首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
In flowering plants, penetration of the pollen tube through stigma, style, and transmitting tract is essential for delivery of sperm nuclei to the egg cells embedded deeply within female tissues. Despite its importance in plant reproduction, little is known about the underlying molecular mechanisms that regulate the navigation of the pollen tube through the stigma, style, and transmitting tract. Here, we report the identification and characterization of an Arabidopsis thaliana gene, VANGUARD1 (VGD1) that encodes a pectin methylesterase (PME)-homologous protein of 595 amino acids and is required for enhancing the growth of pollen tubes in the style and transmitting tract tissues. VGD1 was expressed specifically in pollen grain and the pollen tube. The VGD1 protein was distributed throughout the pollen grain and pollen tube, including the plasma membrane and cell wall. Functional interruption of VGD1 reduced PME activity in the pollen to 82% of the wild type and greatly retarded the growth of the pollen tube in the style and transmitting tract, resulting in a significant reduction of male fertility. In addition, the vgd1 pollen tubes were unstable and burst more frequently when germinated and grown on in vitro culture medium, compared with wild-type pollen tubes. Our study suggests that the VGD1 product is required for growth of the pollen tube, possibly via modifying the cell wall and enhancing the interaction of the pollen tube with the female style and transmitting tract tissues.  相似文献   

2.
Chae K  Lord EM 《Annals of botany》2011,108(4):627-636
BACKGROUND: Pollination is a crucial step in angiosperm (flowering plant) reproduction. Highly orchestrated pollen-pistil interactions and signalling events enable plant species to avoid inbreeding and outcrossing as a species-specific barrier. In compatible pollination, pollen tubes carrying two sperm cells grow through the pistil transmitting tract and are precisely guided to the ovules, discharging the sperm cells to the embryo sac for fertilization. SCOPE: In Lilium longiflorum pollination, growing pollen tubes utilize two critical mechanisms, adhesion and chemotropism, for directional growth to the ovules. Among several molecular factors discovered in the past decade, two small, secreted cysteine-rich proteins have been shown to play major roles in pollen tube adhesion and reorientation bioassays: stigma/style cysteine-rich adhesin (SCA, approx. 9·3 kDa) and chemocyanin (approx. 9·8 kDa). SCA, a lipid transfer protein (LTP) secreted from the stylar transmitting tract epidermis, functions in lily pollen tube tip growth as well as in forming the adhesive pectin matrix at the growing pollen tube wall back from the tip. Lily chemocyanin is a plantacyanin family member and acts as a directional cue for reorienting pollen tubes. Recent consecutive studies revealed that Arabidopsis thaliana homologues for SCA and chemocyanin play pivotal roles in tip polarity and directionality of pollen tube growth, respectively. This review outlines the biological roles of various secreted proteins in angiosperm pollination, focusing on plant LTPs and chemocyanin.  相似文献   

3.
4.
Plant sexual reproduction involves the growth of tip-polarized pollen tubes through the female tissues in order to deliver the sperm nuclei to the egg cells. Despite the importance of this crucial step, little is known about the molecular mechanisms involved in this spatial and temporal control of the tube growth. In order to study this process and to characterize the structural composition of the extracellular matrix of the male gametophyte, immunocytochemical and biochemical analyses of Arabidopsis pollen tube wall have been carried out. Results showed a well-defined localization of cell wall epitopes with highly esterified homogalacturonan and arabinogalactan-protein mainly in the tip region, weakly methylesterified homogalacturonan back from the tip and xyloglucan and (1→5)-α-L-arabinan all along the tube. Here, we present complementary data regarding (1) the ultrastructure of the pollen tube cell wall and (2) the immunolocalization of homogalacturonan and arabinan epitopes in 16-h-old pollen tubes and in the stigma and the transmitting tract of the female organ. Discussion regarding the pattern of the distribution of the cell wall epitopes and the possible mechanisms of cell adhesion between the pollen tubes and the female tissues is provided.Key words: arabinan, cell adhesion, cell wall, homogalacturonan, pistil, pollen tube growth, transmitting tractFertilization of flowering plants requires the delivery of the two sperm cells, carried by the fast growing tip-polarized pollen tube, to the egg cell. At every stage of the pollen tube development within the stigma, style and ovary, pollen tubes are guided to the ovules via multiple signals that need to pass through the cell wall of the pollen tube to reach their targets.16The analysis of Arabidopsis pollen tube cell wall has recently been reported.7 Results showed a well-defined localization of cell wall epitopes with highly methylesterified homogalacturonan (HG) and arabinogalactan-protein (AGP) mainly in the tip region, weakly methylesterified HG back from the tip and xyloglucan and arabinan all along the tube. In addition, according to the one letter nomenclature of xyloglucan,8 the main motif of Arabidopsis pollen tube xyloglucan was XXFG harboring one O-acetyl group. In order to bring new information regarding the possible interaction between the pollen tubes and the female tissues, the ultrastructural organization of the pollen tube cell wall, the cytological staining and immunolocalization of the cell wall epitopes of the pistil and especially the transmitting tract (TT), a specialized tissue where pollen tubes grow, were carried out.  相似文献   

