首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of nucleoside transport inhibitors has been tested for their ability to displace [3H]diazepam binding to CNS membranes. No correlation between their potency as [3H]adenosine uptake blockers and as inhibitors of [3H]diazepam binding was found, either in rat or guinea-pig brain tissue. Dipyridamole, a potent adenosine transport inhibitor interacted strongly (Ki = 54 nM) with peripheral-type benzodiazepine binding sites (“acceptor sites”) and was 4–5 fold weaker in displacing [3H]methylclonazepam and [3H]Ro15-1788, ligands selective for the specific central benzodiazepine “receptor”. Unlike the benzodiazepines, dipyridamole had no anticonvulsant action against metrazole-induced convulsions in mice. Ro5-4864, a benzodiazepine which selectively interacts with the peripheral-type benzodiazepine binding site, was approximately equipotent with diazepam in inhibiting [3H]adenosine uptake in brain tissue. These results do not support the idea of a very close link between high-affinity central binding sites for clinically-active benzodiazepines and the adenosine uptake site. The possibility of a connection between benzodiazepine “acceptor” sites and the membrane nucleoside transporter is discussed.  相似文献   

2.
High-affinity binding sites for [3H]PK 11195 have been detected in brain membranes of rainbow trout (Salmo gairdneri) and mouse forebrain, where the densities of receptors were 1,030 and 445 fmol/mg of protein, respectively. Ro 5-4864 (4'-chlorodiazepam) was 2,200-fold less potent as a competitor of [3H]PK 11195 binding in the piscine than the murine membranes. Investigation of the regional distribution of these sites in trout yielded a rank order of density of spinal cord greater than olfactory bulb = optic tectum = rhombencephalon greater than cerebellum greater than telencephalon. This site in trout shared some of the characteristics of the peripheral-type benzodiazepine receptor (PTBR) (also known as the mitochondrial benzodiazepine receptor) in rodents, i.e., high affinity for PK 11195 and the endogenous ligand protoporphyrin IX, but was unique in the low affinity of Ro 5-4864 (41 microM) and diazepam and the relatively high affinity of the calcium channel ligand diltiazem and two central benzodiazepine ligands, CGS 8216 and CGS 9896. The differential affinity for the two prototypic PTBR ligands in trout is similar to that previously observed in calf and human brain membranes. Structural differences for the trout sites are indicated by the relative inability of diethyl pyrocarbonate to modify histidine residues of the binding site in trout as compared with mouse membranes. Heterogeneity of binding of the two prototypic PTBR ligands in mouse brain membranes was indicated by additivity studies, equilibrium competition experiments, and saturation isotherms, which together support the hypothesis that Ro 5-4864 discriminates between two [3H]PK 11195 binding sites having high (nanomolar) and low (micromolar) affinity, respectively.  相似文献   

3.
The binding of [3H]Ro 5-4864, a specific ligand for "peripheral-type" benzodiazepine binding sites and [3H]Ro 15-1788, a specific ligand for the central benzodiazepine receptors, was determined in subcellular fractions of rat brain. As previously reported, the highest levels of "peripheral-type" benzodiazepine binding sites and benzodiazepine receptors were found in the crude P1 and P2 fractions, respectively. Purification of these crude fractions revealed that high levels of both [3H]Ro 5-4864 and [3H]Ro 15-1788 binding were present in the mitochondrial and synaptosomal fractions. In contrast, the purified nuclei and myelin contained low levels of both [3H]Ro 5-4864 and [3H]Ro 15-1788 binding.  相似文献   

4.
Ro 5-4864 is a 1,4 benzodiazepine lacking typical benzodiazepine behavioural actions, and which has very low affinity for the “classical” CNS benzodiazepine binding sites. However, Ro 5-4864 has very high affinity for the peripheral type of binding site in the periphery and in the brain. Evidence is reviewed that Ro 5-4864 is sedative, convulsant and anxiogenic in rodents. We also describe the effects of combining Ro 5-4864 treatment with benzodiazepines (e.g. diazepam, chlordiazepoxide) and with other drugs that modify the activity of benzodiazepines (Ro 15-1788, CGS 8216, picrotoxin, PK 11195, phenytoin). The binding sites that might be mediating these behavioural actions of Ro 5-4864 are discussed.  相似文献   

