease brain. Our laboratory united these two observations in a model to account for neurodegeneration in Alzheimer's disease brain, the amyloid beta-peptide-associated oxidative stress model for neurotoxicity in Alzheimer's disease. Under this model, the aggregated peptide, perhaps in concert with bound redox metal ions, initiates free radical processes resulting in protein oxidation, lipid peroxidation, reactive oxygen species formation, cellular dysfunction leading to calcium ion accumulation, and subsequent neuronal death. Free radical antioxidants abrogate these findings. This review outlines the substantial evidence from multiidisciplinary approaches for amyloid beta-peptide-associated free radical oxidative stress and neurotoxicity and protection against these oxidative processes and cell death by free radical scavengers. In addition, we review the strong evidence supporting the notion that the single methionine residue of amyloid beta-peptide is vital to the oxidative stress and neurotoxicological properties of this peptide. Further, we discuss studies that support the hypothesis that aggregated soluble amyloid beta-peptide and not fibrils per se are necessary for oxidative stress and neurotoxicity associated with amyloid beta-peptide.  相似文献   

5.
Abstract: Many cases of autosomal dominant inherited forms of early-onset Alzheimer's disease are caused by mutations in the genes encoding presenilin-1 (PS-1; chromosome 14) and presenilin-2 (PS-2; chromosome 1). PSs are expressed in neurons throughout the brain wherein they appear to be localized primarily to the endoplasmic reticulum (ER) of cell bodies and dendrities. PS-1 and PS-2 show high homology and are predicted to have eight transmembrane domains with the C terminus, N terminus, and a loop domain all on the cytosolic side of the membrane; an enzymatic cleavage of PSs occurs at a site near the loop domain. The normal function of PSs is unknown, but data suggest roles in membrane trafficking, amyloid precursor protein processing, and regulation of ER calcium homeostasis. Homology of PSs to the C. elegans gene sel-12 , which is involved in Notch signaling, and phenotypic similarities of PS-1 and Notch knockout mice suggest a developmental role for PSs in the nervous system. When expressed in cultured cells and transgenic mice, mutant PSs promote increased production of a long form of amyloid β-peptide (Aβ1-42) that may possess enhanced amyloidogenic and neurotoxic properties. PS mutations sensitize cultured neural cells to apoptosis induced by trophic factor withdrawal, metabolic insults, and amyloid β-peptide. The mechanism responsible for the proapoptotic action of mutant PSs may involve perturbed calcium release from ER stores and increased levels of oxidative stress. Recent studies of apoptosis in many different cell types suggest that ER calcium signaling can modulate apoptosis. The evolving picture of PS roles in neuronal plasticity and Alzheimer's disease is bringing to the forefront the ER, an organelle increasingly recognized as a key regulator of neuronal plasticity and survival.  相似文献   

6.
早老蛋白(Presenilins)功能研究进展   总被引:2,自引:0,他引:2  
鲍云鹤  邹泉  郑坚瑜 《生命科学》2000,12(5):217-220
编码早老蛋白(Presenilins,PSs)的基因ps-1、ps-2被认为是构成早发家族性老年痴呆(early-onset familial Alzheimer’s disease,FAD)的主要致病基因。早老蛋白具有8个跨膜区的结构,在神经系统广泛表达。其功能尚未完全明确,最近几年的研究主要集中在早老蛋白与淀粉样沉淀前体蛋白(amyloid precursor protein,APP)的切割、  相似文献   

7.
Presenilin-1 (PS1) is thought to regulate cell differentiation and survival by modulating the Notch signaling pathway. Mutations in PS1 have been shown to cause early-onset inherited forms of Alzheimer's disease (AD) by a gain-of-function mechanism that alters proteolytic processing of the amyloid precursor protein (APP) resulting in increased production of neurotoxic forms of amyloid beta-peptide. The present article considers a second pathogenic mode of action of PS1 mutations, a defect in cellular calcium signaling characterized by overfilling of endoplasmic reticulum (ER) calcium stores and altered capacitive calcium entry; this abnormality may impair synaptic plasticity and sensitize neurons to apoptosis and excitotoxicity. The calcium signaling defect has also been documented in lymphocytes, suggesting a contribution of immune dysfunction to the pathogenesis of AD. A better understanding of the calcium signaling defect resulting from PS1 mutations may lead to the development of novel preventative and therapeutic strategies for disorders of the nervous and immune systems.  相似文献   