5.
Adhesion and guidance in compatible pollination   总被引:14,自引:0,他引:14  
The mechanisms of compatible pollination are less studied than those of incompatible pollination and yet most of the angiosperms show self-compatibility. From the release of pollen from anthers to the penetration of the micropyle by the pollen tube tip, there are numerous steps where the interaction between pollen and the pistil can be regulated. Recent studies have documented some diverse ways in which pollen tubes carrying sperm cells are guided to the ovules through the pistil extracellular matrices of the transmitting tract. What is still missing is an understanding of pollen tube cell biology in vivo. A recent finding supports the role of the synergids in the crucial guidance cue for the pollen tube tip at the micropyle, but experimental evidence for other 'guidepost' cells in the pistil is still lacking. The fact that the pollen tube must first travel through the matrices of the stigma and style before it can respond to the cue from the ovule makes it likely that there is a hierarchy of signalling events in pollen-pistil interactions starting at the stigma and ending at the micropyle. On the pistil side, several model systems have been used in the discovery of molecules implicated in either physical or chemical guidance. In lily, which has a hollow style, adhesion molecules (pectin and SCA) are implicated in guidance. SCA alone is also capable of inducing pollen chemotropism in an in vitro assay, suggesting that this peptide plays a dual role in lily pollination: chemotactic in the stigma and haptotactic (adhesion mediated) in the style.  相似文献   

6.
Flowering plants possess specialized extracellular matrices in the female organs of the flower that support pollen tube growth and sperm cell transfer along the transmitting tract of the gynoecium. Transport of the pollen tube cell and the sperm cells involves a cell adhesion and migration event in species such as lily that possess a transmitting tract epidermis in the stigma, style, and ovary. A bioassay for adhesion was used to isolate from the lily stigma/stylar exudate the components that are responsible for in vivo pollen tube adhesion. At least two stylar components are necessary for adhesion: a large molecule and a small (9 kD) protein. In combination, the two molecules induced adhesion of pollen tubes to an artificial stylar matrix in vitro. The 9-kD protein was purified, and its corresponding cDNA was cloned. This molecule shares some similarity with plant lipid transfer proteins. Immunolocalization data support its role in facilitating adhesion of pollen tubes to the stylar transmitting tract epidermis.  相似文献   

7.
During compatible pollination of the angiosperms, pollen tubes grow in the pistil transmitting tract (TT) and are guided to the ovule for fertilization. Lily (Lilium longiflorum) stigma/style Cys-rich adhesin (SCA), a plant lipid transfer protein (LTP), is a small, secreted peptide involved in pollen tube adhesion-mediated guidance. Here, we used a reverse genetic approach to study biological roles of Arabidopsis thaliana LTP5, a SCA-like LTP. The T-DNA insertional gain-of-function mutant plant for LTP5 (ltp5-1) exhibited ballooned pollen tubes, delayed pollen tube growth, and decreased numbers of fertilized eggs. Our reciprocal cross-pollination study revealed that ltp5-1 results in both male and female partial sterility. RT-PCR and β-glucuronidase analyses showed that LTP5 is present in pollen and the pistil TT in low levels. Pollen-targeted overexpression of either ltp5-1 or wild-type LTP5 resulted in defects in polar tip growth of pollen tubes and thereby decreased seed set, suggesting that mutant ltp5-1 acts as a dominant-active form of wild-type LTP5 in pollen tube growth. The ltp5-1 protein has additional hydrophobic C-terminal sequences, compared with LTP5. In our structural homology/molecular dynamics modeling, Tyr-91 in ltp5-1, replacing Val-91 in LTP5, was predicted to interact with Arg-45 and Tyr-81, which are known to interact with a lipid ligand in maize (Zea mays) LTP. Thus, Arabidopsis LTP5 plays a significant role in reproduction.  相似文献   