5.
Properties of [3H] diazepam binding to rat peritoneal mast cells   总被引:6,自引:0,他引:6  
Benzodiazepine binding to rat peritoneal mast cells was investigated using [3H] diazepam as the radioactive probe. The specific binding of [3H] diazepam reaches equilibrium within 10–15 min, is saturable and is linear with cell number. Scatchard analysis of equilibrium binding indicates the existence of only one class of binding sites with a KD = 90 ± 10 nM and Bmax of 261 ± 60 fmoles/106 cells. The binding of [3H] diazepam is temperature dependent, the highest amount is bound at 0°C and shows a pH-optimum between pH 6.8 – 7.4. The binding of [3H] diazepam is reversible with t12 = 1.2 ± 0.2 min. Based on the relative potency of clonazepam and Ro5-4864 in displacing the specific [3H] diazepam binding, the binding sites in the mast cell are similar to those in the peripheral tissues like lung, liver, and kidney and are different from those in the brain. These data indicate that the mast cells have benzodiazepine binding sites which are of the peripheral type.  相似文献   

6.
[3H] R05-4864 binding sites have been characterized in kidney, heart, brain, adrenals and platelets in the rat. In all these organs the following order of potency in the R05-4864 displacement was found : R05-4864 > diazepam > clonazepam indicating that they correspond to the “peripheral type” of benzodiazepine binding sites. PK 11195, an isoquinoline carboxamide derivative, displaces [3H] R05-4864 from its binding sites in all the organs. PK 11195 was as potent as R05-4864 in the platelets, heart, adrenals, kidney and several brain regions (midbrain, hypothalamus, medulla + pons and hippocampus. However it was 5 to 10 times more effective in cortex and striatum. In conclusion PK 11195 might represent a new tool to elucidate the physiological relevance of “peripheral type” benzodiazepine binding sites and might help to discriminate the hypothetical subclasses of these binding sites.  相似文献   

7.
The density of high affinity binding sites for [3H]4'-chlorodiazepam [( 3H]Ro 5-4864) in guinea pig cerebral cortex is significantly higher (3.8-fold) than the density reported in the rat, and is nearly equal to the density of binding sites for other [3H]benzodiazepines (e.g., diazepam, flunitrazepam). The density of these [3H]Ro 5-4864 binding sites was generally higher in guinea pig brain than in rat brain, with the exception of olfactory bulb. Both the subcellular distribution and pharmacologic profile of these sites in guinea pig brain appears qualitatively similar to observations previously reported in the rat. The high density of binding sites for [3H]Ro 5-4864, coupled with the potency of this compound as a convulsant in the guinea pig, suggest this species will be a valuable model for elucidating putative pharmacologic and physiologic functions of these sites in brain.  相似文献   

8.
The effects of preincubating cerebral cortical membranes with phospholipase A2 (PLA2) were examined on radioligand binding to benzodiazepine receptors of the "central" and "peripheral" types. PLA2 (0.005-0.1 U/ml) increased [3H]flunitrazepam and [3H]3-carboethoxy-beta-carboline binding by increasing the apparent affinities of these ligands with no concomitant change in the maximum number of binding sites. In contrast, neither gamma-aminobutyric acid (GABA)-enhanced [3H]flunitrazepam binding nor [3H]Ro 15-1788 binding was altered by preincubation with PLA2 at concentrations as high as 2 U/ml. Both pyrazolopyridine (SQ 65,396)- and barbiturate (pentobarbital)-enhanced [3H]flunitrazepam binding and [35S]t-butylbicyclophosphorothionate (TBPS) binding were markedly reduced by as little as 0.0025-0.005 U/ml of PLA2. These findings suggest that PLA2 inactivates the TBPS binding site on the benzodiazepine-GABA receptor chloride ionophore complex, which results in a selective loss of allosteric "regulation" between the components of this complex. PLA2 also reduced the apparent affinity of [3H]Ro 5-4864 to peripheral-type benzodiazepine receptors in cerebral cortical, heart, and kidney membranes, but increased the number of [3H]PK 11195 binding sites with no change in apparent affinity. These data demonstrate that PLA2 can differentially affect the lipid microenvironment of "central" and "peripheral" types of benzodiazepine receptors.  相似文献   