8.
9.
Recent studies have shown that rats and mice maintained on a dietary restriction (DR) regimen exhibit increased resistance of neurons to excitotoxic, oxidative, and metabolic insults in experimental models of Alzheimer's, Parkinson's, and Huntington's diseases and stroke. Because synaptic terminals are sites where the neurodegenerative process may begin in such neurodegenerative disorders, we determined the effects of DR on synaptic homeostasis and vulnerability to oxidative and metabolic insults. Basal levels of glucose uptake were similar in cerebral cortical synaptosomes from rats maintained on DR for 3 months compared with synaptosomes from rats fed ad libitum. Exposure of synaptosomes to oxidative insults (amyloid beta-peptide and Fe(2+)) and a metabolic insult (the mitochondrial toxin 3-nitropropionic acid) resulted in decreased levels of glucose uptake. Impairment of glucose uptake following oxidative and metabolic insults was significantly attenuated in synaptosomes from rats maintained on DR. DR was also effective in protecting synaptosomes against oxidative and metabolic impairment of glutamate uptake. Loss of mitochondrial function caused by oxidative and metabolic insults, as indicated by increased levels of reactive oxygen species and decreased transmembrane potential, was significantly attenuated in synaptosomes from rats maintained on DR. Levels of the stress proteins HSP-70 and GRP-78 were increased in synaptosomes from DR rats, consistent with previous data suggesting that the neuroprotective mechanism of DR involves a "preconditioning" effect. Collectively, our data provide the first evidence that DR can alter synaptic homeostasis in a manner that enhances the ability of synapses to withstand adversity.  相似文献   

10.
Presenilin-1 and -2 are molecular targets for gamma-secretase inhibitors   总被引:15,自引:0,他引:15  
Presenilins are integral membrane protein involved in the production of amyloid beta-protein. Mutations of the presenilin-1 and -2 gene are associated with familial Alzheimer's disease and are thought to alter gamma-secretase cleavage of the beta-amyloid precursor protein, leading to increased production of longer and more amyloidogenic forms of A beta, the 4-kDa beta-peptide. Here, we show that radiolabeled gamma-secretase inhibitors bind to mammalian cell membranes, and a benzophenone analog specifically photocross-links three major membrane polypeptides. A positive correlation is observed among these compounds for inhibition of cellular A beta formation, inhibition of membrane binding and cross-linking. Immunological techniques establish N- and C-terminal fragments of presenilin-1 as specifically cross-linked polypeptides. Furthermore, binding of gamma-secretase inhibitors to embryonic membranes derived from presenilin-1 knockout embryos is reduced in a gene dose-dependent manner. In addition, C-terminal fragments of presenilin-2 are specifically cross-linked. Taken together, these results indicate that potent and selective gamma-secretase inhibitors block A beta formation by binding to presenilin-1 and -2.  相似文献   

11.
Familial Alzheimer's disease (FAD) is frequently associated with mutations in the presenilin-1 (PS1) gene. Almost all PS1-associated FAD mutations reported so far are exchanges of single conserved amino acids and cause the increased production of the highly amyloidogenic 42-residue amyloid beta-peptide Abeta42. Here we report the identification and pathological function of an unusual FAD-associated PS1 deletion (PS1 DeltaI83/DeltaM84). This FAD mutation is associated with spastic paraparesis clinically and causes accumulation of noncongophilic Abeta-positive "cotton wool" plaques in brain parenchyma. Cerebral amyloid angiopathy due to Abeta deposition was widespread as were neurofibrillary tangles and neuropil threads, although tau-positive neurites were sparse. Although significant deposition of Abeta42 was observed, no neuritic pathology was associated with these unusual lesions. Overexpressing PS1 DeltaI83/DeltaM84 in cultured cells results in a significantly elevated level of the highly amyloidogenic 42-amino acid amyloid beta-peptide Abeta42. Moreover, functional analysis in Caenorhabditis elegans reveals reduced activity of PS1 DeltaI83/DeltaM84 in Notch signaling. Our data therefore demonstrate that a small deletion of PS proteins can pathologically affect PS function in endoproteolysis of beta-amyloid precursor protein and in Notch signaling. Therefore, the PS1 DeltaI83/DeltaM84 deletion shows a very similar biochemical/functional phenotype like all other FAD-associated PS1 or PS2 point mutations. Since increased Abeta42 production is not associated with classical senile plaque formation, these data demonstrate that amyloid plaque formation is not a prerequisite for dementia and neurodegeneration.  相似文献   