8.
O'Brien  Susan P. 《Annals of botany》1994,73(3):225-230
Pistil structure and pollen tube growth were investigated inLeptospermum myrsinoides and L. continentale (Myrtaceae). BothL. myrsinoides and L. continentale pistils consist of an ovarywith five locules, a style and a five-lobed dry, papillate stigma.A centrally located stigmatic cleft is present but extends onlyto the base of the stigma. Pollen germinates and grows intercellularlythrough the stigma into the central transmitting tissue of thestyle. Pollen tubes do not grow down the stigmatic cleft. Atthe base of the style the transmitting tissue separates intofive, each tract leading through the placenta to one of thefive locules. The pollen tubes continue to grow intercellularlythrough these five tracts entering the locules between the lobesof the placenta. Pollen tubes are smooth-walled and straightwhilst in the transmitting tissue of the style but produce shortlateral branches at regular intervals when in the locules. Branchingcontinues until pollen tubes enter ovules. It is suggested thatthe observed branching in the locules is a result of pollentubes following a chemotropic or thigmotropic pathway to theovules. This behaviour was consistent in all pistils examinedand no difference was observed in the behaviour of self- orcross-pollen tubes in the style or ovary.Copyright 1994, 1999Academic Press Leptospermum myrsinoides Schldl., Leptospermum continentale J. Thompson, pistil structure, pollen tube pathway, pollen tube branching  相似文献   

9.
During pollination the pollen tube grows into the style and toward the ovary via the transmitting tract. In lily the growth of pollen tubes involves tube cell adhesion to transmitting tract cells. We reported two molecules involved in this adhesion event. One is a pectic polysaccharide and the other, a 9 kDa basic protein named SCA for stigma/stylar cysteine-rich adhesin. SCA, which shows some identity with LTP (lipid transfer protein), was localized to the transmitting tract epidermis of the style where pollen tubes adhere. The present studies on the expression of SCA indicate that the protein has a similar expression pattern with LTP1 in Arabidopsis and that the protein is abundant in both the stigma and the style. For further proof of its role in pollen tube adhesion the activity of Escherichia coli-expressed protein has been studied in an in vitro adhesion assay system.  相似文献   

10.
Pollen tube growth has been studied in peach and has been related to changes in the pistil structures which the pollen tube has to traverse in its way from the stigma down to the ovule. Growth of the pollen tubes along the pistil is not continuous. While pollen tubes reach the base of the style 7 days after pollination, fertilization does not take place until 12 days later. Pollen tubes stop for 5 days at the top of the obturator and they further stop for 3 days before entering the ovule. The pollen tube growth is heterotrophic; starch, present all along the pistilar tract at anthesis, vanishes as the pollen tubes pass by. Discontinuous pollen tube growth appears to be controlled by the pistil. At anthesis the pistil is not fully matured. Maturation of the pistil implies a number of secretory processes that occur in a basipetal way starting from the stigma down to the style and ending in the ovule. Some of these secretions at the stigma and the style are triggered by pollination; others appear to be a maturative stage of the pistil and are produced in a discrete way. The fact that the pollen tube depends on these secretions together with the fact that these secretions are not continuously produced confer upon the pistil a role of controlling pollen tube kinetics and point out that, for a successful fertilization, male gametophyte development and pistil maturation need to by synchronized.  相似文献   

11.
Angiosperm reproductive development is a complex event that includes floral organ development, male and female gametophyte formation and interaction between the male and female reproductive organs for successful fertilization. Previous studies have revealed the redundant function of ATP binding cassette subfamily G (ABCG) transporters ABCG1 and ABCG16 in pollen development, but whether they are involved in other reproductive processes is unknown. Here we show that ABCG1 and ABCG16 were not only expressed in anthers and stamen filaments but also enriched in pistil tissues, including the stigma, style, transmitting tract and ovule. We further demonstrated that pistil‐expressed ABCG1 and ABCG16 promoted rapid pollen tube growth through their effects on auxin distribution and auxin flow in the pistil. Moreover, disrupted auxin homeostasis in stamen filaments was associated with defective filament elongation. Our work reveals the key functions of ABCG1 and ABCG16 in reproductive development and provides clues for identifying ABCG1 and ABCG16 substrates in Arabidopsis.  相似文献   

12.
Summary In incompatible (intramorph) pollinations of the heterostylousPrimula vulgaris, pollen germination or tube growth may be partially inhibited in several sites associated with the stigma or style. Blockage may occur, a) on the stigma surface through the failure of germination or of pollen tube penetration after germination, b) in the stigma head during the passage of the tube through the specialized transmitting tissue of the head, or c) in the transmitting tract of the style. None of the barriers is complete, and the prohibition of selfing or intramorph crossing depends upon the cumulative screening effect of one following upon the other. In both morphs, the germination of incompatible pollen on the stigma is enhanced in high ambient relative humidity, but many tubes still fail to penetrate the stigma. Those that do are retarded or blocked in their growth in the transmitting tissues of the stigma head and style. Crude extracts from the tissues of the stigma head and style show some differential effect on the growth of pollen tubesin vitro, and dialysates of extracts containing high molecular weight fractions show a consistent differential effect, those from thrum tissues retarding thrum tubes while having a lesser effect on pin tubes, and those from pin tissues retarding pin tubes while having lesser effect on thrum. It is suggested that the factors influencing tube growth are present in the intercellular secretions of the transmitting tract.  相似文献   