9.
Experiments were performed to characterize diazepam-insensitive [3H]Ro 15-4513 binding sites in discrete regions of rodent brain and cultured rat cerebellar granule cells. Scatchard analysis of [3H]Ro 15-4513 binding in the presence of 10 M diazepam revealed that diazepam-insensitive binding sites in the rat brain were most abundant in the cerebellum, followed by the hippocampus, cerebral cortex and olfactory bulb. Diazepam-insensitive sites represented approximately 80% of the total [3H]Ro 15-4513 binding sites in the membranes of cultured rat cerebellar granule cells. The Bmax values for total [3H]Ro 15-4513 and [35S]TBPS are almost identical, and 5–6 times larger than that for [3H]diazepam in this preparation. Although some annelated [1,5-a]benzodiazepine analogues such as Ro 15-4513, Ro 16-6028, flumazenil and Ro 15-3505, and an imidazothienodiazepine, Ro 19-4603, showed high affinity for cortical and cerebellar diazepam-insensitive sites, all the annelated benzodiazepine compounds tested showed higher affinity for cerebellar diazepaminsensitive sites than cortical ones. In contrast, a pyrazoloquinoline compound, CGS 8216, and -carboline analogues such as -carboline-3-carboxylate ethyl ester (-CCE) and -carboline-3-carboxylate methyl ester (-CCM) exhibited higher affinity for cortical than cerebellar sites. These results suggest that diazepam-insensitive sites are heterogeneous in brain areas with respect to ligand specificity.  相似文献   

10.
The [3H]PK 11195, 1-(2-chlorophenyl)-N-methyl-N-(1-methyl-propyl)-3-isoquinolinecarboxamide, binding sites in rat cardiac membranes are saturable, with high affinity, specific GABA-independent and correspond to the peripheral type of benzodiazepine. The order of potency of displacing agents was: PK 11195 greater than RO5-4864 greater than dipyridamole greater than diazepam greater than clonazepam. The Bmax obtained with [3H]PK 11195 was equivalent of the Bmax obtained with [3H]RO5-4864 in the same experimental conditions. However thermodynamic analysis indicates that the [3H]PK 11195 binding was entropy driven whereas the [3H]RO5-4864 binding was enthalpy driven. Consequently PK 11195 might be an antagonist of these binding sites and RO5-4864 an agonist or a partial agonist. The simultaneous use of both drugs might help to elucidate the physiological relevance of peripheral benzodiazepine binding sites.  相似文献   

11.
The binding of [3H]PK 11195 and [3H]Ro 5-4864 to membrane preparations from cerebral cortex and peripheral tissues of various species was studied. [3H]PK 11195 (0.05-10 nM) bound with high affinity to rat and calf cerebral cortical and kidney membranes. [3H]Ro 5-4864 (0.05-30 nM) also successfully labeled rat cerebral cortical and kidney membranes, but in calf cerebral cortical and kidney membranes, its binding capacity was only 3 and 4%, respectively, of that of [3H]PK 11195. Displacement studies showed that unlabeled Ro 5-4864, diazepam, and flunitrazepam were much more potent in displacing [3H]PK 11195 from rat cerebral cortex and kidney membranes than from calf tissues. The potency of unlabeled Ro 5-4864 in displacing [3H]PK 11195 from the cerebral cortex of various other species was also tested, and the rank order of potency was rat = guinea pig greater than cat = dog greater than rabbit greater than calf. Analysis of these displacement curves revealed that Ro 5-4864 bound to two populations of binding sites from rat and calf kidney and from rat, guinea pig, rabbit, and calf cerebral cortex but to a single population of binding sites from cat and dog cerebral cortex. Using [3H]PK 11195 as a ligand, the rank order of binding capacity in cerebral cortex of various species was cat greater than calf greater than guinea pig greater than rabbit greater than dog greater than rat, whereas when [3H]Ro 5-4864 was used, the rank order of binding capacity was cat greater than guinea pig greater than rat greater than rabbit greater than calf greater than dog.  相似文献   