12.
Clearance of amyloid-beta by circulating lipoprotein receptors   总被引:7,自引:0,他引:7  
Low-density lipoprotein receptor-related protein-1 (LRP) on brain capillaries clears amyloid beta-peptide (Abeta) from brain. Here, we show that soluble circulating LRP (sLRP) provides key endogenous peripheral 'sink' activity for Abeta in humans. Recombinant LRP cluster IV (LRP-IV) bound Abeta in plasma in mice and Alzheimer's disease-affected humans with compromised sLRP-mediated Abeta binding, and reduced Abeta-related pathology and dysfunction in a mouse model of Alzheimer disease, suggesting that LRP-IV can effectively replace native sLRP and clear Abeta.  相似文献   

13.
We have created early-onset transgenic (Tg) models by exploiting the synergistic effects of familial Alzheimer's disease mutations on amyloid beta-peptide (Abeta) biogenesis. TgCRND8 mice encode a double mutant form of amyloid precursor protein 695 (KM670/671NL+V717F) under the control of the PrP gene promoter. Thioflavine S-positive Abeta amyloid deposits are present at 3 months, with dense-cored plaques and neuritic pathology evident from 5 months of age. TgCRND8 mice exhibit 3,200-4,600 pmol of Abeta42 per g brain at age 6 months, with an excess of Abeta42 over Abeta40. High level production of the pathogenic Abeta42 form of Abeta peptide was associated with an early impairment in TgCRND8 mice in acquisition and learning reversal in the reference memory version of the Morris water maze, present by 3 months of age. Notably, learning impairment in young mice was offset by immunization against Abeta42 (Janus, C., Pearson, J., McLaurin, J., Mathews, P. M., Jiang, Y., Schmidt, S. D., Chishti, M. A., Horne, P., Heslin, D., French, J., Mount, H. T. J., Nixon, R. A., Mercken, M., Bergeron, C., Fraser, P. E., St. George-Hyslop, P., and Westaway, D. (2000) Nature 408, 979-982). Amyloid deposition in TgCRND8 mice was enhanced by the expression of presenilin 1 transgenes including familial Alzheimer's disease mutations; for mice also expressing a M146L+L286V presenilin 1 transgene, amyloid deposits were apparent by 1 month of age. The Tg mice described here suggest a potential to investigate aspects of Alzheimer's disease pathogenesis, prophylaxis, and therapy within short time frames.  相似文献   

14.
Alzheimer's disease (AD) is characterized by progressive cognitive impairment associated with accumulation of amyloid beta-peptide, synaptic degeneration and the death of neurons in the hippocampus, and temporal, parietal and frontal lobes of the cerebral cortex. Analysis of postmortem brain tissue from AD patients can provide information on molecular alterations present at the end of the disease process, but cannot discriminate between changes that are specifically involved in AD versus those that are simply a consequence of neuronal degeneration. Animal models of AD provide the opportunity to elucidate the molecular changes that occur in brain cells as the disease process is initiated and progresses. To this end, we used the 3xTgAD mouse model of AD to gain insight into the complex alterations in proteins that occur in the hippocampus and cortex in AD. The 3xTgAD mice express mutant presenilin-1, amyloid precursor protein and tau, and exhibit AD-like amyloid and tau pathology in the hippocampus and cortex, and associated cognitive impairment. Using the iTRAQ stable-isotope-based quantitative proteomic technique, we performed an in-depth proteomic analysis of hippocampal and cortical tissue from 16 month old 3xTgAD and non-transgenic control mice. We found that the most important groups of significantly altered proteins included those involved in synaptic plasticity, neurite outgrowth and microtubule dynamics. Our findings have elucidated some of the complex proteome changes that occur in a mouse model of AD, which could potentially illuminate novel therapeutic avenues for the treatment of AD and other neurodegenerative disorders.  相似文献   

15.
Presenilin-1 (PS-1) is a transmembrane protein that may be involved in the processing of amyloid precursor protein (APP). Mutations in PS-1 are the major cause of familial Alzheimer's disease (AD). AD brain is under significant oxidative stress, including protein oxidation. In the present study, protein oxidation was compared in synaptosomes from knock-in mice expressing mutant human PS-1 (M146V mutation) and from wild-type mice expressing non-mutant human PS-1. Synaptosomal membrane protein conformational alterations associated with oxidative stress were measured using electron paramagnetic resonance (EPR) in conjunction with a protein-specific spin-label. Direct synaptosomal protein oxidation was assessed by a carbonyl detection assay. Synaptosomal proteins from PS-1 mutant mice displayed increased oxidative stress as measured by both techniques, compared with synaptosomal proteins from wild type mice. These data suggest that PS-1 mutations cause oxidative alterations in synaptosomal membrane protein structure and oxidative modification of synaptosomal proteins. Our findings suggest that familial AD may be associated with oxidative stress that may play a pivotal role in neuronal dysfunction and death.  相似文献   