13.
《Grana》2012,51(6):424-432
Abstract

The stigma (tip of the pistil) of medlar is wet and covered with stigmatic exudate at anthesis. The exudate contains many vesicles with abundant calcium precipitates. After deposition on the stigma, the pollen grain undergoes hydration, displaying signs of calcium ion (Ca2+) transfer from the exudate vesicles into the pollen grains. Calcium precipitates in the pollen cytoplasm are concentrated into small vacuoles that fuse to form large vacuoles, which provide turgor pressure to push the cytoplasm to the apical region of the growing pollen tube. Many calcium precipitates are present in the stylar transmitting tract, which displays a calcium gradient: fewer precipitates are localised in the distal (upper) transmitting tissue below the stigma, and more precipitates are present in the transmitting tract at the style base. The emporal and spatial distribution of calcium in the stigma and style of medlar suggests that it satisfies the demand for calcium in vivo and played some functional significance.  相似文献   

14.
Pistil structure, stigma receptivity and pollen tube growthwere investigated in relation to seed set of Eucalyptus woodwardii.Self-pollination resulted in reduced capsule retention and seeddevelopment as compared with cross-pollination. The pistil consistedof an ovary with five locules, a long style with a canal extendingfor two-thirds of its length, and a papillate stigma. Therewas no change in style length with time after anthesis, butboth stigma secretion and ability to support pollen germinationand tube growth increased to reach a peak at 7 d. Pollen germinatedon the stigma surface and in the stylar canal, but most tubegrowth occurred intercellularly in the transmitting tissue surroundingthe canal. At the base of the style the pollen tubes split intofive groups following the transmitting tissue strands to theovary. Each group grew through a septum dividing two loculesand entered the placenta. The tubes then emerged from the placentato penetrate the ovules at between 10 and 20 d after pollination.Fewer ovules were penetrated following self- than cross-pollination. Eucalyptus woodwardii Maiden, Lemon-flowered gum, Pistil receptivity, Pollen tube growth, Breeding system, Self-incompatibility  相似文献   

15.
16.
17.
Arabidopsis hapless mutations define essential gametophytic functions   总被引:9,自引:0,他引:9  
In flowering plants, the egg develops within a haploid embryo sac (female gametophyte) that is encased within the pistil. The haploid pollen grain (male gametophyte) extends a pollen tube that carries two sperm cells within its cytoplasm to the embryo sac. This feat requires rapid, precisely guided, and highly polarized growth through, between, and on the surface of the cells of the stigma, style, and ovary. Pollen tube migration depends on a series of long-range signals from diploid female cells as well as a short-range attractant emitted by the embryo sac that guides the final stage of tube growth. We developed a genetic screen in Arabidopsis thaliana that tags mutant pollen with a cell-autonomous marker carried on an insertion element. We found 32 haploid-disrupting (hapless) mutations that define genes required for pollen grain development, pollen tube growth in the stigma and style, or pollen tube growth and guidance in the ovary. We also identified genomic DNA flanking the insertion element for eleven hap mutants and showed that hap1 disrupts AtMago, a gene whose ortholog is important for Drosophila cell polarity.  相似文献   

18.
花粉管引导是指显花植物在受精过程中,雌蕊组织与花粉管相互作用使花粉管定向生长并最终到达胚囊的过程,其机制颇为复杂。该文基于调控花粉管生长的孢子体引导和配子体细胞引导两个主要过程,阐述雌蕊中不同蛋白分子和其它小分子物质的浓度梯度在花粉管的孢子体组织引导中的作用,以及胚囊中不同类型的细胞及其相关基因与蛋白在花粉管的配子体细胞引导中的作用。同时,该文也对精细胞在花粉管引导中的作用进行了阐述。  相似文献   

19.
20.
The black maple (Acer saccharum Marsh, ssp. nigrum [Michx. f.] Desm.) gynoecium displays classical involute carpel development; carpels form, in mid- to late-summer, as two separate, opposite, hood-shaped primordia bearing naked megasporangia on inrolled carpel margins. Megasporogenesis, integument initiation, and carpel closure occur in spring; carpels fuse, forming a biloculate ovary with a short, hollow style and two divergent, dry, unicellular papillose stigmas. Transmitting tissues consist of developmentally and morphologically similar trichomes that form along the apparent carpel margins. The path from stigma to micropyle is open, but pollen tubes do not grow entirely ectotrophically. Germinating at the tip of a stigma papilla, a tube grows, apparently under the cuticle, to the papilla base. It then grows between stigma cells to the style, emerging to grow ectotrophically through the style to the compitum, where it passes into one of the locules. Within a locule, the tube grows over placenta and obturator to the micropyle, then between megasporangium cells to the female gametophyte, spreading over the surface near the egg. This study adds to our sparse understanding of gynoecium development and transmitting tissue in relation to pollen tube growth in naturally pollinated woody plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号