12.
Abstract: [3H]Ro 16–6491 [N-(2-aminoethyl)-p-chloroben-zamide HCl], a reversible “mechanism-based” inhibitor of monoamine oxidase (MAO) type B, binds selectively and with high affinity to the active site of MAO-B in brain and platelet membranes. Under normal conditions, the binding of [3H]Ro 16–6491 is fully reversible. However, [3H]Ro 16–6491 could be irreversibly bound (covalently) to membranes by the addition of the reducing agent NaBH3CN to the sample and adjusting to pH 4.5 with acetic acid. No irreversible labelling occurred in the absence of NaBH3CN and at neutral pH. The presence of the irreversible MAO-B inhibitor /-deprenyl completely abolished the irreversible labelling of the membranes by [3H]Ro 16–6491. The selective inactivation of MAO-B, e.g., by /-deprenyl prevented the covalent incorporation of [3H]Ro 16–6491 whereas selective inhibition of the MAO-A by clorgyline was without effect. The covalent linkage to membranes of unlabelled Ro 16–6491 and Ro 19–6327 (a selective and reversible MAO-B inhibitor closely related to Ro 16–6491) after the addition of NaBH3CN at pH 4.5 irreversibly inactivated MAO-B activity whereas MAO-A activity was unaffected. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of labelled membranes showed that [3H]Ro 16–6491 was incorporated into a single polypeptide with a molecular mass identical to the one labelled by [3H]pargyline (58 kilodaltons). Our results indicate that the polypeptide that is covalently labelled by [3H]Ro 16–6491 corresponds to one of the two MAO-B subunits. Therefore, [3H]Ro 16–6491 represents a selective probe for affinity labelling of MAO-B and for the investigation of the structural composition of the active site of the enzyme. Whether the reduction with NaBH3CN at pH 4.5 of the [3H]Ro 16–6491-MAO-B complex results in the formation of a stable adduct with the amino acid chain of the MAO-B or with its prosthetic group, FAD, remains to be elucidated.  相似文献   

13.
Photolabeling of the benzodiazepine receptor, which to date has been done with benzodiazepine agonists such as flunitrazepam, can also be achieved with Ro 15-4513, a partial inverse agonist of the benzodiazepine receptor. [3H]Ro 15-4513 specifically and irreversibly labeled a protein with an apparent molecular weight of 51,000 (P51) in cerebellum and at least two proteins with apparent molecular weights of 51,000 (P51) and 55,000 (P55) in hippocampus. Photolabeling was inhibited by 10 microM diazepam but not by 10 microM Ro 5-4864. The BZ1 receptor-selective ligands CL 218872 and beta-carboline-3-carboxylate ethyl ester preferentially inhibited irreversible binding of [3H]Ro 15-4513 to protein P51. Not only these biochemical results but also the distribution and density of [3H]Ro 15-4513 binding sites in rat brain sections were similar to the findings with [3H]flunitrazepam. Thus, the binding sites for agonists and inverse agonists appear to be located on the same proteins. In contrast, whereas [3H]flunitrazepam is known to label only 25% of the benzodiazepine binding sites in brain membranes, all binding sites are photolabeled by [3H]Ro 15-4513. Thus, all benzodiazepine receptor sites are associated with photolabeled proteins with apparent molecular weights of 51,000 and/or 55,000. In cerebellum, an additional protein (MW 57,000) unrelated to the benzodiazepine receptor was labeled by [3H]Ro 15-4513 but not by [3H]flunitrazepam. In brain sections, this component contributed to higher labeling by [3H]Ro 15-4513 in the granular than the molecular layer.  相似文献   