16.
17.
Mutations in the human presenilin genes (PS1 or PS2) have been linked to autosomal dominant, early onset Alzheimer's disease (AD). Presenilins, probably as an essential part of gamma-secretase, modulate gamma-cleavage of the amyloid protein precursor (APP) to the amyloid beta-peptide (Abeta). Mutations in sel-12, a Caenorhabditis elegans presenilin homologue, cause a defect in egg laying that can be suppressed by loss of function mutations in a second gene, SEL-10. SEL-10 protein is a homologue of yeast Cdc4, a member of the SCF (Skp1-Cdc53/CUL1-F-box protein) E2-E3 ubiquitin ligase family. In this study, we show that human SEL-10 interacts with PS1 and enhances PS1 ubiquitination, thus altering cellular levels of unprocessed PS1 and its N- and C-terminal fragments. Co-transfection of sel-10 and APP cDNAs in HEK293 cells leads to an alteration in the metabolism of APP and to an increase in the production of amyloid beta-peptide, the principal component of amyloid plaque in Alzheimer's disease.  相似文献   

18.
19.
Neuronal and glial calcium signaling in Alzheimer's disease   总被引:25,自引:0,他引:25  
Mattson MP  Chan SL 《Cell calcium》2003,34(4-5):385-397
Cognitive impairment and emotional disturbances in Alzheimer's disease (AD) result from the degeneration of synapses and death of neurons in the limbic system and associated regions of the cerebral cortex. An alteration in the proteolytic processing of the amyloid precursor protein (APP) results in increased production and accumulation of amyloid beta-peptide (Abeta) in the brain. Abeta has been shown to cause synaptic dysfunction and can render neurons vulnerable to excitotoxicity and apoptosis by a mechanism involving disruption of cellular calcium homeostasis. By inducing membrane lipid peroxidation and generation of the aldehyde 4-hydroxynonenal, Abeta impairs the function of membrane ion-motive ATPases and glucose and glutamate transporters, and can enhance calcium influx through voltage-dependent and ligand-gated calcium channels. Reduced levels of a secreted form of APP which normally regulates synaptic plasticity and cell survival may also promote disruption of synaptic calcium homeostasis in AD. Some cases of inherited AD are caused by mutations in presenilins 1 and 2 which perturb endoplasmic reticulum (ER) calcium homeostasis such that greater amounts of calcium are released upon stimulation, possibly as the result of alterations in IP(3) and ryanodine receptor channels, Ca(2+)-ATPases and the ER stress protein Herp. Abnormalities in calcium regulation in astrocytes, oligodendrocytes, and microglia have also been documented in studies of experimental models of AD, suggesting contributions of these alterations to neuronal dysfunction and cell death in AD. Collectively, the available data show that perturbed cellular calcium homeostasis plays a prominent role in the pathogenesis of AD, suggesting potential benefits of preventative and therapeutic strategies that stabilize cellular calcium homeostasis.  相似文献   

20.
Apolipoprotein E (apoE) plays an important role in the response to central nervous system injury. The e4 allele of apoE and amyloid beta-peptide (Abeta) are associated with Alzheimer's disease (AD) and may be central to the pathogenesis of this disorder. Recent studies demonstrate evidence for neurodegeneration and increased lipid peroxidation in transgenic mice lacking apoE (KO). In the current study, synaptosomes were prepared from apoE KO mice to determine the role of apoE in synaptic membrane structure and to determine susceptibility to oxidative damage by Abeta(1-40). ApoE KO mice exhibited structural modifications to lipid and protein components of synaptosomal membranes as determined by electron paramagnetic resonance in conjunction with lipid- and protein- specific spin labels. Incubation with 5 microM Abeta(1-40) resulted in more severe oxidative modifications to proteins and lipids in apoE KO synaptosomes as measured by protein carbonyls, an index of protein oxidation, and TBARs and protein-bound 4-hydroxynonenal (HNE), markers of lipid oxidation. Together, these data support a role for apoE in the modulation of oxidative injury and in the maintenance of synaptic integrity and are discussed with reference to alterations in AD brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号