14.
Benzodiazepine receptors on human blood platelets   总被引:3,自引:0,他引:3  
Binding studies conducted on membrane preparation from human platelets using (3H) Ro5-4864 and (3H) diazepam showed specific and saturable binding. Scatchard analysis revealed a single class of binding sites with KD = 10.8 +/- 0.9 nM and Bmax = 775 +/- 105 fmol/mg protein for (3H) Ro5-4864 and KD = 10.5 +/- 1.1 nM and Bmax = 133 +/- 19 fmol/mg for (3H) diazepam. We were unable to detect any GABA binding site on crude membrane preparation, nor did GABA enhance the binding of (3H) Ro5-4864 or (3H) diazepam. This suggests that benzodiazepine receptors are uncoupled to GABA system on human platelets. Ro15-1788, a specific antagonist for "central type" benzodiazepine (BDZ) binding sites was inactive in displacing (3H) Ro5-4864 from membrane receptors, while PK 11195 (a specific ligand for the "peripheral type" receptor) was the most potent of the drugs tested in inhibiting (3H) Ro5-4864 binding. These results indicate that human blood platelets bear "peripheral-type" BDZ receptor. Moreover, we could not detect any (3H) propyl beta carboline specific binding on platelet membranes. Results on benzodiazepine receptors on human circulating lymphocytes are also reported and similarity in pharmacological properties with platelet benzodiazepine receptors is suggested.  相似文献   

15.
The presence of benzodiazepine binding sites in rat vas deferens was detected using [3H]Ro 5-4864 as a radioligand. The binding of [3H]Ro 5-4864 to the mitochondrial sites is saturable, reversible, and temperature and time dependent. The association rate constant (k1) was 8.7 +/- 0.7 x 10(7) M-1 min-1, and the dissociation rate constant (k-1) was 0.031 +/- 0.003 min-1. The dissociation constant (KD) determined by saturation binding was 5.22 +/- 0.56 nM. The density of binding was 4,926 +/- 565 fmol/mg of protein. The Hill coefficient of binding was 0.99 +/- 0.01, an indication that [3H]Ro 5-4864 binds to a single site. The [3H]Ro 5-4864 binding was inhibited competitively by Ro 5-4864 and 2-hydroxy-5-nitrobenzyl-6-thioguanosine and noncompetitively by PK 11195, nitrendipine, alpha,beta-methylene-ATP, and carboxyatractyloside and was not affected by clonazepam, dicyclohexylcarbodiimide, or protoporphyrin IX. Our data indicate that [3H]Ro 5-4864 binding sites are not identical to those labeled by PK 11195. These binding sites are modulated by the ADP/ATP mitochondrial carrier, and an interaction of dihydropyridines and [3H]Ro 5-4864 binding sites in rat vas deferens is suggested.  相似文献   

16.
M Awad  M Gavish 《Life sciences》1988,43(2):167-175
The present study demonstrates a differential effect of various detergent treatments on [3H]Ro 5-4864 and [3H]PK 11195 binding to peripheral benzodiazepine binding sites (PBS). Triton X-100 (0.0125%) caused a decrease of about 70% in [3H]Ro 5-4864 binding to membranes from various peripheral tissues of rat, but had only a negligible effect on [3H]PK 11195 binding. A similar effect of Triton X-100 was observed on guinea pig and rabbit kidney membranes. The decrease in [3H]Ro 5-4864 binding after treatment with Triton X-100 was apparently due to a decrease in the density of PBS, since the affinity remained unaltered. The detergents 3-[(3-cholamidopropyl)-dimethylammonio]-1-propane sulfonate (CHAPS), Tween 20, deoxycholic acid, or digitonin (0.0125%) caused only a minor change in [3H]Ro 5-4864 and [3H]PK 11195 binding to rat kidney membranes; but when concentrations were substantially increased (0.1%), all detergents caused a decrease of at least 50% in [3H]Ro 5-4864 binding, while [3H]PK 11195 binding to rat kidney membranes remained unaffected by the first three detergents, with only a minor decrease (15%) after treatment with digitonin. These results may further support the assumption that Ro 5-4864 and PK 11195 are agonist and antagonist, respectively, of PBS and interact with two different conformations or domains in the peripheral-type benzodiazepine binding site molecule.  相似文献   

17.
P.J. Marangos  J. Patel 《Life sciences》1981,29(16):1705-1714
β-Carbolines are inhibitors of [3H] diazepam binding with the most potent inhibitor being β-carboline-3-carboxylate ethyl ester (β-CCE). In this report the binding of [3H] β-CCE to extensively washed rat forebrain membranes is characterized. [3H] ß-CCE binds with high affinity (KD = 1.4 nM) to an apparently homogenous population of benzodiazepine receptor. The rank order of potency for inhibition of [3H] ß-CCE binding by different benzodiazepines is clonazepam > diazepam > chlordiazepoxide, which is similar to that observed for inhibition of [3H] diazepam binding. In marked contrast to [3H] diazepam, the binding of [3H] ß-CCE is not modulated by GABA since concentrations of GABA as high as 10?3 M had no effect. [3H] ß-CCE is also less potent than [3H] diazepam in its interaction with the peripheral type kidney benzodiazepine receptor indicating that this ligand has a higher degree of specificity for the central brain type benzodiazepine receptor.  相似文献   

18.
[3H]Diazepam and [3H] Ro5 -4864 were used as ligands to identify and characterize peripheral-type benzodiazepine binding sites in mouse and rat brown adipose tissue (BAT) membranes. [3H]Diazepam and [3H] Ro5 -4864 binding sites in BAT are pharmacologically similar to peripheral-type benzodiazepine binding sites in other tissues. Stimulators of central-type benzodiazepine receptors had no effect on or inhibited ligand binding to BAT membranes. Brown adipose tissue benzodiazepine binding sites are highly localized to mitochondria-containing subcellular fractions. These binding sites decrease with age in BAT from Fischer 344 rats. Stimulation of BAT thermogenesis in mice with 1-norepinephrine led to a decrease in [3H] Ro5 -4864 binding in the tissue.  相似文献   

19.
S Mihara  M Fujimoto 《Life sciences》1989,44(22):1713-1720
Peripheral benzodiazepine (BZ) binding sites were characterized in porcine aortic smooth muscle membrane preparation. [3H]PK11195 bound with high affinity to the membranes (Kd = 8.6 + 0.9 nM), whereas [3H]Ro5-4864 bound slightly to the membranes. The Ki value of Ro5-4864 obtained from the inhibition of [3H]PK 11195 binding was 1200 + 200 nM, which was 480 times weaker than that obtained in rat kidney. Furthermore, the Ro5-4864 effect was temperature-insensitive. When [3H]PK 11195 binding was examined in porcine, human and rat platelets, Ro5-4864 inhibited the binding in porcine and human platelets one order of magnitude less potently than that in rat platelets. These results suggest that low affinity for Ro5-4864 in porcine aorta smooth muscle originates in porcine tissue, but not in smooth muscle.  相似文献   

20.
Properties of [3H]diazepam binding sites on rat blood platelets   总被引:8,自引:0,他引:8  
J K Wang  T Taniguchi  S Spector 《Life sciences》1980,27(20):1881-1888
Intact rat blood platelets are shown to possess benzodiazepine binding sites of the peripheral type, binding of [3H]diazepam being strongly inhibited by Ro5-4864 (Ki = 3.6 ± 0.5 nM) but only weakly inhibited by clonazepam (Ki = 35.1 ± 18.2 μM). Binding of [3H]diazepam is specific and saturable. Scatchard analysis reveals a single class of binding sites with KD = 14.7 ± 1.0 nM and Bmax = 564 ± 75 fmoles/108 platelets. The Hill coefficient is 0.94, indicating a lack of binding site heterogeneity or negative cooperativity. Binding reaches equiliibrium at 6 min, with k+1 = 2.9 × 107 M?1 min?1, and is rapidly reversible (t12 = 2.2 min with K?1 = 0.315 min?1. KD derived from the rate constants agrees with that estimated by Scatchard analysis. KD of the crude membrane fraction of platelets is also close to that of intact platelets. Binding of [3H]diazepam is linear with platelet number (between 0.25–2 × 108 platelets), is temperature sensitive with maximum binding at 0°C, and has a broad optimal pH range between pH 5–9.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号